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Abstract Low-molecular-weight glutenin subunit (LMW-
GS) Glu-B3 has a significant influence on the processing
quality of the end-use products of common wheat. To
characterize the LMW-GS genes at the Glu-B3 locus, gene-
specific PCR primers were designed to amplify eight near-
isogenic lines and Cheyenne with different Glu-B3 alleles
(a, b, c,d, e, f, g, hand i) defined by protein electrophoretic
mobility. The complete coding regions of four Glu-B3 genes
with complete coding sequence were obtained and desig-
nated as GluB3-1, GluB3-2, GluB3-3 and GluB3-4. Ten
allele-specific PCR markers designed from the SNPs present
in the sequenced variants discriminated the Glu-B3 proteins
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of electrophoretic mobility alleles a, b, ¢, d, e, f, g, h and i.
These markers were validated on 161 wheat varieties and
advanced lines with different Glu-B3 alleles, thus confirm-
ing that the markers can be used in marker-assisted breeding
for wheat grain processing quality.

Introduction

Gluten, the most important storage protein in the endo-
sperm of common wheat (Triticum aestivum L.), comprises
glutenins and gliadins (Lindsay and Skerritt 1999; Shewry
and Halford 2002). Glutenins are separated into high-
molecular-weight glutenin subunits (HMW-GS) and low-
molecular-weight glutenin subunits (LMW-GS) according
to their mobilities in sodium-dodecyl-sulphate polyacryl-
amide gel electrophoresis (SDS-PAGE) (Bietz et al. 1975;
Payne and Corfield 1979). These proteins are held together
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by disulphide bonds to form gluten macropolymers (Gras
et al. 2001), contribute to fundamental aspects of dough
quality such as viscoelasticity and extensibility, and con-
sequently influence the end-use products of wheat (Payne
1987; Luo et al. 2001). The identification of specific
HMW-GS and LMW-GS alleles is, therefore, an important
target in improving wheat quality (Gupta et al. 1999;
Eagles et al. 2001; Gale 2005).

Allelic variation of the HMW-GS and its relationship
with processing quality have been studied extensively, and
PCR-based DNA markers are available to discriminate the
important Glu-1 alleles Ax2*, Bx7, Bx7*, Bxl7, ByS, By9
and Dx5 (Ma et al. 2003; Butow et al. 2004; Gale 2005; Lei
et al. 2006). Compared with HMW-GS, the extensive allelic
variations of LMW-GS and their overlapping mobilities
with the more abundant gliadin proteins (Singh and Shep-
herd 1988) make it difficult to discriminate the roles of
individual LMW-GS in wheat quality. Gupta and Shepherd
(1990) carried out an extensive survey of LMW glutenin
proteins in common wheat cultivars by SDS-PAGE and
detected 20 banding patterns. Subsequently, six protein
alleles were found for the Glu-A3 locus (a, b, c, d, e, f), nine
for the Glu-B3 (a, b, ¢, d, e, f, g, h, i) and five for the Glu-D3
(a, b, c, d, e). With respect to effects on dough quality,
various Glu-3 alleles were ranked for R, (maximum
dough resistance, an indicator of dough strength), and the
rankings of alleles were b > d > e > c at the Glu-A3 locus,
i>b=a>e=f=g=h>c at the Glu-B3 and
e >b > a > c > datthe Glu-D3 (Gupta et al. 1989, 1991;
Metakovsky et al. 1990). For dry white Chinese noodle
(DWCN) quality, Glu-A3d and Glu-B3d were considered
slightly better than others (He et al. 2005). Cornish et al.
(1993) found that the composition bbb for Glu-A3, Glu-B3
and Glu-D3, respectively, gave the best extensibility, and
the composition bbc was almost as extensible.

