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Abstract Accurate prediction of the phenotypic perfor-

mance of a hybrid plant based on the molecular fingerprints

of its parents should lead to a more cost-effective breeding

programme as it allows to reduce the number of expensive

field evaluations. The construction of a reliable prediction

model requires a representative sample of hybrids for

which both molecular and phenotypic information are

accessible. This phenotypic information is usually readily

available as typical breeding programmes test numerous

new hybrids in multi-location field trials on a yearly basis.

Earlier studies indicated that a linear mixed model analysis

of this typically unbalanced phenotypic data allows to

construct e-insensitive support vector machine regression

and best linear prediction models for predicting the per-

formance of single-cross maize hybrids. We compare these

prediction methods using different subsets of the pheno-

typic and marker data of a commercial maize breeding

programme and evaluate the resulting prediction accuracies

by means of a specifically designed field experiment. This

balanced field trial allows to assess the reliability of the

cross-validation prediction accuracies reported here and in

earlier studies. The limits of the predictive capabilities of

both prediction methods are further examined by reducing

the number of training hybrids and the size of the

molecular fingerprints. The results indicate a considerable

discrepancy between prediction accuracies obtained by

cross-validation procedures and those obtained by corre-

lating the predictions with the results of a validation field

trial. The prediction accuracy of best linear prediction was

less sensitive to a reduction of the number of training

examples compared with that of support vector machine

regression. The latter was, however, better at predicting

hybrid performance when the size of the molecular

fingerprints was reduced, especially if the initial set of

markers had a low information content.

Introduction

The prediction of phenotypic performance from molecular

marker data receives increasing attention from plant

breeders, as the cost of phenotyping is gradually overtaking

the cost of genotyping (Bernardo 2008). In this field of

research, plant species for which it is relatively easy to

create and cross almost fully homozygous inbred lines, are

particularly useful as they allow to study the effect of a

single gamete in different genetic backgrounds. Maenhout

et al. (2007) use data that were generated in a commercial

maize breeding programme to compare the phenotypic

prediction accuracy of e-insensitive support vector machine

regression (e-SVR) to that of the method advocated by

Bernardo (1994, 1995, 1996a, b) based on best linear

prediction (BLP). The reported prediction accuracies,

determined by means of a leave-one-out cross-validation

routine, indicate that both methods are equally good at

predicting phenotypes for three important agronomic traits.

In this study, we further examine several key aspects of
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hybrid prediction by means of e-SVR and BLP which

allows to clarify the strengths and weaknesses of both

methods.

Field trial data originating from commercial hybrid

breeding programmes are typically very unbalanced.

Tester lines are parents of many hybrids, while other

inbred lines may appear only once in the company’s

pedigree. Furthermore, there is usually quite a substantial

difference in the number of field trials in which a

promising hybrid is tested compared with the often single

trial results of the lesser candidates. Both e-SVR and BLP

require a set of hybrids for which a molecular fingerprint

and a single response value for each trait are available.

Such a phenotypic response value or score can be

obtained by means of a linear mixed model analysis of

the unbalanced phenotypic data, but different model

assumptions and prediction approaches can lead to very

different results. We study the impact of these assump-

tions by comparing three different data preparation

methods. In the linear mixed models described by Ber-

nardo (1994, 1995, 1996a, b) and Maenhout et al. (2008),

the non-genetic effects of growing seasons, locations and

blocks are assumed to be fixed while the genotypic and

G 9 E effects are assumed to be random. Bernardo

(1994, 1995, 1996a, b) obtains a single phenotypic score

for a particular hybrid by taking the average of all its

phenotypic measurements, after correcting them by means

of the estimated fixed effects. Maenhout et al. (2008) on

the other hand, aggregate the BLUPs of the genotypic

components directly to obtain a single score for each

hybrid. Besides these two data preparation methods, we

also study a third approach in which the genotypic effects

are assumed to be fixed while the non-genetic nuisance

parameters are treated as random.

Maenhout et al. (2007) use all hybrids that are repre-

sented in the available unbalanced phenotypic data and the

entire set of genotyped molecular markers to compare the

prediction accuracy of e-SVR and BLP. The sensitivity of

both methods to a reduction in the number of training

examples or genotyped molecular markers is, however, left

unexamined. To assess the impact of the training sample

size and marker information content on the prediction

accuracy, we apply both methods to selected subsets of the

training sample and molecular marker fingerprint. The

results allow to identify minimum sample size require-

ments of e-SVR and BLP models that are trained using

comparable, unbalanced data sets.

The accuracy of hybrid prediction techniques is gen-

erally measured by some form of cross-validation strategy

(Bernardo 1994, 1995, 1996a, b; Charcosset et al. 1998;

Schrag et al. 2007, 2009). Schrag et al. (2007) argue that

an assessment of prediction accuracy by means of a leave-

one-out cross-validation routine does not reflect practical

breeding circumstances where a new inbred line would be

crossed with only a few tester lines from the opposite

heterotic group. They propose a modified cross-validation

sampling scheme that requires a mating design in which

every inbred line from one heterotic group is crossed with

all lines belonging to the complementary heterotic group.

