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Abstract The Oryza sativa subsp. indica reference culti-
var (cv.), 93-11 is completely resistant to many Chinese
isolates of the rice blast fungus. Resistance segregated in a
3:1 (resistance/susceptible) ratio in an F2 population from
the cross between 93-11 and the japonica reference cv.
Nipponbare, when challenged with two independent blast
isolates. The chromosomal location of this monogenic
resistance was mapped to a region of the long arm of chro-
mosome 12 by bulk segregant analysis, using 180 evenly
distributed SSR markers. Five additional SSR loci and nine
newly developed PCR-based markers allowed the target
region to be reduced to ca. 1.8 cM, equivalent in Nippon-
bare to about 800 kb. In the reference sequence of Nippon-
bare, this region includes an NBS-LRR cluster of four
genes. The known blast resistance gene Pi-GD-3 also maps
in this region, but the 93-11 resistance was distinguishable
from Pi-GD-3 on the basis of race speciWcity. We have
therefore named the 93-11 resistance Pi41. Seven markers
completely linked to Pi41 will facilitate both marker-
assisted breeding and gene isolation cloning.

Introduction

Blast is one of the most destructive diseases of rice world-
wide (Ou 1985). The causative agent is the Wlamentous
ascomycete Magnaporthe oryzae (Couch and Hohn 2002).
Genetic resistance is the most economic, eVective and envi-
ronmentally responsible method for its control, but resis-
tance genes (R genes) typically lose their eVectiveness after
a short period in commercial production. The combining of
a spectrum of diVerent R genes through marker-aided selec-
tion probably represents the best available means to achieve
durable control (Hittalmani et al. 2000). For this approach,
it is necessary to identify markers closely linked to each R
gene being incorporated.

The rice-M. oryzae pathosystem has been developed as a
model system for the study of the molecular events occur-
ring during the host-fungal interaction (Valent 1990). This
research has established the prevalence of race-speciWc
resistance governed by gene-for-gene relationships (Silué
et al. 1992; Jia et al. 2000). At least 50 major blast resis-
tance genes have been identiWed to date (Chen et al. 2005;
Liu et al. 2005; Deng et al. 2006; Gowda et al. 2006;
Nguyen et al. 2006), seven of which (Pib, Pita, Pi9, Pi2,
Piz-t, Pid2 and Pi36) have been positionally cloned and
characterized (Wang et al. 1999; Bryan et al. 2000; Qu
et al. 2006; Zhou et al. 2006; Chen et al. 2006; Liu et al.
2007). With the exception of Pi-d2, which encodes a B-lec-
tin receptor kinase, all belong to the large NBS-LRR gene
family (Martin et al. 2003; Monosi et al. 2004). The identi-
Wcation and isolation of additional host R genes and patho-
gen avirulence genes is now required to deepen our
understanding of the molecular mechanisms involved in the
host-pathogen interaction.

The Wnished genome sequence of the japonica reference
cultivar (cv.) Nipponbare (International Rice Genome
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Sequencing Project 2005; http://dna.affrc.go.jp), and a
whole-genome draft sequence of the indica cultivar, 93-11
(Yu et al. 2002; http://rise.genomics.org.cn) facilitate
molecular mapping and positional cloning in rice (Sakaki
et al. 2005; Xu et al. 2005). 93-11 was grown widely in
China, and has been used extensively as a parent in a num-
ber of breeding programmes. For example, it acts as the
restorer line for the popular hybrid cv. Liang-You-Pei-Jiu
(Dai et al. 1997; Yu et al. 2002). Although 93-11 expresses
a good level of blast resistance (Dai et al. 1997), the genetic
basis of this resistance is poorly understood.

In this report, we describe the identiWcation of Pi41, a
major gene which contributes to the blast resistance of 93-
11. The gene was located with the help of linkage analysis
and its race speciWcity was assessed by pathotesting with a
large collection of Chinese blast isolates.

Materials and methods

Plant materials and pathotesting

The genetic basis of the blast resistance carried by 93-11
was elucidated by segregation analysis in an F2 population
derived from the cross between 93-11 (resistant) and Nip-
ponbare (susceptible). The population was challenged with
two blast isolates (CHL724 and CHL743) collected from
Jilin province, China. Both isolates elicit a diVerential
response on the parents of the cross. Seedling management,
inoculum preparation, disease inoculation and evaluation
were carried out in a greenhouse, as described elsewhere
(Zhu et al. 2004).