Traditionally, SDS-PAGE (Jackson et al. 1996) or RP-
HPLC (Margiotta et al. 1993) is used to determine allelic
compositions of LMW-GS in wheat. However, difficulties
in resolving the multigene families and the overlapping
fractions of LMW-GS hinder their routine use, particularly
for testing large populations in the early generations of
wheat breeding programs. Therefore, it is important to
develop functional markers to identify different LMW-GS
genes (Andersen and Liibberstedt 2003). Long et al. (2005)
classified 69 LMW-GS genes registered in GenBank into
nine groups and established nine group-specific primer sets
to discriminate the nine groups. Ikeda et al. (2006) con-
structed 12 group-specific markers according to the 12
groups of LMW-GS genes detected in cultivar Norin 61.
Based on the allelic variation of LMW-GS gene at the Glu-
A3 locus, Zhang et al. (2004) developed several PCR
markers to distinguish alleles a, b, c, d, e, f and g. Zhao
et al. (2007a, b) designed several gene-specific markers for
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discriminating haplotypes of Glu-D3 genes. Three markers
were developed for different Glu-B3 haplotypes at the
DNA level (Zhao et al. 2007b). However, these markers do
not discriminate the Glu-B3 alleles a, b, ¢, d, e, f, g, h and i,
and the association between Glu-B3 genes and Glu-B3
protein alleles remained unclear. Here, we report the iso-
lation of LMW-GS genes at the Glu-B3 locus from
common wheat, characterization of the relationship
between the genetic haplotypes and Glu-B3 alleles defined
by protein mobility and development of allele-specific STS
markers for different Glu-B3 alleles. This will benefit
marker-assisted breeding for wheat quality.

Materials and methods
Plant materials

Aroona (Glu-B3b) and its seven near-isogenic lines (NIL),
Aroona-B3a (Glu-B3a), Aroona-B3c (Glu-B3c), Aroona-
B3d (Glu-B3d), Aroona-B3f (Glu-B3f), Aroona-B3g (Glu-
B3g), Aroona-B3h (Glu-B3h) and Aroona-B3i (Glu-B3i),
and Cheyenne (Glu-B3e), with different Glu-B3 alleles
defined by protein mobility, were used to isolate Glu-B3
genes and develop molecular markers (Table 1). Certain
homologous Group 1 Chinese Spring nulli-tetrasomic lines
and five Chinese varieties with the 1BL.1RS translocation
were used to confirm the chromosomal locations of identified
genes. Twenty varieties from our laboratory collection and
141 wheat varieties and advanced lines from the Interna-
tional Maize and Wheat Improvement Centre (CIMMYT)
with different Glu-B3 protein alleles detected by SDS-PAGE
were employed to validate the allele-specific markers.

DNA extraction and PCR amplification

Genomic DNA was extracted from seedlings or seeds using
a modified CTAB procedure (Gale et al. 2001). PCR was
performed using TakaRa Tag DNA polymerase (1.0 unit)
in 20 pl reaction volumes containing approximately 50 ng
of genomic DNA, 1x PCR buffer (1.5 mM MgCl,),
100 uM of each dNTPs and 10 pmoles of each PCR pri-
mer. PCR cycling conditions for gene-specific primers
were 94°C for 5 min followed by 38 cycles at 94°C for
45 s, 56-61°C for 45 s, 72°C for 90 s and a final extension
at 72°C for 8 min. PCR conditions for allele-specific
markers are shown in Table 2.

Development of locus-specific primers
for isolation of Glu-B3 genes

Locus-specific primers for cloning Glu-B3 genes were
developed from the descriptions of Zhang et al. (2003,
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Table 1 Primers used for amplifying Glu-B3 genes

Target gene  Primer  Sequence (5" — 3') Reference gene  Primer location®  Annealing temperature (°C)
GluB3-1 LBIF GCACAAGCATCAAAACCAAGA AB262661 —13° 58
LBIR GACACTTTATTTGTCACCGCTG AB262661 1,129
GluB3-2 LB2F AACCTAACGCATTGTACCAAAAATC AY542898 208 61
LB2R GGCGGGTCACACATGACA AY542898 1,499
GluB3-3 LB3F CATCACAAGCACAAGCATCAA Y14104 472 58
LB3R CATATCCATCGACTAAACAAA AB119006 709
GluB3-4 LB4F CACCCTATACAAGGTTCCAAAAT Y14104 77 60
LB4R TATTTCCATAATTTAAACTAGTTTGT  AB062852 +1,346°

* The location was counted from the first nucleotide of the reference gene fragments

® Location in the new sequence after in silico cloning

Table 2 Allele-specific PCR markers for the discrimination of Glu-B3 alleles defined by protein mobility in common wheat