To allow for such a realistic assessment of prediction

accuracy in an unbalanced setting, Bernardo (1996b) and

Maenhout et al. (2008) use cross-validation schemes that

simulate a lack of prior information on one or both

parental inbred lines of a newly created hybrid. Although

these schemes represent an improvement, they do not

solve the fundamental problem of cross-validation-based

accuracy measures. As the training examples are predicted

marginal to the effects of growing seasons, test locations

and possibly fertiliser or irrigation treatments, the result-

ing cross-validation-based prediction accuracy measures

do not take into account the extra level of uncertainty that

is caused by G 9 E effects (Welham et al. 2004). This

implies that the observed correlation between the pre-

dicted marginal genotypic values and those estimated

conditional on a specific level of the environmental factors

(i.e. in an additional field trial in a specific year and

geographical region) might differ substantially from the

cross-validation-based prediction accuracy. To quantify

this expected discrepancy, we performed a validation field

trial using 49 hybrids which were created by crossing

seven Iodent lines with seven lowa stiff stalk synthetic

(ISSS) lines. The phenotypic performance of these hybrids

was measured in a multi-environment trial at three loca-

tions in the South of France. Prediction accuracy is

determined by correlating the resulting estimates for total

genotypic value and SCA to the predictions of e-SVR and

BLP models, constructed from the unbalanced training

data.

To summarise, we recapitulate the three main objec-

tives of our research: (1) to identify the best method for

distilling a single phenotypic score for each hybrid in an

unbalanced data set, (2) to compare the prediction accu-

racy of e-SVR and BLP when the sample size and

information content of the molecular marker fingerprint

are reduced and (3) to compare the prediction accuracy

measures obtained through various cross-validation

schemes with those obtained by means of a validation

field trial.

Materials and methods

To achieve the three objectives, this study investigates the

impact of changing the levels of the factors influencing

them which are summarised in Table 1 and discussed

below.
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Training data

Data description

The data used in this study are a subset of the genotypic

and phenotypic information generated by the grain maize

breeding programme of the private company RAGT R2n,

and is described in detail in Maenhout et al. (2007, 2008,

2009). It contains 40,432 phenotypic measurements on

2,354 hybrids originating from unbalanced crosses between

92 Iodent and 105 ISSS lines. We study the traits grain

yield, grain moisture content and days until flowering,

which were measured in 1,280 multi-environment trials

representing 110 locations spread over Europe from 1989

to 2005. The 197 parental inbred lines are genotyped with

101 SSR markers, which are evenly distributed over the

maize genome according to the proprietary linkage map of

RAGT R2n. Due to problems identifying some SSR alleles

(null alleles), only 75 markers, which have a complete

profile over all inbred lines, are used. AFLP fingerprints are

generated using 11 PstI–MseI and 4 EcoRI–MseI primer

combinations producing 569 polymorphic bands in total.

Data analysis

The construction of an e-SVR or BLP prediction model for

a specific quantitative trait requires a single response value

for each training example representing the genetic potential

of each genotype at each location and year. We consider

three methods of constructing such a response value based

on linear mixed modelling of the trial data. We also predict

SCA values from a mixed model analysis.

Random phenotypes In the first approach, we consider the

environmental effects (e.g. year, location, block, etc.) as

fixed effects, while we consider GCA, SCA and all G 9 E

interactions as random effects. A detailed description of

this linear mixed model for the three traits under study can

be found in Maenhout et al. (2009). The variance structures

of GCA and SCA effects are modelled according to Stuber

and Cockerham (1966) where we use the AFLP fingerprints

to obtain estimators for the pairwise coefficient of coan-

cestry between inbred lines i and j belonging to the same

heterotic group as (Bernardo 1993)

fij ¼
f JAC
ij � 1

2
ð�f JAC

i: þ �f JAC
j: Þ

1� 1
2
ð�f JAC

i: þ �f JAC
j: Þ

; ð1Þ

where f JAC
ij is the Jaccard similarity coefficient between the

AFLP fingerprints of lines i and j. �f JAC
i: is the average

Jaccard similarity coefficient between inbred line i and all

lines belonging to the opposite heterotic group. This

estimator for the coefficient of coancestry resulted in the

highest restricted log-likelihood, when compared with

several other estimators that use pedigree, AFLP or SSR

marker information (Maenhout et al. 2009). The genotypic

estimate is obtained by averaging over all measurements of

a single hybrid in the response vector y after correction for

the estimated fixed environmental effects as

ŷ
rp
T ¼ ðZ0ZÞ

�1Z0ðy� Xb̂Þ;

where Z is a design matrix linking the phenotypic mea-

surements in vector y to each hybrid in vector ŷrp
T : Vector b̂

contains the estimated effects for the levels of each nui-

sance factor and these are linked to the response vector y by

means of the design matrix X: Bernardo (1994, 1995,

1996a, b) calls the entries in vector ŷrp
T phenotypes, as these

are not corrected for G 9 E interaction effects or residual

error. The superscript rp is shorthand for random pheno-

types, while the subscript T indicates that this vector was

obtained from the training data.

Random genotypes The second method is to sum the

appropriate GCA and SCA BLUPs obtained from the afore

mentioned linear mixed model analysis as

ŷrg
T ¼ Zsâs þ Zoâo þ d̂rs

T ; ð2Þ

where âs and âo are vectors containing BLUPs of the GCA

values of lines belonging to the ISSS and Iodent heterotic

groups, respectively. The design matrices Zs and Zo link

Table 1 Overview of the different traits, training data preparation

methods, molecular marker-based predictors, prediction methods,

sampling schemes and methods for prediction accuracy measurement

that are combined in this study

Factor Levels

Trait Grain yield

Grain moisture content

Days until flowering

Training data preparation ðŷrp
T Þ random phenotypes

ðŷrg
T Þ random genotypes

ðŷfg
T Þ fixed genotypes

ðd̂rs
T Þ random SCA

Predictor AFLP

SSR

Prediction method e-SVR

BLP

Sampling scheme Random sampling

Test-cross sampling

New-cross sampling

Random marker reduction

Prediction accuracy measurement Cross-validation

Validation field trial:

ðŷrg
V Þ random genotypes

ðd̂rs
VÞ random SCA

Theor Appl Genet (2010) 120:415–427 417

123



each hybrid to the appropriate parental inbred lines. Vector

d̂rs
T contains a BLUP of the SCA value for each hybrid. As

we treat the GCA and SCA effects as random model fac-

tors, we use the superscript rg to indicate this random

nature of the genotypic values in vector ŷrg
T . This approach

implicitly produces genotypic scores that are marginal to

all environmental factors in the model such as growing

seasons and locations. These marginal scores have larger

standard errors compared with estimators that are condi-

tional on one or more environmental factors (Welham et al.

