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Abstract Heterosis is a well-known phenomenon but the

underlying molecular mechanisms are not yet established.

To contribute to the understanding of heterosis at the

molecular level, we analyzed genome-wide gene expres-

sion profile data of Arabidopsis thaliana in a systems

biological approach. We used partial correlations to esti-

mate the global interaction structure of regulatory net-

works. Our hypothesis states that heterosis comes with an

increased number of partial correlations which we interpret

as increased numbers of regulatory interactions leading to

enlarged adaptability of the hybrids. This hypothesis is true

for mid-parent heterosis for our dataset of gene expression

in two homozygous parental lines and their reciprocal

crosses. For the case of best-parent heterosis just one

hybrid is significant regarding our hypothesis based on a

resampling analysis. Summarizing, both metabolome and

gene expression level of our illustrative dataset support our

proposal of a systems biological approach towards a

molecular basis of heterosis.

Introduction

The phenomenon of heterosis has already been known

since the last century (Shull 1908). It was defined as

‘‘increased vigor, size, fruitfulness, speed of development,

resistance to disease and to insect pests, or to climatic

rigors of any kind, manifested by crossbred organisms

compared with corresponding inbreds, as the specific

results of unlikeness in the constitutions of the uniting

parental gametes’’ by Shull (1952). This definition is

restricted to describing the phenotypes that result when two

different inbred lines are crossed. Therefore, it is often

interpreted as not implying a genetic basis for heterosis

(Lamkey and Edwards 1999). This was accomplished by

Schnell and Cockerham (1992) defining heterosis as the

difference in performance between hybrid and the mean of

the two parents. Figure 1 displays such a quantitative

genetics definition of heterosis. Mid-parent heterosis is the

difference in phenotype value between the heterozygous

offspring and the mean of the homozygous parents, while

best-parent heterosis describes the situation where the

hybrid exceeds the best parent.

Three different genetic models to explain heterosis have

been suggested: dominance (Bruce 1910; Xiao et al. 1995),

overdominance (Shull 1908; East 1936; Crow 1952) and

epistasis (Schnell and Cockerham 1992; Li et al. 2001; Luo

et al. 2001). These hypotheses can be divided into

approaches based on dominance or overdominance and

global approaches (epistasis) (for review see Lamkey and

Edwards 1999 and Birchler et al. 2003). Towards a
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molecular basis of heterosis, it has been analyzed which

genes show the above genetic non-additivity in their

expression levels (Vuylsteke et al. 2005), and if such genes

are enriched in yield-related QTL (Wei et al. 2009).

However, a molecular mechanistic model, which would be

able to explain how the observed phenomena on the

molecular level are integrated to result in heterosis on the

phenotype level, is still lacking.

In our contribution, we use a systems biology approach

to analyze heterosis in Arabidopsis thaliana plants based

on patterns in genome-wide gene expression profiles.

Already Robertson and Reeve (1952) suggested that

heterozygotes are likely to posses greater biochemical

versatility by carrying a greater diversity of alleles. Addi-

tional alleles at heterozygous loci may lead to additional

regulatory interactions in the molecular network. Equipped

with an enlarged repertoire of regulatory possibilities,

hybrids may possibly be able to correctly respond to a

higher number of environmental challenges leading to

higher adaptability (individual acclimation ability) and,

thus, the heterosis phenomenon.

Nowadays, high-throughput techniques, such as micro-

arrays, allow measuring genome-wide feature profiles

simultaneously. In global approaches, these datasets can be

used to discover the interactions of molecules, how they are

organized in networks and how the different networks are

linked to each other (Barabási and Oltvai 2004). Partial

correlations have been recommended to estimate regulatory

interactions from observational data (Werhli et al. 2006).

Simple network models have been proposed to model

the regulatory apparatus in a parsimonious way (Shubik

1996; Somogyi and Sniegoski 1996; Genoud and Métraux

1999). On this background we developed our ‘‘network

hypothesis of heterosis’’ (Andorf et al. 2009). Our con-

ceptual modeling results proposed that higher adaptability

comes with an increased number of molecular interactions.

To characterize the global interaction structure of regula-

tory networks, we use partial correlations (association

networks). Based on the hypothesis of Robertson and

Reeve (1952) and our conceptual model, we expect that the

heterozygous genotypes show enriched partial correlations

compared to the homozygous parents. These larger partial

correlations represent the additional regulatory interactions

in the molecular networks of the hybrids. Also, a gene set

enrichment analysis is included to check for pathway-

specific enlarged partial correlations.

The hypothesis was already tested on a metabolite

dataset of samples of A. thaliana plants (Andorf et al.

2009). In this paper we will check if the hypothesis also

holds true for gene expression data of the same genotypes.