Marker name  Primer set  Sequence (5 — 3')* Target allele  Fragment size PCR conditions

gluB3a SBIF CACAAGCATCAAAACCAAGA a 1,095 94°C/35 s-55°C/35 s-72°C/90 s
SBIR TGGCACACTAGTGGTGGTC

gluB3b SB2F ATCAGGTGTAAAAGTGATAG b 1,570 94°C/35 s—-56°C/35 s—72°C/90 s
SB2R TGCTACATCGACATATCCA

gluB3c¢ SB3F CAAATGTTGCAGCAGAGA c 472 94°C/35 s—56°C/35 s—72°C/90 s
SB3R CATATCCATCGACTAAACAAA

gluB3d SB4F CACCATGAAGACCTTCCTCA d 662 94°C/35 s—-58°C/35 s—72°C/90 s
SB4R GTTGTTGCAGTAGAACTGGA

gluB3e SBSF GACCTTCCTCATCTTCGCA e 669 94°C/35 s—58°C/50 s-72°C/90 s
SB5R GCAAGACTTTGTGGCATT

gluB3fg SB6F TATAGCTAGTGCAACCTACCAT fg® 812 94°C/35 s—62°C/35 s—72°C/90 s
SB6R CAACTACTCTGCCACAACG

gluB3g SB7F CCAAGAAATACTAGTTAACACTAGTC ¢ 853 94°C/35 s—60°C/35 s—72°C/90 s
SB7R GTTGGGGTTGGGAAACA

gluB3h SBSF CCACCACAACAAACATTAA h 1,022 94°C/35 s—60°C/35 s—72°C/90 s
SB8R GTGGTGGTTCTATACAACGA

gluB3i SBY9F As SBOF i 621 94°C/35 s—58°C/35 s-72°C/90 s
SBO9R TGGTTGTTGCGGTATAATTT

gluB3bef SB10F GCATCAACAACAAATAGTACTAGAA  bef* 750 94°C/35 s—60°C/35 s—72°C/90 s
SB10R GGCGGGTCACACATGACA

4 Mismatched nucleotides are underlined
® Specific for Glu-B3f and g alleles
¢ Specific for Glu-B3b, e and f alleles

2004) and Zhao et al. (2006). Eight reference genes with
complete coding regions, including seven LMW-GS genes
(GenBank accessions AB119006, AB164415, AB164416,
AB262661, Y14104, AB062852 and AJ007746) located on
the short arm of chromosome 1B, and one (AY542898) with
high similarity to Glu-B3 available in GenBank, were used
for primer development (http://www.ncbi.nlm.nih.gov).
The genes AB062852, AB164416 and AB262661 were
selected as probes for the in silico cloning of Glu-B3 genes
according to He et al. (2007).

Based on the alignment of the reference genes, 63
primers were designed and 378 primer combinations
were tested with the NILs and Cheyenne with different
Glu-B3 alleles. Primer screening was conducted as
described by Zhao et al. (2006). Finally, four Glu-B3
genes were isolated by four pairs of primers with
annealing temperatures ranging from 56 to 61°C
(depending on primer set) (Fig. 1). Primer sequences
(5’-3') and their relative positions in reference genes are
shown in Table 1.
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Sequencing of PCR products

PCR fragments with expected sizes were recovered from
agarose gels and cloned into the pGEM-T Easy Vector.
Recombinant clones with expected sizes were sequenced
after a PCR test. To eliminate cloning pitfalls (Masci et al.
1998), the recovered fragments were also sequenced
directly using the corresponding PCR primers. Each PCR
and sequence procedure was repeated three to six times to
avoid any technical errors. All the sequencings were per-
formed by the Sangon Biotechnology (Shanghai, China).
Sequence analysis and characterization were performed
using software DNAMAN (http://www.lynnon.com).

Allele-specific PCR marker design and validation

Allele-specific PCR markers were designed based on the
allelic variants of Glu-B3 following the method of Zhang
et al. (2003). These markers were firstly validated with the
eight Aroona NILs and Cheyenne, and then with 161 wheat
varieties and advanced lines from CIMMYT, Australia and
France with Glu-B3 protein mobility alleles previously
identified in SDS-PAGE by other workers.

Results
Allelic variants at the Glu-B3 locus

Four Glu-B3 genes, designated GluB3-1, GluB3-2, GluB3-
3 and GluB3-4, including 17 allelic variants at the DNA
level were identified at the Glu-B3 locus in the eight NILs
and Cheyenne.