2004), but we prefer them here as they do not require

knowledge of the future environmental conditions in which

the predicted hybrids will be grown.

Fixed genotypes The third method of forming a geno-

typic response is from a linear mixed model with genotypes

fixed and non-genetic effects fitted as random. This

approach allows to obtain a vector of estimated genotypic

fixed effects ŷfg
T without making prior assumptions on the

covariance structure of the GCA and SCA components.

Random SCA Besides training on genotypic or pheno-

typic scores, we also construct prediction models for the

values in vector d̂rs
T of Eq. 2.

Validation data

Data description

Seven ISSS and Seven Iodent lines were selected from the

initial set of 197 inbred lines and pairwise intermated to

produce 49 cross-heterotic hybrids. For these hybrids and

an additional six check varieties, the traits grain yield,

grain moisture content and days until flowering were

measured in a balanced field trial at three locations in the

South of France during the growing season of 2008. The

initial selection of 14 parental inbred lines was based on

the e-SVR and BLP predictions of all 9,660 possible

hybrids between the 105 ISSS and 92 Iodent lines. A

greedy search heuristic was used to approach the optimal

selection of 14 parental inbred lines such that the e-SVR

and BLP predictions of the 49 hybrids show the largest

variance in grain yield. However, several lines in this

initial selection were replaced by other lines so that all

hybrids had a comparable maturity index. Only 11 of the

49 hybrids were in fact new combinations, while the other

38 already had phenotypic records in the training data.

Regardless of potential seed availability, each of the

49 crosses were (re)created under the exact same circum-

stances, as to avoid non-genetic seed quality differences.

At each location of the trial, the 55 hybrids are laid out

as a two-replicate resolvable row-column design with

22 rows and 5 columns.

Data analysis

A linear mixed model analysis is performed assuming

location effects as fixed and all genetic components and

G 9 E interactions as random. The description of the sta-

tistical model follows the notation of Smith et al. (2001)

where the vector of phenotypic measurements y is

decomposed as

y ¼ Xsþ Zggþ Zuuþ e; ð3Þ

and s is a vector of fixed effects containing main location

effects and location-specific effects correcting for extra-

neous field variation. g ¼ ðg01; g02; g03Þ
0
is a vector containing

the random effects of the 55 hybrids in each of the three

locations with an associated design matrix Zg: u is also a

vector of random effects modelling for location-specific

blocking factors. The vector of residuals e ¼ ðe01; e02; e03Þ
0

is

partitioned in three subvectors corresponding to the three

locations. For the trait grain moisture contents, the values

in vector y were logit transformed.

The vector of genetic effects g is partitioned as

Zgg ¼ Zccþ Zsas þ Zoao þ Zdd; ð4Þ

where c ¼ ðc01; c02; c03Þ
0

represents a vector containing the

genetic effects of the six check varieties at each of the three

locations, vectors as and ao contain the GCA effects of the

parental inbred lines belonging to the ISSS and Iodent

heterotic groups, respectively, and vector d contains the

SCA effects of the 49 hybrids at each location. The design

matrices Zc , Zs , Zo and Zd separate check and non-check

entries and matrices Zs and Zo have the additional function

of linking the appropriate parental inbred lines to each non-

check hybrid in vector g: Additional details on the fitted

variance structures for vectors g and e can be found in the

Appendix.

The linear mixed model analysis of the validation trial

data provides BLUPs for the GCA and SCA components

which are summed according to Eq. 2 to obtain an estimate

of the genotypic value for each of the 49 hybrids. These

estimates are grouped in the vector ŷ
rg
V where the subscript

V indicates their validation trial origin. The vector d̂rs
V

contains the BLUPs of the 49 SCA values.

Prediction methods

e-Insensitive support vector machines regression

Support vector machines (SVM) are a class of machine

learning methods developed by Vapnik (1995) for classi-

fication and regression purposes. A good tutorial on SVM

classification can be found in Burges (1998), while Smola

and Schölkopf (2004) present the underlying ideas of

e-insensitive support vector machines regression. Maenhout
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et al. (2007) show how e-SVR can be used to predict the

phenotypic performance of new hybrids using unbalanced

phenotypic training data and AFLP or SSR marker finger-

prints as predictors. Cross-validation results indicated that

solving the linear regression problem in an infinite-dimen-

sional space by means of a Gaussian kernel function results

in a higher prediction accuracy compared with a linear

solution in the original input space. Using the Gaussian

kernel function requires a value for the kernel parameter c
and the optimisation function that is minimised during the

construction of an e-SVR prediction model requires two

additional parameters C and e. In Maenhout et al. (2007,

2008) optimal values for C, e and c are found by an

expensive grid-search over this three-dimensional space

with a v-fold cross-validation prediction accuracy as opti-

misation criterion. To reduce the computational effort, the

e-SVR parameter searches in the present study were guided

by the efficient global optimisation or EGO algorithm

reported by Jones et al. (1998). The criterion to be opti-

mised was the squared Pearson correlation coefficient

obtained by a v-fold cross-validation where v = 20.