We use a certainly limited dataset, but aim to propose and

illustrate a systems biological view which allows for an

integrated hypothesis about the molecular basis of hetero-

sis, complementing single gene and quantitative genetics

approaches.

Materials and methods

Experimental data and preprocessing

Gene expression data were measured using Agilent’s

Arabidopsis thaliana Microarray Kit 4x44k, P/N G2519F

(Agilent Microarray Designs ID 021169, arrays contain

four subarrays where each represents a different hybrid-

ization). To isolate the RNA the innuPREP Plant RNA Kit

(845-KS-2060250, Analytik Jena) was used. The RNA was

obtained from seedlings of A. thaliana of two homozygous

lines C24 and Columbia (Col-0; depicted as Col in the

following) and the reciprocal crosses C24 9 Col and

Col 9 C24. Gene expression profiles were measured dur-

ing early development at seven time points [4, 6, 10, 15,

20, 25 and 30 days after sowing (DAS)]. For each mea-

surement, a group of seedlings (Petri dish, pot) was grown

and fully harvested after every specific time of growing.

Figure 2 shows the experimental design, a multiple

nested loop design. Each arrow represents one subarray,

where the arrowhead symbolizes that the sample was

labeled with one color and the root of the arrow symbolizes

the other color. For each genotype–time point combination

2 or 4 biological replicates were measured. For the time

points of 4, 10, 20 and 30 DAS, we had four replicates

each. Part of the subarray that contains the samples of

C24 at the time points 15 and 20 DAS (dashed arrow in

Fig. 2) was covered by an air bubble and therefore, this

subarray was excluded from the analysis.

Figure 3 summarizes the workflow of our analysis,

beginning with the raw data from these microarray

hybridizations.

During reading the raw data with the function

read.maimages of the Bioconductor (Gentleman et al.

2004) R package limma (Smyth 2005), low quality spots

were detected using eight quality features (see Table 1)

Parents
AA BB AB (case1) AB (case2)

Offspring

Mid-parent

Performance

Heterosis
effect

Mid-parent
heterosis

Best-parent
heterosis

Best-parent

Fig. 1 Quantitative genetics definition of heterosis. The black parts
of the performance of the heterozygous offspring denote the heterosis

effect
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described in the reference guide of the Agilent Feature

Extraction Software (Agilent Technologies Inc. 2008).

Afterwards, the raw intensities of the spots that were not

flagged out, were background corrected using the method

normexp (Ritchie et al. 2007) of the R package limma.

Background corrected values were lowess normalized to

get as unbiased red/green-ratios as possible. For global

comparability, the data of all arrays were quantile nor-

malized (Smyth and Speed 2003). For 3651 genes, more

than 20% of the measured values were flagged out and

therefore these genes were excluded from further analysis.

As proposed by Yang et al. (2002), normalized gene

intensities were obtained as in Eqs. 1 and 2 from

re-parameterizing the normalized log-ratios (M) and mean

log-intensities (A) from the limma analysis.

M ¼ log ICy5 � log ICy3 A ¼ 1

2
ðlog ICy5 þ log ICy3Þ ð1Þ

log ICy5 ¼ Aþ 1

2
M log ICy3 ¼ A� 1

2
M: ð2Þ

Regarding the locus IDs, 6,647 genes are represented by

two or more spots on each subarray. The normalized

intensity values for all measurements of these genes are

replaced by the average of the values of the multiple spots.

This leaves 33,445 genes for the further analysis.

Subsequently, profiles of non-expressed genes as well as

approximately constant profiles were cleaned out applying

two further filtering steps. In the first step, genes with very

small maximum intensity values were screened out. Based

on the distribution of the maximum intensity values of all

genes (data not shown), we required a minimum intensity

of log I C 7 for at least one measurement of the gene. In the

second step, genes were excluded from the subsequent

analysis which showed low variation in their normalized

intensities. In this filtering step we applied a cutoff of 2.8.

We used a linear model (adjusted to Kerr et al. 2000;

Kerr and Churchill 2001) to analyze the experimental loop

design and estimate the gene expression profiles. It con-

tains the factors g denoting the four genotypes, factor

t [ {1,..., 7} denoting the seven time points of the devel-

opmental time series, their interaction g 9 t, factor

AR [ {1,..., 11} denoting the array (containing the four

subarrays) and factor DcRNA [ {1,..., 7} denoting the date

of cRNA synthesis. The fitting of the linear regression was

done on a gene-wise basis for the following model where

yi,j,k,l,m depicts the normalized gene intensities.

yi;j;k;l;m ¼ lþ gi þ tj þ ðg� tÞi;j þ ARk þ DcRNAl

þ ei;j;k;l;m: ð3Þ

In this model, l gives the overall gene-wise mean, the

four genotypes are denoted with index i, the seven time

points with index j, the array with index k, the date of

cRNA synthesis with index l and the replicates with index

m (between 1 and 4 biological replicates; see Fig. 2 for

details). A factor dye was not included in this model

4 6 10 15 20 25 30 DAS

C24

Col

C24xCol

ColxC24

Fig. 2 Experimental design with multiple loops. Each arrow sym-

bolizes one subarray (dashed arrow subarray was excluded from

analysis)