The GluB3-1 gene had five haplotypes or allelic vari-
ants, designated as GluB3-11, GluB3-12, GluB3-13,
GluB3-14 and GluB3-15 (GenBank accessions EU369699,
EU369700, EU369701, EU369702 and EU369703),
amplified with the primer set LBIF/LBIR from Aroona-
B3a (Glu-B3a), Aroona (Glu-B3b), Cheyenne (Glu-B3e),
Aroona-B3f (Glu-B3f) and Aroona-B3g (Glu-B3g),
respectively. Compared with GIuB3-12, four, one and two
triplet-nucleotide (CAA) deletions at positions 319-330,
328-330 and 325-330 in the coding region were found in
GluB3-11, GluB3-13 and GluB3-14 (Appendix Fig. Al in
the Electronic Supplementary Material), leading to four,
one and two glutamine deletions in the glutamine-rich
repetitive domains of the deduced peptides BP1-1, BP1-3
and BP1-4, respectively (Fig. A2). At position 292-354,
GIluB3-15 had a 63-bp deletion, resulting in a 21-amino
acid deletion in the deduced peptide BPI-5. GluB3-11 and
GluB3-15 showed an additional 3-bp (CAA) deletion at
position 556-558, leading to a glutamine deletion. In
addition, GluB3-11 had two SNPs, one with A—G transition
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at position 1,092 and the other at position 1,113 with a C-T
transition; GluB3-13 had a SNP at the position 69 with a
C-A substitution; GluB3-15 showed four SNPs in the
coding region at positions 360, 363, 918 and 1,056,
respectively; the 360th SNP of GIluB3-15 resulted in a
change of phenylalanine to leucine at position 105 in the
N-terminal domain of the deduced peptides, whereas all the
others represented synonymous changes.

The GluB3-2 gene, amplified with primer set LB2F/
LB2R, had three allelic variants at the DNA level, desig-
nated as GluB3-21, GluB3-22 and GluB3-23 (GenBank
accessions EU369704, EU369721 and EU369705),
respectively. GluB3-21 was detected in Aroona-B3a,
GIluB3-22 in genotypes with protein mobility alleles b, e
and f and GIuB3-23 was present in Aroona-B3g. Compared
with GluB3-21, both GluB3-22 and GIluB3-23 had a triplet
nucleotide deletion (CAA) at position 378-380 in the
coding region (Fig. A3), leading to a glutamine deletion in
the repetitive domain of the deduced peptides BP2-2 and
BP2-3, respectively (Fig. A4). In addition, GluB3-22 con-
tained two SNPs at positions 671 and 1,246, and the latter
resulted in an amino acid change from serine to asparagine
in the C-terminal conserved region.

GluB3-3 had four allelic variants, designated as
GluB3-31, GluB3-32, GluB3-33 and GluB3-34 (GenBank
accessions EU369715, EU369716, EU369717 and
EU369718, respectively), amplified with the primer set
LB3F/LB3R from Aroona-B3c, Aroona-B3d, Aroona-B3h
and Aroona-B3i, respectively. Compared with GluB3-31,
four SNPs were detected at positions 197, 505, 836 and
1,030 in the coding region of both GluB3-32 and GluB3-
34 (Fig. A5). GluB3-34 and GluB3-32 contained an
additional SNP at positions 662 and 692, respectively.
GluB3-33 had SNPs at positions 186, 505, 836 and 1,180
and a double-base substitution at positions 1,030 and
1,031. In addition, GluB3-34 showed a 3-bp (CAA)
deletion at position 603-605 and a triplet code (CAA)
insertion between positions 651 and 652, leading to a
glutamine deletion and insertion in the deduced peptide
BP3-4, respectively (Fig. A6).