Best linear prediction

Bernardo (1994, 1995, 1996a, b) makes predictions for a

set of single crosses as

ŷP ¼ CPTV�1
T ŷT; ð5Þ

where CPT is the genetic covariance matrix between the

hybrids in the training set ŷT and the hybrids to be

predicted and VT ¼ VarðŷTÞ is the variance matrix of the

hybrids in the training set. The genetic covariances in the

matrices CPT and VT are obtained from a simplification of

the covariance model described in Stuber and Cockerham

(1966)

Covðhij; hi0j0 Þ ¼ hii0r
2
s þ hjj0r

2
o þ hii0hjj0r

2
d;

where hij and hi0j0 are two hybrids for which the parental

inbred lines i and i0 belong to the ISSS heterotic group and

the lines j and j0 belong to the Iodent group. hii0 and hjj0 are

the coefficients of coancestry estimated from SSR (Ber-

nardo 1993) or AFLP marker information, the latter based

on Eq. 1. The additive variance parameters r2
s and r2

o and

the dominance variance r2
d are obtained from the REML

analysis of the training data.

We obtain ŷP from Eq. 5 by solving the system of linear

equations

VTxT ¼ ŷT ð6Þ

for xT through a Cholesky decomposition of VT: The

vector xT then allows to calculate ŷP as

ŷP ¼ CPTxT:

Reduction of the training data

Previous reports on e-SVR and BLP hybrid prediction have

assumed the availability of phenotypic measurements on a

large number of hybrids. For both prediction methods, a

reduction in prediction accuracy is to be expected if the size

of the training set is decreased. A large sample size does,

however, not necessarily imply a high prediction accuracy

as the relevance of the training examples with respect to the

future cross predictions, is of equal importance. Also the

size and information content of the molecular fingerprints

has an impact on the reliability of the prediction model as a

smaller marker resolution implies a reduced chance of

detecting marker-trait associations and less precise esti-

mates of the genetic covariance between relatives.

Training sample size

In an attempt to assess the impact of the size of the training

sample on the prediction accuracy of both e-SVR and BLP,

we employ three sampling schemes to obtain subsets of the

original RAGT data set. For each sampling scheme, the

prediction accuracy is determined in two ways: (1) by

means of cross-validation on the training vectors ŷrg
T and d̂rs

T

for predictions on total genotypic value and SCA, respec-

tively, (2) by correlating against the validation vectors ŷ
rg
V

and d̂rs
V: The 38 hybrids that are common to training and

validation data, are removed from the vectors ŷrg
T and d̂rs

T

when the second prediction accuracy measure is used.

Random sampling For the random sampling scheme, the

hybrids in the full training set are successively split at

random to form smaller data sets from which e-SVR and

BLP prediction models are constructed. Initially, the pre-

diction accuracy of both methods using all but one training

examples is determined by means of a leave-one-out cross-

validation (1). Predictions on the 49 hybrids that were

tested in the validation field trial are obtained from e-SVR

and BLP models that were constructed from the 2,316 non-

validated hybrids (2). In the next step, the number of

training examples made available to e-SVR and BLP is cut

in half and the cross-validation-based prediction accuracy

is determined by making predictions on the other half of

the training examples (1). The set of 2,316 non-validated

hybrids is also randomly split in half and used to make e-
SVR and BLP-based predictions on the 49 validation

hybrids (2). In subsequent steps, the number of training

examples made available to e-SVR and BLP is reduced

further by randomly splitting the training data in 2p pieces

for p = 1,…, 6. The whole process is repeated 100 times

resulting in 100
P6

p¼1 2p ¼ 12;600 distinct e-SVR and BLP

prediction models.
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Test-cross sampling The test-cross sampling scheme

simulates the prediction of a hybrid formed by crossing a

newly created inbred line with a well-known tester line.

For each of the 197 inbred lines in the original data set, a

separate e-SVR and BLP prediction model is constructed

using only information from hybrids that are not a child of

that particular inbred. The resulting prediction models are

used to predict the performance of the left-out hybrids and

those hybrids in the validation data set that also have that

particular inbred line as a parent. This sampling scheme,

therefore, results in two predictions for each hybrid as both

parental inbred lines function once as tester and once as

newly developed line. In a balanced mating design (i.e. all

9,960 distinct crosses between the Iodent and the ISSS

lines are made), this sampling scheme would allow to

assess the obtained prediction accuracy for Type 1 hybrids

as defined by Schrag et al. (2009a, b).

New-cross sampling The third sampling scheme simu-

lates the prediction of a hybrid formed by crossing two

newly developed inbred lines. Although this situation is

rather uncommon in hybrid breeding programmes, it allows

to compare e-SVR and BLP in a worst-case scenario. For

each hybrid in the dataset, a specific e-SVR and BLP

prediction model is constructed by removing all hybrids

from the training set that have a parental inbred line in

common with the selected hybrid. This sampling scheme

relates to the Type 0 hybrids of Schrag et al. (2009a, b).

Molecular marker information content

The impact of the information content of the molecular

fingerprints is examined by taking random subsets of the

available SSR or AFLP markers and subsequent con-

struction of the e-SVR and BLP prediction models. Again,

prediction accuracy is determined by means of (1) cross-

validation and (2) correlating against the estimates

obtained from the validation trial. The size of the set of

predictor markers is reduced in steps of 10% of the original

fingerprint size and at each step, 100 iterations of the

sampling routine are performed. Reducing the set of

molecular markers often results in a singular coancestry

matrix which prevents its inversion during the construction

of a BLP prediction model. This situation occurs if the

marker-based estimate of the variance matrix of the train-

ing hybrids is rank deficient and, therefore, does not allow

for a unique solution of the system of linear equations in

Eq. 6. Any estimated variance matrix should be at least

positive semi-definite as explained in Maenhout et al.