Fig. 3 Workflow of our analysis

Table 1 Eight Boolean variables related to outliers (Agilent Tech-

nologies Inc. 2008)

Green channel Red channel

gIsFeatNonUnifOL rIsFeatNonUnifOL

gIsBGNonUnifOL rIsBGNonUnifOL

gIsFeatPopnOL rIsFeatPopnOL

gIsBGPopnOL rIsBGPopnOL
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because it was not significant. Estimated gene expression

values, yi,j
* were obtained from model 3 as in Eq. 4

y�i;j ¼ gi þ tj þ ðg� tÞi;j: ð4Þ

Afterwards, we applied an additional filtering step on the

estimated effects of the linear model. In this significance

filter we filtered out genes that do not show a significant time

and/or genotype–time interaction effect. We corrected the P

values for these effects using the FDR correction described

by Benjamini and Hochberg (1995). We choose a liberal

cutoff of 0.2 as significance level to only exclude genes

which show nearly no time dependency or g 9 t interaction.

After this filtering step, 9,840 genes remained for all further

analyses, a number inline with our expectations from earlier

expression studies in A. thaliana (Ma and Sun 2005).

The analyses were performed using R (R Development

Core Team 2008) (version 2.8.1) on an openSUSE Linux 11.0

(x86_64) server with 32GB RAM. Raw gene expression data,

estimated profiles as well as scripts are available upon request.

Network statistics

Werhli et al. (2006) suggested that partial correlations of

features of time series profiles can be used to study causal

regulatory interactions. Simulation results for metabolite

time series data confirmed this (Andorf et al. 2009). So, we

based our investigation of additional regulatory interactions

in hybrids on the estimation of regulatory interactions

through partial correlations. To calculate partial correlations

we employed the approach as proposed by Opgen-Rhein

and Strimmer (2007). Their algorithm is implemented in the

R package GeneNet (Opgen-Rhein et al. 2007). We used

this package to obtain partial correlations from the nor-

malized gene intensities of the seven time points. In

GeneNet, partial correlations are calculated as in Eq. 5

~qa;b ¼
�xa;b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xa;axb;b
p ð5Þ

~qa;b is the partial correlation between the genes a and b. xa,b is

the element of the inverse covariance matrix. It is estimated

using a shrinkage approach (Schäfer and Strimmer 2005b)

within the package GeneNet. For the shrinkage estimator of

the partial correlations we used the default option ‘‘static’’ in

the method ggm.estimate.pcor of the package GeneNet.

Because we do not include any a priori information about the

partial correlations in the shrinkage process, the covariance

matrix is shrunk towards the identity matrix. To demonstrate

the validity of this estimation procedure for the dimension of

our data we conducted a methodology simulation study.

1. Construction of covariance matrices with constant

covariance values of 0.25 and 0.4 for 1,000 nodes (the

diagonal values were set to unity).

2. Cholesky decomposition approach (Parrish et al. 2009)

to simulate gene expression data out of these matrices

for seven time points.

3. Calculation of the partial correlations using the R

package GeneNet.

4. Calculation of the difference between the mean of the

partial correlations from the 0.4 covariance matrix and

the one with 0.25 values.

5. Repeat of (1)–(4) for 100 times. The difference

between the mean of the partial correlations of both

simulated gene expression data had the same order of

magnitude as the differences between the mean of

partial correlations of the homozygous and heterozy-

gous genotypes in our experimental data.

The simulation study described above is capable of

showing that we are able to use the shrinkage estimator of

the partial correlations as implemented in the package

GeneNet in our study in a valid way. The resulting histo-

gram of the differences between the mean partial correla-

tions calculated from the 0.4 and the 0.25 covariance

matrix for each of the 100 repeats is shown in Fig. 4. In 77

cases from the 100 repeats, the mean difference of the

simulated data was positive. In these cases, the stronger

correlated data (0.4) lead to a detection of larger partial

correlations in our simulation study. The means of all

partial correlation values of the 100 repeats for the 0.25 and

0.4 covariance matrices, respectively, were 6.5 9 10-4 and

8.1 9 10-4. For 1,000 randomly chosen genes of our

experimental data, we calculated a mean of the means of

the partial correlations for all four genotypes of 8.5 9 10-5.

Thus, we have shown that the shrinkage approach for the

estimation of partial correlations by Schäfer and Strimmer

(2005b) can be used for the dimension of 1,000 nodes and 7

time points as in our data. The power to identify enriched

partial correlations in our simulation was 77%.