Marker development and genetic map construction

Total DNA was extracted by the CTAB method (Murray
and Thompson 1980) from frozen rice leaves. Bulk segre-
gant analysis (BSA) (Michelmore et al. 1991) was
employed to select markers putatively associated with the
resistant phenotype. Two DNA pools were assembled by
mixing equimolar amounts of DNA from either ten resis-
tant or ten susceptible F2 individuals (based on their reac-
tion to inoculation with isolate CHL724). The Wne mapping
of Pi41 was achieved by three rounds of linkage analysis
(Table 1). Firstly, 180 SSR markers distributed evenly
across all 12 rice chromosomes (McCouch et al. 2002;
http://www.gramene.org) were used to identify those which
produced a diVerential banding pattern from the resistant
and susceptible pools. These markers were then genotyped
in the whole mapping population. An additional set of SSR
markers, located in the genomic region deWned by the ini-
tial linkage analysis, was then applied to the set of recombi-
nant progeny, along with some de novo generated

sequence-tagged site (STS) and candidate R gene (CRG)
markers developed from the alignment (using BLAST)
within the critical region of the genomic sequences of 93-
11 and Nipponbare. The STS markers were developed from
InDel polymorphisms in non-genic sequence, while the
CRG markers exploited InDel polymorphisms with NBS-
LRR sequence open reading frames.

PCR ampliWcation conditions consisted of a denaturing
step of 94°C/3 min, followed by 35 cycles of 94°C/30 s,
annealing temperature (see Table 1)/30 s, and 72°C/1 min,
ending with an extension step of 72°C/7 min. Amplicons
were separated by 6% polyacrylamide gel electrophoresis
and visualised by silver staining. For STS40-5, the ampli-
con was digested with DraI, separated by 2% agarose gel
electrophoresis and visualised by ethidium bromide stain-
ing. Primer sequences and other relevant properties of the
marker assays are summarized in Table 1. The recombina-
tion frequency between adjacent loci was estimated as Nr/
2NT (Nr being the number of recombinants, and NT the
overall population size, Pan et al. 2003; Gu et al. 2004).

Physical map construction and candidate R gene 
characterization

The physical map in the critical region was based on the
Nipponbare contig map (IRGSP 2005). The 93-11 contigs
were anchored to this framework using the linked markers.
Flanking markers were used to identify candidate NBS-
LRR genes, with the help of GENSCAN (http://genes.mit.
edu), FGENSH (http://sun1.softberry.com) and RiceGAAS
(http://rgp.dna.affrc.go.jp) software. The sequence of each
candidate gene was then compared with its Nipponbare
homologue. To conWrm the functionality of the 93-11 can-
didate R genes, 93-11 and 15 other genotypes harbouring
identiWed major R genes were challenged with 543 blast
isolates collected from three provinces within China.

Results

Genetic mapping of the R gene locus

Altogether, 968 and 668 F2 individuals were inoculated
with isolates CHL724 and CHL743, respectively. The seg-
regation ratio between resistance and susceptibility in both
cases was consistent with monogenic, fully dominant inher-
itance [resistant/susceptible: 735/233 (�2 = 0.45) and 489/
179 (�2 = 1.15), respectively]. The linkage analysis indi-
cated that the same R gene was detected by both fungal iso-
lates. As a result, a combined F2 population, consisting of
341 resistant and 418 susceptible individuals, was taken
forward as the mapping population for the genetic and
physical mapping of the R gene locus. The BSA indicated
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that four SSR loci (RM247, RM101, RM7102 and
RM519), all located on the long arm of chromosome 12,
identiWed a polymorphism between the two parents and the

two pools (Table 1). The recombinational distance from the
R gene locus was 12.4, 2.7, 1.0 and 13.7 cM, respectively.
As the recombinant progenies with respect to RM247,

Table 1 Experimental details of the PCR markers used for linkage analysis

F forward, R reverse
a The Wrst and second marker sets included International Rice Microsatellite Initiative SSR markers, and the third included new STS and CRG
markers
b Genomic position of each marker along chromosome 12 as determined by BLASTN analysis against the Nipponbare genome sequence

Markera Primer sequence (5�–3�) Genomic position (bp)b Annealing 
temperature (°C)

Expected 
size (bp)