(2009) but in the present case, the marker-based estimate of

the genetic covariance matrix VT should be strictly positive

definite as its Cholesky decomposition is used to make

predictions on new hybrids. If the estimated covariance

matrix, obtained from the reduced set of molecular mark-

ers, is singular, we obtain the minimum norm, least squares

solution to Eq. 6. Other solutions might result in higher

correlations but without relying on the validation data,

there is no biological justification for preferring these

solutions over the least squares solution.

Results

Unbalanced data handling

Three quarters of the hybrids in the validation field trial

have measurements in the unbalanced training data set.

These 38 hybrids, therefore, allow to identify the best way

of obtaining a single hybrid score from unbalanced phe-

notypic data. Table 2 gives an overview of the observed

correlations between the different types of hybrid scores

and the genotypic estimates obtained from the validation

field trial measurements. The latter were collected during

one growing season at three locations in a specific region of

France and as such, represent only a small part of the

G 9 E space spanned by the training data. The correlations

presented are, therefore, susceptible to environmental

changes but should, however, allow for a relative com-

parison between the different data handling methods.

Reduction of the training data

Training sample size

Random sampling Figure 1 shows the prediction accu-

racy obtained by e-SVR and BLP prediction models that

were constructed by reducing the initial set of the training

examples in the vectors ŷrg
T and d̂rs

T : p = 0 indicates that a

leave-one-out cross-validation is performed and predictions

Table 2 Squared Pearson correlation coefficients between the dif-

ferent types of training scores (ŷ
rp
T ; ŷ

rg
T ; ŷ

fg
T ) and SCA BLUPs (d̂rs

T )

obtained from the unbalanced phenotypic data set and the scores (ŷrg
V )

and SCA estimates (d̂rs
V) obtained from measurements taken in the

balanced validation field trial for the 38 common hybrids

Score vector Validation data ŷrg
V / d̂rs

V

Yield Moist. cont. Flowering

Training data

ŷrp
T 0.04 0.61 0.43

ŷ
rg
T 0.19 0.79 0.72

ŷ
fg
T 0.05 0.59 0.43

d̂rs
T 0.03 0.15 0.17

For each trait, the combination of scores with the highest correlation

is set in bold
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for the validation trial hybrids are obtained from e-SVR

and BLP models that are trained on the full vector ŷrg
T or

d̂rs
T ; minus the entries of the 38 common hybrids. For each

of the 100 iterations at p = 1,..., 6, the training hybrids are

randomly assigned to one of 2p subsets and for each of

these subsets, an e-SVR and BLP prediction model is

constructed. These models are subsequently used to make

predictions on (1) all hybrids that are not included in the

training subset and (2) the 49 hybrids tested in the vali-

dation field trial. Despite the promising cross-validation

results for SCA values, the observed correlations for the

SCA predictions of the 49 validation hybrids, indicate that

predicting SCA values by training on this set of unbalanced

phenotypic data, is well beyond the capabilities of both

e-SVR and BLP.

Test-cross and new-cross sampling Table 3 gives an

overview of the BLP and e-SVR prediction accuracies when

the training set is reduced in a non-random fashion to

simulate predictions on hybrids for which one or both

parental inbred lines are new and, therefore, untested.

Squared Pearson correlation coefficients between the

entries in vector ŷrg
T and their SSR or AFLP-based cross-

validation predictions are presented for both sampling

schemes as well as the squared correlations between the

entries of the validation set vectors ŷrg
V and their predictions.

genotypic values

p

fl
ow

er
in

g

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

fl
ow

er
in

g

m
oi

st
ur

e 
co

nt
en

t

0.0

0.2

0.4

0.6

0.8

1.0

m
oi

st
ur

e
co

nt
en

t

SSR
yi

el
d

0.0

0.2

0.4

0.6

0.8

1.0

AFLP

SVR_cross
BLP_cross
SVR_valid
BLP_valid

SCA values

p

R
2

6

fl
ow

er
in

g

0 1 2 3 4 5 0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

fl
ow

er
in

g

m
oi

st
ur

e 
co

nt
en

t

0.0

0.2

0.4

0.6

0.8

1.0

m
oi

st
ur

e
co

nt
en

t

SSR

yi
el

d

0.0

0.2

0.4

0.6

0.8

1.0

AFLP

Fig. 1 e-SVR and BLP prediction accuracies obtained by training on

subsets of the vector of genotypic values ŷrg
T and the vector of SCA

BLUPs d̂rs
T : At p = 0, a leave-one-out cross-validation is performed

on the training data and predictions on the 49 hybrids are made by

training on all 2,316 training hybrids. At p = 1,..., 6, an e-SVR and

BLP prediction model are constructed from the 2p subsets of the

original vectors and AFLP or SSR predictor information. For each of

these models, predictions are made for all training hybrids that are not

in the particular subset and all 49 hybrids of the validation data set.