Partial correlation difference (simulation)

F
re

qu
en

cy

−4e−04 −2e−04 0e+00 2e−04 4e−04 6e−04 8e−04

0
5

10
15

20

Fig. 4 Differences between the mean of the partial correlations

calculated from the simulated 0.4 covariance matrix and the one with

0.25 values for each of the 100 repeats. A positive difference was

detected for 77% of the repeats
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Within GeneNet, two-sided P values for the test of non-

zero correlation (null hypothesis: zero partial correlations)

are calculated (Schäfer and Strimmer 2005a; Strimmer

2008). The P values were corrected using the FDR cor-

rection described by Benjamini and Hochberg (1995). Like

Werhli et al. (2006), we are interested in roughly estimat-

ing which regulatory interactions exist. Therefore, regard-

ing our hypothesis that heterozygous genotypes contain

more regulatory interactions, our focus is on the number of

existing regulatory interactions, estimated as significant

partial correlations, and not on the value of each partial

correlation itself. Hence, the further analysis of mid-parent

and best-parent heterosis effects is based on s-values that

are calculated like in Eq. 6

sd;f ;u ¼ 1� pFDR
d;f ;u ð6Þ

pd,f,u
FDR donates the FDR estimates according to Benjamini

and Hochberg (1995) for the partial correlation between

two genes (f, u [ {1,..., N}, N genes in the analysis) of

genotype d [ {C24 9 C24, Col 9 Col, C24 9 Col,

Col 9 C24}. Using s-values, we get a high value for reg-

ulatory interactions that are most probably present (low

corrected P value) and low values for regulatory interac-

tions that are probably not present in the regulatory net-

work (high corrected P value).

To determine the partial correlation mid-parent heterosis

effect (see Fig. 1) of each gene pair, we first calculated for

each genotype separately for every single gene (f [ {1,..., N})

the mean value of the s-values of its pairwise partial

correlations to all other genes:

hd;f ¼
1

N � 1

X

u2f1;...;Ng;f 6¼u

sd;f ;u: ð7Þ

Second, the mid-parent value for each gene was built out

of the mean values calculated before for the homozygous

genotypes:

hmid-parent
f ¼ 1

2

X

v2fC24�C24;Col�Colg
hv;f : ð8Þ

Finally, the partial correlation mid-parent heterosis

effects were calculated as the difference between the

mean values from Eq. 7 of either hybrid and the mid-parent

values:

hmid-heterosis
w;f ¼ hw;f � hmid-parent

f ð9Þ

w denotes the respective heterozygous line (w

[ {C24 9 Col, Col 9 C24}).

Simultaneously, we calculated the partial correlation

best-parent heterosis effect values (see Fig. 1). Here,

instead of the mid-parent value, we determined the best-

parent value (the maximum values of the mean values of

the two homozygous genotypes; from Eq. 7):

h
best-parent
f ¼ max

v2fC24�C24;Col�Colg
hv;f : ð10Þ

Afterwards, the partial correlation best-parent heterosis

effect values were calculated as the difference between the

mean values from Eq. 7 of either heterozygous genotype

and the best-parent values. w denotes again the

heterozygous line (w [ {C24 9 Col, Col 9 C24}):

hbest-heterosis
w;f ¼ hw;f � h

best-parent
f : ð11Þ

As calculating partial correlations involves large matrices

and, hence, a lot of working memory, we were not able to

analyze partial correlations for all 9,840 genes that remain

after filtering. Instead, we selected representative samples

of 1,000 randomly chosen genes. This is displayed in the

left chain of the workflow in Fig. 3. To show that randomly

selecting 1,000 genes indeed results in a representative

sample, we selected 500 times randomly 1,000 genes and

analyzed the variation of the features of interest. For each

of the 500 repeats we calculated the partial correlation

mid-parent and best-parent heterosis effects for either

heterozygous genotype. For each of these four cases we

determined the median of the calculated heterosis effect

values. Thus, we got four median values for each of the 500

repeats; one median for each hybrid for the mid-parent as

well as the best-parent heterosis effect. For each of the four

cases, we then calculated the mean of the before deter-

mined 500 median values, �hr (r indexing the four cases), as

well as the 95% confidence interval (2.5 and 97.5%

quantiles). If these confidence intervals exclude the value

of zero partial correlation heterosis effects, we would be

confident both to be able to show a robust effect and that

our sampling approach yields representative samples in our

sense.

To determine the significance of the observed partial

correlation heterosis effects, we resampled the data of one

randomly drawn representative sample of 1,000 genes in

such a way that the genotype origins of the data are ran-

domly re-assigned (right chain in Fig. 3). For each gene in

the set of 1,000, the estimated time profiles of the four

genotypes were randomly re-assigned to the four genotypes

(with replacement). This resampling was done 1,000 times.