GluB3-4 gene was amplified with the primer set LB4F/
LB4R in all the eight NILs and Cheyenne, and had five
allelic variants at the DNA level, designated as GluB3-41,
GluB3-42, GluB3-43, GluB3-44 and GluB3-45 (GenBank
accessions EU369724, EU369719, EU369727, EU369729
and EU369720, respectively). GluB3-41 was detected in
NILs with protein mobility alleles a, ¢ and d, GluB3-42 in
Aroona-B3b, GluB3-43 in Cheyenne and Aroona-B3h,
GluB3-44 in Aroona-B3f and Aroona-B3g and GluB3-45 in
Aroona-B3i. Compared with GluB3-41, five, four and two
SNPs were present in the upstream noncoding region of
GluB3-42, GluB3-43 and GluB3-45, respectively
(Fig. A7). In the coding region, a SNP with a C-T base
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transition was found at position 669 in GluB3-45 and at
position 714 in GluB3-42 and GluB3-43, respectively,
leading to an amino acid substitution from serine to leucine
in the deduced proteins of BP4-5, BP4-2 and BP4-3
(Fig. A8). GluB3-42, GluB3-43, GluB3-44 and GIluB3-45
had a common SNP (A-G) at position 731, leading to a
change from isoleucine to valine in the deduced glutamine-
rich repetitive domain. At the position 770-790, a 21-bp
deletion was present in GluB3-45, resulting in a 7-amino
acid (QFPQQQQ) deletion at the protein level. In addition,
GluB3-45 had SNPs at positions 863, 885, 890 and 894,
and GluB3-42 and GluB3-43 had a SNP at position 894,
respectively. At positions 1,056 and 1,135, two SNPs were
detected in GluB3-44, and the former led to an amino acid
mutation from methionine to threonine, whereas the latter
was a synonymous mutation in the deduced C-terminal
cysteine-rich domain.

Characterization of the GluB3-1, GluB3-2, GluB3-3
and GluB3-4 genes and their deduced
amino acid sequences

The 17 identified allelic variants of the four Glu-B3 genes
contain a complete coding sequence, including start codon,
termination sequence with double-stop codons TAATAA in
GluB3-2 and GluB3-3 or TGATAA in GluB3-1 and GluB3-
4. GluB3-1, GluB3-2 and GluB3-4 had the AATAAA pol-
yadenylation signals in the 3’ flanking region. GluB3-4 was
longer than the other three genes at the 5’ flanking region,
comprising also the endosperm boxes, CAAT box and
double TATA box. Sequence alignments indicated that the
homologies of the DNA sequences were 87.4-94.4%
among the four gene sequences, and 99.3-99.9% among
different allelic variants within each of the four gene
sequences (data not shown). At the protein level, the
homologies of deduced amino acid sequences of the four
Glu-B3 genes (designated BP1, BP2, BP3 and BP4) were
82.4-93.0% among the four genes and 98.3—100.0% (BP4-2
was the same as BP4-3) among different allelic variants
within each of the four genes (data not shown).

All the deduced amino acid sequences of the four genes
contained a single open reading frame (ORF) encoding a
highly conserved signal peptide of 20 amino acids and a
short N-terminal conserved region with 13 amino acids,
followed by a repetitive domain rich in glutamine and a
C-terminal conserved domain. The C domains had three
subregions typical of LMW glutenin subunit proteins
(Cassidy et al. 1998). The deduced peptides BP1, BP2 and
BP3, encoded by GluB3-1, GluB3-2 and GluB3-3, respec-
tively, were characterized with the amino acids MENSHIP
in the N-terminal domain, and their deduced molecular
weight ranged from ~39.0 kDa (BP1-5) to ~44.6 kDa
(BP3-1). BP4, corresponding to GluB3-4, started with

METSHIP in the N-terminal domain with molecular
weights of ~39.0 kDa (BP4-5) or ~39.8 kDa (BP4-1,
BP4-2, BP4-3 and BP4-4). The deduced amino acid
sequences also showed typical eight-cysteine (Cys) resi-
dues, and all can be classified into type II based on the
distribution of the cysteine residues (D’Ovidio and Masci
2004).

Relationship between Glu-B3 gene haplotypes
and Glu-B3 protein mobility alleles

Each of the Glu-B3 protein mobility alleles contained
different haplotypes at the DNA level (Table 3). Aroona-
B3a possesses the haplotypes GluB3-11, GIuB3-21 and
GluB3-41; Aroona (Glu-B3b) has allelic variants GluB3-
12, GluB3-22 and GluB3-42; Aroona-B3c contains GluB3-
31 and GluB3-41; Aroona-B3d has GluB3-32 and GluB3-
41; Cheyenne (Glu-B3e) contains GluB3-13, GluB3-22 and
GluB3-43; Aroona-B3f possesses GluB3-14, GluB3-22 and
GluB3-44; Aroona-B3g contains GluB3-15, GluB3-23 and
GluB3-44; Aroona-B3h has GluB3-33 and GluB3-43;
Aroona-B3i contains GluB3-34 and GluB3-45.