This subset assignment procedure is replicated 100 times. Accuracy is

expressed as the median of the squared Pearson correlation coefficient

between the predictions for all hybrids and their corresponding entries

in the training vectors ŷrg
T , d̂rs

T (suffix cross), and the validation vectors

ŷrg
V and d̂rs

V (suffix valid). The error bars indicate the 0.25 and 0.75

quantiles of each sampling distribution
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Molecular marker information content

The sensitivity of both e-SVR and BLP to a reduction in the

size of the molecular fingerprint is shown in Fig. 2 by

means of box and whisker plots. The set of SSR and AFLP

markers is reduced in steps of 10%. For each step, a ran-

dom subset of markers is selected and used to construct an

e-SVR and BLP prediction model by training on all entries

of the vector ŷrg
T minus the 38 hybrids that are tested in the

validation set. Prediction accuracy is expressed as squared

Pearson correlation coefficients between the predictions of

the 49 validation hybrids and their corresponding entries in

the vector ŷrg
V :

Discussion

Unbalanced data handling

Predicting the phenotypic performance of untested hybrids

by means of an e-SVR or BLP model requires a training set

of considerable size. Each training example should be

represented by a single response value and a set of

molecular marker-based predictors. A typical commercial

hybrid breeding programme tests hundreds of new inbred

combinations in a vast number of multi-location field trials

on a yearly basis. The resulting data sets contain pheno-

typic measurements on numerous hybrids and would,

therefore, allow for the construction of an e-SVR or BLP

prediction model at a low cost. However, the unbalanced

nature of this kind of breeding data makes it hard to distill a

single response value that allows to rank all hybrids on the

same scale. We examined three mixed model-based

methods to obtain such a score from unbalanced pheno-

typic data: (1) random phenotypes introduced by Bernardo

(1994, 1995, 1996a, b), (2) random genotypes described by

Maenhout et al. (2008) and (3) fixed genotypes. Besides

these three types of genotypic scores, we also obtain an

estimate of the SCA value for each hybrid in the training

data.

The random genotypes approach results in the highest

correlations for all three traits under study. The fixed

genotypes approach seems to result in the lowest correla-

tions and Bernardo’s random phenotypes perform only

slightly better. The inadequacy of the fixed genotypes is

not unexpected because the assumption of fixed genotypic

effects is likely to increase the standard error of the esti-

mators of commercially uninteresting hybrids, as these

have few records in the data set and no strength can be

borrowed from records on related hybrids.The assumption

of random nuisance effects on the other hand seems justi-

fied for this kind of breeding data as the number of levels of

these factors is usually quite high.

Comparing the prediction accuracies of the three traits

under study, we see that grain moisture content is the most

promising trait for the construction of a reliable prediction

model. The large contribution of the main genotypic effects

(i.e. GCA and SCA) to the total variance (74%) and the low

impact of the GxE components (14.3%) in the linear mixed

model analysis with a random genotype assumption,

explains these results. For the number of days until flow-

ering, this partition is 44.5 versus 20% which results in the

somewhat lowered correlations observed for this trait. The

trait grain yield, although of great interest to breeders,

Table 3 Prediction accuracies, expressed as squared Pearson correlation coefficients, obtained from two sampling schemes simulating pre-

dictions on hybrids where one (test-cross sampling) or both parents (new-cross sampling) are newly developed inbred lines

Predictor Trait Predictand Test-cross sampling New-cross sampling

e-SVR BLP e-SVR BLP

AFLP markers Yield Cross (ŷ
rg
T ) 0.72 0.78 0.48 0.58

Valid (ŷ
rg
V ) 0.09 0.10 0.09 0.11

Moist. Cross (ŷ
rg
T ) 0.80 0.85 0.63 0.71

Valid (ŷrg
V ) 0.53 0.67 0.31 0.58

Flower Cross (ŷrg
T ) 0.80 0.84 0.62 0.69

Valid (ŷrg
V ) 0.30 0.43 0.04 0.22

SSR markers Yield Cross (ŷrg
T ) 0.62 0.66 0.32 0.39

Valid (ŷrg
V ) 0.10 0.05 0.07 0.03

Moist. Cross (ŷrg
T ) 0.77 0.72 0.57 0.51

Valid (ŷrg
V ) 0.41 0.38 0.15 0.14

Flower Cross (ŷrg
T ) 0.67 0.70 0.41 0.45

Valid (ŷrg
V ) 0.31 0.41 0.02 0.18

Cross-validation correlations on the vector ŷ
rg
T (cross) as well as correlations for predictions of the validation vector ŷ

rg
V (valid) are presented for

the three traits grain yield, grain moisture content and days until flowering
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looks the least eligible candidate for the construction of a

prediction model. This low correspondence between

training and validation data estimates can be explained by

the fact that the contribution of the G 9 E factors (38%)

exceeds the contribution of the main genotypic factors

(30.7%) to the total variance. The training examples are

constructed marginal to the environmental factors such as

growing season and geographical region while the valida-

tion data were collected at exactly one specific level of

these factors. If a trait is subject to a large G 9 E variance,

one can expect a genotypic effect, estimated over a large

range of environments, to deviate substantially from an

estimate obtained at one particular level of these environ-

mental factors. A similar reasoning can explain the

observed lack of correlation for the SCA effects although

other aspects like the increased prediction error variance of

the SCA BLUPs, the limited predictive value of a set of

random SSR or AFLP markers with respect to a complex

phenomenon like heterosis, and possibly reciprocal dif-

ferences, also have their detrimental influence.