We calculated median values over the chosen 1,000 genes

for each of the 1,000 resampling runs. This distribution of

median partial correlation heterosis effects constitutes the

null hypothesis distribution to establish a one-sided P value

for the originally observed partial correlation heterosis

effects:

p# ¼ #ðhresampled� �hrÞ=1; 000: ð12Þ

A gene set enrichment analysis was performed to

investigate if genes that show large partial correlation

heterosis effect values (Eqs. 9, 11) are particularly

Theor Appl Genet (2010) 120:249–259 253
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enriched in single pathways. We used gene sets (based on

locus IDs) for 79 pathways. 30 of them were based on a

MapMan annotation file (Usadel et al. 2009; Thimm et al.

2004), which, in turn, is based on the TAIR database

version 8 (Swarbreck et al. 2008). 49 gene sets were built

upon Plant Ontology (PO) terms (The Plant Ontology

Consortium 2002). Pathways that contained less than 10 or

more than 4,000 of the genes we analyzed were excluded

from this analysis, because too few genes in one pathway

would make this pathway easily significant even if it just

contains one or two genes with high partial correlation

heterosis effect values. Too large pathways are not specific

enough. The partial correlation heterosis effect values

for each gene were determined using the first 100

representative samples of 1,000 randomly chosen genes

each. Each time the mid-parent as well as best-parent

heterosis effect values for either hybrid were saved and

averaged. We got one partial correlation mid-parent and

best-parent heterosis effect value per heterozygous

genotype for each of our 9,840 genes. However, our gene

set enrichment analysis was based on just 8,500 genes

because for the other genes we did not have a locus ID and,

thus, we could not assign them to the pathways. The

median values of the mid-parent and best-parent heterosis

effect values for either hybrid for all 8,500 genes are very

close to the mean values shown in Fig. 5.

We performed our gene set enrichment analysis using

the hypergeometric distribution according to Draghici et al.

(2003) and Backes et al. (2007). This over-representation

analysis measures enrichment by cross-classifying genes

according to the membership in a functional category (gene

set) and the membership in a selected list. We chose as

selected list the 850 genes (10% of all genes in this anal-

ysis) that show the largest partial correlation mid-parent as

well as best-parent heterosis effect for either heterozygous

genotype. The resulting P values were corrected using the

FDR correction described by Benjamini and Hochberg

(1995).

Results

As proposed by Werhli et al. (2006), an increase in

molecular interactions can be measured as increase in

partial correlations (also shown in a simulation study

in Andorf et al. 2009). Therefore, we investigated partial

correlations according to Opgen-Rhein and Strimmer

(2007) of our experimental data, to test our hypothesis that

regulatory networks of hybrids show enriched molecular

interactions compared to their parental homozygous

genotypes. The investigation was based on s-values (Eq. 6)

to determine how many molecular interactions are proba-

bly present in the different genotypes.

For 500 different sets of 1,000 randomly chosen genes

we calculated the partial correlation mid-parent heterosis

effect values (Eq. 9) as well as the partial correlation best-

parent heterosis effect values (Eq. 11). Figure 5 displays

the distribution of the 500 median values for the partial

correlation heterosis effect values from the 500 repeated

measurements of 1,000 genes (representative samples).

Furthermore, the mean value and the 95% confidence

interval are shown for each case. For the heterozygous

genotype C24 9 Col, the 95% confidence intervals

exclude the zero for the mid-parent as well as the best-

parent partial correlation heterosis effect. The 95% confi-

dence intervals for the genotype Col 9 C24 exclude the

zero just for the mid-parent partial correlation heterosis

effect values and not for the best-parent partial correlation

heterosis effect values. These three cases for which the

95% confidence intervals exclude the zero show the effect

of enrichment of partial correlations in the transcriptome of

the heterozygous lines and, furthermore, we are confident

that choosing 1,000 genes randomly out of 9,840 genes

leads to representative samples in this sense. For the last

case we cannot decide on this basis if selecting 1,000 genes

randomly is not representative or if this genotype does not

show a best-parent partial correlation heterosis effect. We

also determined the significance of the partial correlation
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Fig. 5 Distribution of the the median values of the partial correlation

heterosis effects of 500 repeated analysis of 1,000 randomly chosen

genes. Mean values and 95% confidence intervals as well as the P
values are given
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heterosis effects of the observed data. This analysis was

based on the resampling of one set of 1,000 randomly

chosen genes. For the genotype C24 9 Col we calculated a

P value of zero for the mid-parent as well as the best-parent

partial correlation heterosis effect. Hence, both effects are

significant for this heterozygous genotype. For the other

heterozygous genotype (Col 9 C24), only the mid-parent

partial correlation heterosis effect is significant with a P

value of 0.037. For the best-parent partial correlation

heterosis effect of this genotype, we determined a P value

of 0.139. Thus, the best-parent heterosis effect is not sig-

nificant for the genotype Col 9 C24. The P values are also

given in Fig. 5.