First marker set

RM247 F: TAGTGCCGATCGATGTAACG 3185678–3185659 55 156

R: CATATGGTTTTGACAAAGCG 3185523–3185542

RM101 F: GTGAATGGTCAAGTGACTTAGGTGGC 8828464–8828439 55 300

R: ACACAACATGTTCCCTCCCATGC 8828165–8828187

RM7102 F: TTGAGAGCGTTTTTAGGATG 13258483–13258464 55 170

R: TCGGTTTACTTGGTTACTCG 13258314–13258333

RM519 F: AGAGAGCCCCTAAATTTCCG 19973101–19973120 55 122

R: AGGTACGCTCACCTGTGGAC 19973222–19973203

Second marker set

RM28059 F: TGGCCGGTTAGATTTGATAGAGC 14530317–14530339 55 370

R: GATGTAATCAACCAAGGGACACG 14530686–14530664

RM28112 F: TCAGCATCGAATTCACCACTTTGC 16322894–16322917 55 284

R: CGATCAAACCAACTTGCCAACC 16323177–16323156

RM28130 F: CAGCAGACGTTCCGGTTCTACTCG 16748253–16748276 55 176

R: AGGACGGTGGTGGTGATCTGG 16748428–16748408

RM1261 F: GTCCATGCCCAAGACACAAC 17578053–17578072 55 167

R: GTTACATCATGGGTGACCCC 17578219–17578200

RM28204 F: CATTCTACCGATGATTGCAGAGG 18351394–18351416 55 150

R: CTACATTAAGCGTGAGCGACAGC 18351543–18351521

Third marker set

STS40-1 F: TCCACCAGCCACATGTTAGC 16582827–16582808 55 95

R: GGAAATGTGTGGGGAATGGAG 16582733–16582753

STS40-2 F: CACCATCAGCATGTTTACCA 16585367–16585348 55 125

R: ATGGTTAACTGGTCAAGGTGA 16585243–16585263

CRG40-1 F: TTCCTTGGCACTCAGTTCAG 16589155–16589136 55 814

R: GGGTTATCTTTGCCTCACAGC 16588342–16588362

CRG40-2 F: GGTGTATGCCAATTAGGTGCCA 16619814–16619793 55 199

R: GTGGTCACATGTGGATGGAATG 16619616–16619637

CRG40-3 F: GCCTTGTTGACCTCGACTTGAC 16636470–16636449 55 152

R: AAACGTCAGGCATGCCAAATC 16636319–16636339

CRG40-4 F: CCTATGTGGCACCTACGCTCC 16730106–16730086 55 628

R: TGTCGCACTGCTCCATCCAC 16729479–16729498

STS40-5 F: CTACTTTTTCCTTGCGGCGATTG 17032605–17032583 60 2083

R: CGAGGTGTGCGAGTGTGGTC 17030523–17030542

STS40-3 F: CCTTCCCTTCCTGACACTTG 17388235–17388254 55 121

R: GAGTCAAAGACGGATCAAGC 17388355–17388336

STS40-4 F: CCAAGGGAGCTTAGTACTGTA 17399003–17399023 55 335

R: AGAGGAAGTGGATTCTGAATC 17399337–17399317
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RM101 and RM7102 were diVerent from those involving
RM519, it was concluded that the R locus was Xanked on
the proximal side by RM247, RM101 and RM7102, and on
the distal side by RM519 (Fig. 1a). This result allowed the
subsequent Wne mapping exercise to focus on the 33 recom-
binants with respect to RM7102 and the 215 recombinants
with respect to RM519.

Fine mapping of the R gene locus

The RM7102-RM519 interval includes Wve known SSR loci,
which were polymorphic between 93-11 and Nipponbare, and
these markers were genotyped in the 248 recombinants
described above (Table 1). The respective number of recom-
bination events at RM28059, RM28112, RM28130, RM1261

and RM28204 was 27, 25, 0, 5 and 28 (Fig. 1a). Thus the R
locus co-segregates with RM28130, and is located at a dis-
tance of 1.8 and 1.6 cM, respectively, from RM28059 and
RM28112 on the proximal side, and 0.3 and 1.8 cM from
RM1261 and RM28204 on the distal side (Fig. 1a). This deW-
nes the position of the locus to a ca. 2.0 cM region, Xanked by
RM28112 and RM1261. The genotyping of the Wve new STS
and four CRG markers in this interval deWned 24 recombinant
events at STS40-1 on the proximal side, and three at both
STS40-3 and STS40-4 on the distal side. STS40-2, STS40-5
and all four CRG markers co-segregated with the resistance
(Fig. 1a, d). Thus the R locus was located within a ca.1.8 cM
interval Xanked by STS40-1 and STS40-3, and co-segregates
with STS40-2, CRG40-1, CRG40-2, CRG40-3, CRG40-4,
RM28130 and STS40-5.