Gene-specific PCR markers for Glu-B3 alleles
defined by protein mobility

Based on the sequence alignment of allelic variants among
each of the Glu-B3 genes, ten primer sets were developed
to amplify different Glu-B3 alleles based on the detected
SNPs (Table 2). In the eight NILs and Cheyenne, primer
set SBIF/SBIR amplified only a 1,095-bp PCR fragment in
Aroona-B3a with the Glu-B3a allele (Fig. 2a). Primer set
SB2F/SB2R was designed for the Glu-B3b allele in Aroona
with a 1,549-bp PCR fragment (Fig. 2b). For the Glu-B3c
allele in Aroona-B3c, SB3F/SB3R generated a unique 472-
bp PCR product (Fig. 2¢). Primer set SB4F/SB4R was used
to identify the Glu-B3d allele in Aroona-B3d, producing a
662-bp band (Fig. 2d). In Cheyenne with the Glu-B3e
allele, a specific 669-bp PCR product was generated with
the primer set SB5F/SB5R (Fig. 2e). Primer set SB7F/SB7R
was used to detect the Glu-B3g allele in Aroona-B3g with
an 853-bp PCR fragment (Fig. 2f). To discriminate the
Glu-B3h allele from others, primer set SB8F/SBSR was
developed; it generated a 1,022-bp band in Aroona-B3h
(Fig. 2g). Primer set SB9F/SBYR uniquely amplified a 621-
bp PCR fragment in Aroona-B3i with the Glu-B3i allele
(Fig. 2h). Since it was difficult to design a specific primer
set for Glu-B3f, primer set SB6F/SB6R was developed to
amplify Glu-B3f and Glu-B3g in Aroona-B3f and Aroona-
B3g, respectively (Fig. 2i). In combination with SB7F/
SB7R, this primer set can be used to identify Glu-B3f. In
addition, primer set SBI0OF/SBI10R was designed to amplify
Glu-B3b, e and f in Aroona, Cheyenne and Aroona-B3f,
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Table 3 Relationship between Glu-B3 protein mobility alleles and Glu-B3 haplotypes

NIL/variety

8

Springer

a
b
c

Aroona-B3d d

Aroona-B3a
Cheyenne

Aroona

Aroona-B3c

e
f

Aroona-B3g g

Aroona-B3f

(EU369704), GluB3-22 (EU369721), GluB3-23 (EU369705), GluB3-31 (EU369715), GluB3-32 (EU369716), GluB3-33 (EU369717), GluB3-34 (EU369718), GluB3-41 (EU369724), GluB3-42

(EU369719), GluB3-43 (EU369727), GluB3-44 (EU369729) and GluB3-45 (EU369720)

Sequences have been submitted to GenBank, viz. GluB3-11 (EU369699), GluB3-12 (EU369700), GluB3-13 (EU369701), GluB3-14 (EU369702), GluB3-15 (EU369703), GluB3-21
? Glu-B3 alleles defined by protein electrophoretic mobility in SDS-PAGE

b “4” means the gene haplotype is present in the corresponding NIL or variety

Aroona-B3h h
Aroona-B3i

respectively (Fig. 2j), and this set can be used to verify the
former primer sets.

Validation of Glu-B3 allele-specific markers

Eight NILs and Cheyenne used in cloning the Glu-B3
genes, and additional 161 wheat varieties and advanced
lines were used to validate the ten Glu-B3 allele-specific
markers (Table 4). The results were in accordance with
those detected by SDS-PAGE except for five genotypes
(entries 28, 68, 121, 152 and 165). In particular, the entry
121, which was detected to possess Glu-B3j or Glu-B3g
allele in SDS-PAGE (Fig. 3), was determined to have Glu-
B3g allele by the markers gluB3fg and gluB3g. Thirty-two
genotypes with the 1BL.IRS translocation showed no
target PCR product in the test with molecular markers,
indicating the presence of the protein allele Glu-B3j.