Figure 6 shows the partial correlation mid-parent as well

as best-parent heterosis effect values for either heterozy-

gous genotype for one set of 1,000 representative genes in

detail. The histograms show that most of the partial cor-

relation mid-parent heterosis effects for both heterozygous

genotypes (C24 9 Col: Fig. 6a; Col 9 C24: Fig. 6b) are

positive. The shift to the right is not as big for the partial

correlation best-parent heterosis effects (C24 9 Col:

Fig. 6c; Col 9 C24: Fig. 6d) as for the mid-parent heter-

osis effects but still noticeable.

In our gene set enrichment analysis we investigated if

the partial correlation heterosis effects are enriched in some

particular pathways. Table 2 shows the pathways that are

enriched in either case of the partial correlation mid-parent

and the best-parent heterosis effect for both hybrids.

Discussion

Our study aims at contributing to the understanding of

heterosis at the molecular level by proposing a systems

biological approach to analyze molecular profile data in

hybrids. We estimated regulatory interactions between

genes as partial correlations of their transcript profiles in a

genome-wide approach for the early development of two

homozygous A. thaliana lines and their reciprocal crosses.

Results show a genome-wide global increase in the sig-

nificance of partial correlations between transcript profiles

in the hybrid lines as compared to the mid-parent as well as

best-parent expectations. Moreover, in some functional

groups of TAIR as well as PO terms, both hybrid lines

show a particularly high partial correlation heterosis effect.

These results confirm earlier findings on the metabolite

level (Andorf et al. 2009) and provide further support to a

molecular network hypothesis of heterosis which we

developed as systems biological approach contributing to a

better understanding of the molecular basis of heterosis.

ca

db

Fig. 6 Display of partial

correlation mid-parent heterosis

effects (see Eq. 9) as well as

partial correlation best-parent

heterosis effects (see Eq. 11) for

one representative set of 1,000

genes. For both hybrids most of

the genes show a larger

significance of the partial

correlations than the mid-parent

values or best-parent values,

respectively
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Within the existing diversity of explanatory hypotheses

towards a molecular basis for heterosis, our approach aims

to investigate changes in regulatory interaction on a global

level, rather than searching for single responsible loci.

Existence of regulatory interactions on a global scale is

estimated through significance of partial correlations. We

therewith follow a line of argumentation taken as early as

in the 1950s when Robertson and Reeve (1952) or Maynard

Smith (1956) suggested that genetic heterozygosity might

result in greater biochemical versatility in development and

for reacting to environmental challenges. A larger reper-

toire in regulatory possibilities on the molecular level could

result in the observed superior hybrid vigor. Also, recent

discussions about possible molecular causes of heterosis

include the notion of altered regulatory effects in hybrids

and the positive effects of an enlarged repertoire of regu-

latory responses (Birchler et al. 2003; Song and Messing

2003). The emphasis of our study is on substantiating this

hypothesis as to enable to experimentally measure the

enlarged regulatory versatility in hybrids as global struc-

tures on the molecular level.

In an earlier contribution, we proposed a systems bio-

logical approach contributing to an understanding of

heterosis at the molecular level which we termed ‘‘network

hypothesis of heterosis’’ (Andorf et al. 2009). Taking a

very simplistic parsimonious view, we considered the

Boolean network approach, following Genoud and Mét-

raux (1999), to demonstrate how the enhanced possibility

to correctly respond to environmental challenges is linked

to an enlarged number of regulatory interactions. These

were estimated as significant partial correlations of

metabolite profiles in the same design as for the current

study at some earlier time points of development. Sum-

marizing the earlier results with those of the current study,

we were now able to show a global enrichment of the

number/significance of the partial correlations in the hybrid

lines on both metabolome and transcriptome level for our

illustrative datasets.

Regulatory interactions can only be estimated from

correlation structures of a regulatory network in such parts

where ongoing regulatory processes lead to measurable

changes in the respective molecular profiles. As both

datasets concern the early development of A. thaliana,

where Meyer et al. (2004) showed that the foundations of

biomass heterosis are laid, it might be speculated that it is

the nature of this biomass phenotype that it concerns a

global adaptation process of the seedling. Later develop-

mental stages and adaptation processes, such as flowering,

fruit ripening or other more specific phenotypes may

require more local, limited molecular responses, e.g.,

restricted to special pathways or gene regulatory mod-

ules. The current study as well as the results of Andorf

et al. (2009) mostly show global changes in partial corre-

lation structures, i.e., increase in estimated regulatory

interactions.

However, as result of our gene set enrichment analysis

several gene sets appeared to be specifically enriched. We

hypothesize that these genes are among the subset of highly

regulated genes during the specific developmental interval

of our study. With the small-powered study design in mind,

we do not want to speculate about biological interpretations

of specific enriched gene sets.