Fig. 1 a An integrated genetic map of rice chromosome 12, including
14 blast resistance genes. Map positions were inferred from a: Yu et al.
(1991); b: Yu et al. (1996); c: Zhuang et al. (2002); d: Liu et al. (2004);
e: Hayashi et al. (1998); f: Sallaud et al. (2003); g: Naqvi and Chattoo
(1996); h: Rybka et al. (1997), Bryan et al. (2000); i: Zheng et al.
(1996); j: Ahn et al. (2000); k: Tabien et al. (2000); l: this study.
*: recombinants/gametes; **: recombinants; CEN. centromere. Map

distances in cM. b Nipponbare contig map around Pi41. The short
horizontal lines represent BAC/PAC clones. The dashed lines denote
marker positions. c 93-11 Contig map around Pi41. Short horizontal
lines marked “?” refer to unanchored BAC/PAC clones. d Physical
map of the Pi41 region. The numbers below the map are distances in
kbp. The numbers in parentheses represent the number of recombi-
nants between Pi41 and the marker locus. e Candidate genes for Pi41
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In silico physical mapping of the R gene locus

As 93-11 was sequenced using a “whole-genome shotgun”
approach, the draft sequence contains several gaps in the
target region (Fig. 1c). The physical map of the R gene
locus region had therefore to be constructed from the Nip-
ponbare sequence (Fig. 1b). Eight Nipponbare BAC/PAC
clones were located within the region by a BLASTN analy-
sis based on the sequence of the Xanking and co-segregat-
ing markers, and the resulting physical map is shown in
Fig. 1d. The distance between STS40-1 and STS40-3 is
estimated to be about 800 kb (genomic position 16582733–
17388355). On the basis of the 93-11 sequence, the dis-
tance between STS40-1 and STS40-3 is about 500 kb
(genomic position 13208287–13708660).

The annotated Nipponbare chromosome 12 sequence
suggests that the region Xanked by STS40-1 and STS40-3
contains 122 predicted genes, including 16 known/putative
genes, three expressed genes of unknown function, 31
hypothetical genes and 72 transposable element-related
genes. A cluster of Wve NBS-LRR genes (Os12g28040,
Os12g28050, Os12g28070, Os12g28100 and OS12g28250)
lies between STS40-1 and RM28130 (The Rice Chromo-
somes 11 and 12 Sequencing Consortia 2005). GENSCAN
predicts both Os12g28040 and Osg28050 to be intact NBS-
LRR genes. Four NBS-LRR genes, each encoding an intact
protein, were identiWed in the target region of 93-11 by
RiceGAAS, GENSCAN and FGENSH. Sequence align-
ment of these four genes showed that they correspond to
CRG40-1, CRG40-2, CRG40-3 and CRG40-4, at a homol-
ogy level of 96.8, 99.3, 99.1 and 98.1% (data not shown),
respectively.

DiVerential analysis of the R gene

Thirteen known major blast resistance genes [Pi4 (Yu et al.
1991), Pi6 (Yu et al. 1996), Pi12 (Zheng et al. 1996), Pi19
(Hayashi et al. 1998), Pi21 (Ahn et al. 2000), Pi24 (Zhuang
et al. 2002), Pi31, Pi32 (Sallaud et al. 2003), Pi157 (Naqvi
and Chattoo 1996), Pitq6 (Tabien et al. 2000), Pita/Pita-2
(Rybka et al. 1997; Bryan et al. 2000), Pi-GD-3 (Liu et al.
2004)] have been mapped to chromosome 12. With the
exception of Pi-GD-3, all are located on the short arm of
the chromosome (Fig. 1a). As to the location of the Pi-GD-
3, it was roughly mapped based on the Xanking markers
RM179 (4.8 cM) and NLRinv-5 (23.8 cM) (Liu et al.
2004). Its position was, thus, inferred by the physical dis-
tance from the closest marker RM179, which is estimated
to be about 1,500 kb based on the average physical/genetic
distance ratio of rice, i.e., »300 kb/cM. The R gene in 93-
11 maps in the vicinity of the location of Pi-GD-3, so the
speciWcities of these two genes were investigated. Since
isolate CHL743 elicits a diVerential response, the 93-11

gene is likely not to be Pi-GD-3. Together, the R gene iden-
tiWed in 93-11 in the present study seems to be distinct from
Pi-GD-3, and was designated Pi41.

The speciWcity of Pi41 was Wnally assessed against a
panel of 15 R genes (Table 2). Pi41 conditions complemen-
tary reactions to these genes, and thus represents a useful
component for R gene-stacking aimed at the breeding of
durably blast resistant cvs of rice.