For the two promising traits moisture content and days

until flowering the actual prediction accuracies obtained by

e-SVR and BLP models, when trained on the vectors of

random genotypes, are quite close to the theoretical upper

bounds presented in Table 2. This can be seen from the

SVR_valid and BLP_valid lines in Fig. 1 at p = 0. These

specific points are obtained by correlating the e-SVR and

BLP predictions of the 49 validation hybrids with their

random genotypic estimates in vector ŷrg
V :

Our results indicate that the random genotypes approach

is the best way to obtain a single genotypic score for each

hybrid in the training data. By contrast, Bernardo (1994,
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Fig. 2 e-SVR and BLP prediction accuracies obtained by construct-

ing e-SVR and BLP prediction models from the 2316 entries in vector

ŷrg
T using subsets of the AFLP or SSR marker information as

predictors for each of the three traits under study. Box and whisker

plots show the range of squared Pearson correlation coefficients

between the 49 entries in vector ŷrg
V and their predictions over 100

iterations of the marker sampling routine
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1995, 1996a, b) makes predictions on new hybrids by fit-

ting the vector of random phenotypes ŷ
rp
T in Eq. 5. The

entries in the resulting vector ŷP are sensu stricto not BLPs

as the procedure does not take into account the covariance

structure that originated from the measurement adjustments

involving estimated fixed effects. This observation seems

of minor importance as cross-validation results indicate a

superior prediction accuracy compared with several other

methods (Charcosset et al. 1998). However, a more

straightforward approach would be to simply fit a number

of additional parameters for the missing GCA and SCA

components of the untested hybrids into the variance

structure of the linear mixed model. As there are no phe-

notypic measurements linked to these effects, the addi-

tional columns in the random design matrix can all be set to

zero. The estimated values for these additional effects are

true best linear unbiased predictions or BLUPs and allow to

reconstruct the predicted genotypic value of an untested

hybrid by means of Eq. 2. The downside of this approach is

that for each new prediction, the full set of mixed model

equations needs to be solved. Moreover, an assessment of

prediction accuracy by means of cross-validation routines

is not only computationally exhausting, but often just not

sensible as leaving out the phenotypic measurements on

one or more hybrids might divide the training data in two

or more disconnected subsets. In this scenario, each of the

disconnected subsets contains measurements on a different,

non-overlapping set of hybrids which are tested in a dif-

ferent set of environments. Contrasts involving random

genotypic effects of hybrids that belong to different, dis-

connected data subsets are usually estimable but do not

conform to the usual interpretation as they rely on the

implicit assumption that the genetic levels among the dif-

ferent environmental subsets are equal (Laloë 1993). To

avoid these pitfalls, a BLP prediction based on the random

genotypic scores of the training hybrids is the next best

option.

Reduction of the training data

Training sample size

In the previous section we indicated that using random

genotypes to train our e-SVR and BLP prediction models

should result in superior prediction accuracies compared

with the alternatives examined. For this reason, we con-

tinue to work with the random genotypes to evaluate the

impact of the training sample size on the prediction accu-

racy of both e-SVR and BLP.

Random sampling In Fig. 1 we see that the behaviour of

e-SVR is quite similar to that of BLP when the size of the

training set is reduced in a random fashion. For both

methods, it is very clear that the cross-validation-based

prediction accuracies consistently overestimate their vali-

dation trial counterparts. This is more explicit for the low

heritability trait grain yield than for the traits moisture

content and days until flowering. The observed disparity

can be explained by the specific set of G 9 E effects that

affect the validation data while the estimates derived from

the training data are marginal to all environmental effects.

If G 9 E effects explain a large portion of the observed

variance for a trait, the observed heritability will be

reduced correspondingly, as is the case for grain yield.

If we focus on the prediction of total genotypic value,

the accuracy of e-SVR and BLP shares a similar downward

trend when the size training set is reduced, although e-SVR

usually performs slightly worse than BLP. The fall in

prediction accuracy starts somewhere between p = 2 and

p = 3, which is the equivalent of using 25 and 12.5% of

the original training data, respectively. If the training set is

further reduced, the sampling variance of the validation

trial-based prediction accuracies increases, as indicated by

the widening of the interquantile ranges. This increase in

sampling error is less pronounced for the cross-validation-

based prediction accuracies, giving a false indication of

confidence for these favourable estimates. For the three

traits under study, there is little difference between the

behaviour of prediction models based on SSR markers and

those using AFLP markers as predictors when the set of

training hybrids is reduced by random selection.

If we focus on the prediction of SCA, we see that neither

e-SVR or BLP succeed in raising the median validation

prediction accuracy, expressed as a squared Pearson

correlation coefficient, above 0.13. Most striking is that

the prediction accuracy estimates obtained through cross-

validation give the impression that both e-SVR and BLP

are quite capable of making SCA predictions with a

reasonable accuracy, especially if the full training set is

used. The more pronounced impact of G 9 E effects on

SCA measurements is again the most likely culprit here.

Test-cross and new-cross sampling If a non-random

selection of training hybrids is performed, the superiority

of the AFLP predictors becomes apparent, as can be seen

from Table 3. In all but two scenarios, the prediction

models based on AFLP markers have a greater prediction

accuracy compared with those based on SSR markers.

Table 3 again demonstrates the upward bias of the cross-

validation-based prediction accuracy estimates. The e-SVR

prediction models are generally inferior to BLP when it

comes to predicting the phenotypic performance of hybrids

for which at least one of the parental inbred lines has no

offspring in the training set. If both parents are unknown,

neither e-SVR nor BLP succeeds in making reliable pre-

dictions as the highest validation trial prediction accuracy

424 Theor Appl Genet (2010) 120:415–427

123



is 0.58 for a BLP model trained on the trait grain moisture

content using AFLP markers as predictors. The combina-

tion of a high heritability for grain moisture content and the

more informative AFLP markers as predictors should allow

this BLP model to be used for screening purposes (Mae-

nhout et al. 2008).

Molecular marker information content

Reducing the set of predictors, by randomly selecting a

subset of markers, has a negative effect on the prediction

accuracy of both e-SVR and BLP as can be deduced from

Fig. 2. The effect of the number of genotyped markers on

the prediction accuracy appears to be subject to the law of

diminishing marginal returns and little improvement is to

be expected by further saturating the molecular fingerprint

with additional AFLP or SSR markers. In this respect,

Frisch et al. (2009) even observe a decline in prediction

accuracy when the number of genes for which expression

data are incorporated in their transcriptome-based predic-

tion models, is increased beyond a certain optimum.