In other species, such as Drosophila or mice, it became

evident early in heterosis research that stress conditions

were prone to cause pronounced heterosis effects (Harrison

1962; Maynard Smith 1956). A possible reason is that

under such conditions the regulatory system is challenged

to its limits. Hence, it is then necessary to make full use of

the spectrum of regulatory possibilities. This may lead to

inferior performance of the homozygous parental lines

based on their limited regulatory possibilities when com-

pared to their heterozygous offspring. In the setting of the

current study, establishing a viable seedling under labora-

tory conditions, such as a climatic chamber opposed to the

natural environment, may represent such an environmental

challenge capable to show the enhanced potency of the

hybrids’ molecular regulatory repertoire.

When confronting hybrid genotypes with the environ-

ment, e.g., when recording performance in interesting

environments for breeding and exploitation, functional data

Table 2 Results of gene set enrichment analysis for partial correlation heterosis effects

C24 9 Col mid-parent Col 9 C24 mid-parent C24 9 Col best-parent Col 9 C24 best-parent

Male gametophyte Male gametophyte Male gametophyte Male gametophyte

Stress Lateral root primordium Sperm cell Lateral root primordium

Sperm cell Transport Stress Sperm cell

Redox regulation Sperm cell

Photosynthesis Primary root apical meristem

Lipid metabolism

Ovule

Enriched pathways of TAIR and PO
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such as gene expression or metabolite profiles allow an

additional, deeper characterization of potentially advanta-

geous crosses. For example, Thiemann et al. (2010) search

for gene expression signals of single genes correlated with

hybrid performance in maize and functionally study their

candidates using GO terms. Frisch et al. (2010) follow an

alternative strategy. Parental gene expression values are

used to build a distance measure which is used to predict

hybrid performance with a linear model. Further approa-

ches exist to combine functional and genetic data for

hybrid performance prediction (Steinfath et al. 2010).

Hence, these studies might complement respective results

from QTL studies. As Melchinger et al. (2007) found in

their quantitative genetics study of Arabidopsis heterosis,

QTL heterosis effects are to a large extent dependent on the

whole genetic background. If a given genetic background is

advantageous or not, certainly is dependent on the envi-

ronment. This dependency is only accessible via functional

tests. Several groups (Vuylsteke et al. 2005; Swanson-

Wagner et al. 2006; Guo et al. 2006; Wei et al. 2009)

investigated hybrids in comparison to their homozygous

parents on the functional level, measuring genome-wide

gene expression levels. In addition to their findings about

proportions of realized modes of gene action in hybrids,

our own contribution can be seen as proposing an idea for a

systems biological heterosis analysis of the functional

domain or gene expression level. We propose a hypothesis

how molecular correlation structures specific for hetero-

zygotes could be understood as mechanistic link between

molecular and phenotypic manifestation of heterosis.

Considering regulatory interactions and possibilities to

infer their global structure from molecular profile data, it is

evident that a lot of existing regulatory interactions either

involve molecular species which are not measured or act

across different layers of the molecular regulatory appa-

ratus profiled. Here, we adapt the view proposed by

Somogyi and Sniegoski (1996), who emphasize the fact

that the interactions deduced from molecular profiles of a

specific level, e.g., metabolome or transcriptome, map

regulatory processes of other molecular levels onto the one

under consideration. Hence, the deduction of regulatory

interactions for the specifically measured features may be

wrong in detail, because the effects of molecules from

other molecular levels are masked. This is especially so in

the case of our study, as the number of time points sampled

does not at all suffice to draw any strong conclusions on the

level of a single estimated regulatory interaction. We think,

however, that using our findings to build hypotheses about

global structures of the molecular regulatory apparatus,

such as an increased number of regulatory interactions in

heterozygotes, is still allowed.

Partial correlations, also called association networks, are

just one of several possibilities for estimating global

regulatory interaction structures. The related so-called

relevance networks (Butte et al. 2000), where Pearson

correlations are measured to describe global correlation

structures, are, however less eligible for our task. In con-

trast to partial correlations where indirect correlations are

explicitly excluded, these remain an important factor when

considering Pearson correlations. To emphasize this dif-

ference, it might be stated that when considering Pearson

correlations it is save to talk about structures of missing

correlations, whereas considering partial correlations

reveals structures of existing correlations without being

contaminated with indirect correlations. Werhli et al.

(2006) recommended the use of partial correlations for the

estimation of molecular interaction of regulatory networks

from observational data, also contrasting it with a Bayesian

network approach. In our study we follow this recom-

mendation and use an algorithm proposed by Schäfer and

Strimmer (2005b) which employs a shrinkage approach to

estimate the partial correlations (R package GeneNet).