Discussion

Nipponbare and 93-11 are the reference cultivars for the
japonica and indica types. The public availability of their
whole-genome sequences has enabled the rapid and
eVective mapping and isolation of a growing number of
functional genes (Gu et al. 2004; Chen et al. 2005; Liu et al.
2005; Xu et al. 2005; Deng et al. 2006; Chen et al. 2006;
Liu et al. 2007). We have described here the identiWcation
and Wne mapping of Pi41, delimiting it to a 1.8 cM or ca.
800 kb region. Although it maps to a similar location as Pi-
GD-3 (Liu et al. 2004), it is a distinct gene, since the two
genes react diVerentially when challenged with isolate
CHL743. It is well established that most R genes are clus-
tered (Michelmore and Meyers 1998; Monosi et al. 2004).
Two-thirds of the >50 blast R genes identiWed to date map
to chromosomes 6, 11 and 12. Of the 14 mapping to chro-
mosome 12, 12 are either closely linked to the RFLP locus
RG869 or are alleles of Pita, suggesting the presence of a
major R gene cluster on the short arm of chromosome 12.
Since R genes are typically identiWed in separate cultivars,
it is diYcult to carry out a classical allelism test between a
new gene and others mapping within a cluster (Tabien et al.
2000; Sallaud et al. 2003; Deng et al. 2006). Thus some of
the genes mapping to chromosome 12 may be identical to
one another (Sallaud et al. 2003). The current alternatives
to allelism testing are Wne-scale mapping and diVerential
pathotesting.

It has been well documented that the level of recombina-
tion frequency along a chromosome varies (Chen et al.
2002; Wu et al. 2003). Several R genes are located in
regions of low recombination (Chauhan et al. 2002; Chen
et al. 2005). In the 800 kb interval deWned by STS40-1 and
STS40-3, seven markers co-segregated with Pi41. This
may reXect some localised suppression of recombination,
which may be due to its pericentromeric location in the
chromosome, where recombination is generally limited
(Chen et al. 2002; Wu et al. 2003). An alternative scenario
is that some chromosomal rearrangement has aVected the
region during the diversiWcation of indica and japonica rice
(Chauhan et al. 2002; Wu et al. 2003), resulting in a loss of
sequence homology. At least 80% of the 93-11 STS40-1 to
STS40-3 sequence is also present in Nipponbare. However,
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the estimated physical length of the interval in 93-11 is
300 kb less than that in Nipponbare, although much of this
discrepancy is probably due to the gaps present in the
sequence of 93-11. A third possibility relates to the obser-
vation that transposon-rich regions characteristically suVer
from low levels of genetic recombination (Wu et al. 2003;
Arabidopsis Genome Initiative 2000), given that the Pi41
region is composed of ca. 60% transposon sequence.

Recombination hotspots are commonly concentrated
within genic sequence (Dooner and Martinez-Ferez 1997;
Inukai et al. 2000; Yao et al. 2002), but recombination hot-
spots have been identiWed also in intergenic regions (WulV
et al. 2004; Yao et al. 2002). A potential hotspot is present
proximal to Pi41, within a 2.5 kb, 1.6 cM interval deWned
by STS40-1 and STS40-2. In this interval, the physical/
genetic ratio (P/G) is >160-fold less than the global mean in
rice (Wu and Tanksley 1993). Recombination on both sides
of the hotspot was strongly suppressed, suggesting that this
hotspot may be speciWcally active for meiotic recombina-
tion, like the well characterized wx locus in rice (Inukai
et al. 2000). The entire LRR domain, and part of the NBS
domain of Os12g28040 is located within this hotspot. The
LRR domains of R genes are known to play an important
role in pathogen avirulence recognition (Martin et al. 2003;
Chisholm et al. 2006), and novel resistance speciWcities
generated by recombination have been documented at the
Xax rust resistance L loci (Elli et al. 2007). The Nipponbare
and 93-11 sequences diVer at 51 base pair positions in
Os12g28040 (data not shown), so an intriguing possibility
is that the recombination hotspot we have identiWed con-
tributes to the rapid evolution of this region.

Although the delimiting region of Pi41 spans some
800 kb, only four genes with an intact NBS-LRR structure
are present, and these all lie within a ca. 200 kb interval
Xanked by STS40-1 and RM28130 in Nipponbare. Thus
these genes all represent good candidates for Pi41, and we
are currently using a map-based in silico approach (Liu
et al. 2007) as a strategy for gene isolation.
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