The difference in behaviour between e-SVR and BLP is

most apparent for the traits grain moisture content and days

until flowering in combination with the less informative

SSR markers as predictors. As soon as 30% of the SSR

markers are removed from the set of predictors, certain

samples generate a substantially lower prediction accuracy

of the BLP model while the accuracy of the equivalent

e-SVR model is nearly identical to that of the full marker

set. Reducing the set of SSR predictors beyond this level,

further inflates the sampling error of the BLP prediction

accuracies, while at the same time the median of the dis-

tribution starts its steep descent. e-SVR handles a reduction

of the SSR predictors better than BLP as the sampling error

starts to increase at lower values of the fingerprint size,

while the median of the prediction accuracy shows a gentle

decline as the number of predictors is reduced. The median

e-SVR prediction accuracy is for instance always superior

to that of BLP as soon as 40% of the markers is removed.

This observed superiority of e-SVR over BLP is less pro-

nounced if we use the AFLP markers as predictors. Both

methods retain a good and comparable prediction accuracy

for the traits grain moisture content and days until flow-

ering, even when the set of AFLP predictors is reduced to

20% of its original size. Beyond this level, the prediction

accuracy rapidly declines, while the sample variance

increases. Even if 90% of the AFLP markers are removed,

which is equivalent to a predictor set size of 57 dominant

markers, several samples allow e-SVR and BLP to obtain

good prediction accuracies. Moreover, several samples of

AFLP and SSR markers result in prediction accuracies that

are greater than that of the equivalent model using the full

set of markers. These observations indicate that an e-SVR

or BLP prediction model that uses only a specific subset of

markers, might possibly improve the presented prediction

accuracies but further study is needed to ascertain this

point.

Conclusions

To construct an e-SVR or BLP model for the prediction of

phenotypic response based on a hybrid’s molecular fin-

gerprint, training data that contains a vector of marker

scores and a single response value for every hybrid is

needed. The best prediction accuracy is achieved by con-

structing these hybrid response values by summing the

appropriate GCA and SCA BLUPs, obtained from a linear

mixed model analysis with a random genotypic effects

assumption.

If prediction accuracy is determined by means of a

validation trial, both e-SVR and BLP perform close to the

theoretical limit for the traits grain moisture content and

days until flowering while they both fall short for grain

yield, a trait with a low heritability in advanced breeding

pools. The accuracy of SCA predictions is similarly

insufficient for all three traits. This lack of predictive

power is not reflected in the prediction accuracy measures

obtained through cross-validation procedures, as these do

not take into account the uncertainty introduced by G 9 E

effects. Furthermore, if only a limited set of training

examples is available but the genotyped markers are either

numerous or very informative, BLP is more accurate than

e-SVR. If on the other hand the set of molecular markers is

either restricted in size or information content, e-SVR is the

preferred prediction method.
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Appendix: Variance structure of the linear mixed

models fitted to the phenotypic data of the validation

field trial

The four random vectors c, as; ao and d of Eq. 4 are

assumed to be mutually independent. Furthermore, for each

of these vectors h 2 fc; as; ao; dg we assume that the var-

iance has the separable form

VarðhÞ ¼ ge � gv; ð7Þ

where � denotes the Kronecker product. ge represents a

3 9 3 symmetric matrix containing the covariance

between environments while gv represents the covariance

between the specified genetic components of the validation

Theor Appl Genet (2010) 120:415–427 425

123



trial entries. We start by fitting a completely unstructured

variance matrix for ge while assuming an identity matrix

for gv: In subsequent steps, the number of REML estimated

variance components is reduced by fitting more parsimo-

nious variance models for ge using restricted maximum

likelihood ratio tests in case of comparisons between nes-

ted models, or Akaike’s information criterion (AIC)

otherwise. We attempt to fit a first-order factor analytic

variance model such that ge ¼ kk0 þW where k is a vector

of factor loadings and the matrix W is a diagonal matrix

containing three location-specific variances (Smith et al.

2001). To obtain a more parsimonious model, the specific

variances were sometimes made equal or zero (giving

perfect correlation), and/or the loadings made equal (giving

a common covariance (Cullis et al. 1998)). In a subsequent

reduction, the variances on the diagonal are set equal which

results in a compound symmetry model. The simplest

model for ge assumed zero covariance and equal variances.

Once the most parsimonious model for ge is determined,

we try different formulations for gv: We fit an identity

matrix for the variance model of the six check varieties in

vector c as no molecular marker or pedigree information is

available for these varieties. For the vectors as and ao;

containing the GCA effects of the inbred lines, we try to fit

the different coefficient of coancestry derived matrices a

described by Maenhout et al. (2009) or an identity matrix.

In a similar way, we compare the different coefficient of

fraternity-based matrices d for the variance matrix gv

pertaining to the vector d: Sometimes, the most parsimo-

nious model is obtained by not using the separable form of

Eq. 7 but directly fitting a common GCA or SCA effect for

all three locations.

The variance of each vector of residuals ei that make up

vector e in Eq. 3 is modeled as a separable process in the

direction of rows and columns so we can write

VarðeiÞ ¼ Ric � Rir where � denotes the Kronecker prod-

uct. The matrices Ric and Rir are either identity matrices or

contain first order autoregressive correlations to account

for spatial variation as described in Gilmour et al. (1997),

Smith et al. (2001) and Oakey et al. (2007). Table 4 gives

an overview of the final model for the variance structure of

vectors g and e for each trait.
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