Their approach is suitable for data with small sample size

and large numbers of variables, as our genome-wide gene

expression profiles. As we do not have any a priori infor-

mation about the covariance structure of our transcriptome

data, we chose the identity as canonical shrinkage target.

Moreover, the time points of our time series data are not

close enough in time to make additional use of the time

series character—hence we chose the option ‘‘static’’ for

application of the shrinkage estimator in the GeneNet

package.

Time series data with only seven time points are a poor

basis for investigating correlation structures of thousands

of features. In our case we were concerned with nearly

10,000 gene expression profiles from which we chose a set

of 1,000 genes as representative sample. However, we

refrained from interpreting partial correlations for single

pairs of features, as due to the shortness of our time series,

we were not able to carry out a more accurate network

reconstruction analysis. Instead, we were interested in the

global structures down to the level of a set of coarse

grained pathways. This way, we feel that this kind of

investigation of overall structure is still valid. A medium

scale number of false positives or negatives may not dis-

turb this coarse grained analysis results.

Regarding the number of features analyzed, it is

necessary to also discuss the feature selection, or filtering

process, which was performed previously to partial corre-

lation analysis. Our filtering procedure has been chosen

such as to filter out gene expression profiles which were

likely representing features not expressed or regulated

during the time interval of early development in our

experiment. We chose cutoffs for the filtering process such

that around 10,000 genes remained for further analyses.

This number matches what is expected from existing
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studies regarding proportions of actively expressed genes

in different tissues of Arabidopsis (Ma and Sun 2005).

Our dataset is also a compromise from another point of

view. The plant tissue used for feature extraction (RNA

as well as metabolite isolation procedures) was the

complete young seedling. Hence, we assessed only the

average of tissues constituting the seedling. Inferences

about the regulatory structure are therefore possibly

exclusively valid on the global scale we address, most

likely not for many specific single features and their

correlations.

Furthermore, we are aware of the fact that only a single

cross is a poor basis to draw general conclusions.

Summarizing the methodological considerations, it

remains to emphasize that the dataset of the current

investigation could be analyzed with valid results only at

the coarse grained global level. However, at this level, gene

expression as well as metabolite profiles jointly pointed

towards an increase in the significance of partial correla-

tions. This, based on Werhli et al. (2006), we interpret as

increase in number of interactions allowing for an

increased adaptability to environmental challenges during

early seedling development.

Future investigations should certainly involve multiple

lines, multiple species, multiple time windows of devel-

opment or different environmental challenges for homo-

zygous parents and their hybrids to be proven on the

functional level. Also, longer time series should be inves-

tigated. Moreover, when more detailed time series data

become available, an analysis of regulatory structures on a

smaller scale could become possible where more valid

investigations could be taken on the levels of special

pathways, regulatory modules or motifs (Hartwell et al.

1999; Milo et al. 2002; Lee et al. 2002). Also, integrative

bioinformatic approaches involving the combination of

gene expression with metabolite profiles and hQTL data

could reveal promising results, especially for more local

heterosis phenotypes affecting only a small part of the

regulatory network (see for example Gärtner et al. 2009;

Wei et al. 2009). The discovery of functional groups of

genes with particularly enriched partial correlations could

complement and refine quantitative genetics analysis about

non-additive gene actions and help to approach an under-

standing of the molecular basis of heterosis.

Hence, the systems biological approach towards finding

the molecular basis of heterosis introduced with the current

investigation should be seen as a methodological proposal

illustrated with a small dataset, complementary to the

quantitative genetics approach, which is not taking into

account global structures of the various OMICS levels, and

the single-gene centered approaches, which involve data of

much higher resolution for the price of neglecting the

global view.
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Steinfath M, Gärtner T, Lisec J, Meyer RC, Altmann T, Willmitzer L,

Selbig J (2010) Prediction of hybrid biomass in Arabidopsis
thaliana by selected parental SNP and metabolic markers. Theor

Appl Genet (accepted)

Strimmer K (2008) A unified approach to false discovery rate

estimation. BMC Bioinformatics 9:303

Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D,

Schnable PS (2006) All possible modes of gene action are observed

in a global comparison of gene expression in a maize F1 hybrid and

its inbred parents. Proc Natl Acad Sci USA 103(18):6805–6810

Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez
M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh

A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) The

Arabidopsis information resource (TAIR): gene structure and

function annotation. Nucleic Acids Res 36(Database issue):

D1009–D1014. http://www.arabidopsis.org

The Plant Ontology Consortium (2002) The plant ontology consor-

tium and plant ontologies. Comp Funct Genomics 3:137–142.

http://www.plantontology.org

Thiemann A, Fu J, Schrag TA, Melchinger AE, Frisch M, Scholten S

(2010) Correlation between parental transcriptome and field data

for the characterization of heterosis in Zea mays L. Theor Appl

Genet (accepted)
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