Discussion

The LMW-GS proteins are critical components of the
gluten complex of wheat and are encoded by a highly
variable gene family. Because of their importance in wheat
flour quality and difficulties in discriminating them by
traditional SDS-PAGE techniques, it was necessary to
develop allele-specific markers to identify different LMW-
GS alleles (Gupta et al. 1999; Gale 2005; Bagge et al.
2007). Zhang et al. (2004) reported seven Glu-A3 markers
to discriminate different Glu-A3 alleles. Several STS
markers were also developed for different Glu-D3 gene
haplotypes (Zhao et al. 2007a, b). In this study, ten allele-
specific primer sets were successfully designed for the nine
Glu-B3 alleles defined by protein mobility. The ten
markers were validated with eight Aroona NILs and
Cheyenne, and 161 wheat varieties and advanced lines
from CIMMYT, Australia and France.

The GluB3-1 and GluB3-2 genes were present in vari-
eties with protein based alleles a, b, e, f and g, and the
GluB3-3 allele was present in those with ¢, d, h and i only.
As the three genes were isolated by the gene-specific pri-
mer sets LBIF/LBIR, LB2F/LB2R and LB3F/LB3R,
respectively, we also designed new primer sets from within
the coding regions of these genes to perform PCR, and
confirmed the distinctions between the genes. In a previous
study, Zhao et al. (2007b) found that the primer set TI3F4/
T13R3 was null in varieties with Glu-B3c, d, h and i. The
GluB3-4 genes were present in varieties with the protein
alleles a, b, c, d, f, g, h, and i, and thus the haplotypes of
gene variants present in different varieties share common
genes as well as carrying unique variants.

Currently, more than 200 LMW-GS genes have been
registered in GenBank. About 30 sequences were located
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a LBIF-LBIR LB4F-LB4R LB2F-LB2R

Fig. 1 Electrophoresis of PCR products of four gene-specific primer
sets on agarose gels. a GluB3-1, GluB3-4 and GluB3-2; 1 Chinese
Spring, 2 N1ATI1B, 3 N1BT1A, 4 N1BTID, 5 NIDT1B. b GluB3-3;
1, 2, 5-7 1BL.IRS lines, 3 Aroona-B3c, 4 Aroona-B3d, 8 Aroona-

B3h, 9 Aroona-B3i, 70 N1ATIB, 77 NIBTIA, 12 NIBTID, 13
NIDTIB. M DNA Ladder 2000 (100, 250, 500, 750, 1,000 and
2,000 bp)

Fig. 2 Electrophoresis of PCR
products amplified from the
eight NILs and Cheyenne on
agarose gels using ten allele-
specific markers: a gluB3a,

b gluB3b, ¢ gluB3c, d gluB3d,
e gluB3e, f gluB3g, g gluB3h,
h gluB3i, i gluB3fg, j gluB3bef.
Materials used as PCR
templates were as follows:

1 Aroona-B3a (a), 2 Aroona-
B3b (b), 3 Aroona-B3c (c¢),

4 Aroona-B3d (d), 5 Cheyenne
(e), 6 Aroona-B3f (f), 7 Aroona-
B3g (g), 8 Aroona-B3h (h),

9 Aroona-B3i (i). PCR product
sizes and conditions are as listed
in Table 2. M DNA Ladder
2000 (100, 250, 500, 750, 1,000
and 2,000 bp)

on chromosome 1B and 13 of them had complete coding
sequences (Van Campenhout et al. 1995; D’Ovidio et al.
1997, 1999; Masci et al. 1998; Ikeda et al. 2002; Maruy-
ama-Funatsuki et al. 2005; Huang and Cloutier 2008). In
the present study, four Glu-B3 genes were identified,
including the complete coding sequences of 17 allelic
variants. Sequence alignments indicated that GluB3-1 was
99.1-99.7% identical in sequence to AB262661 and
EU189088. In particular, GluB3-11 had only three SNP
differences from AB262661 and EU189088 in the aligned
domain. The three allelic variants of GluB3-2 showed

3 4 5
1549 bp

669 bp

lower identities to the genes in GenBank, with the highest
similarity of 93.4% between GluB3-23 and AB164415,
indicating that GluB3-2 might be a new LMW-GS gene
identified at the Glu-B3 locus. GluB3-3 shared 99.5-
100.0% identity with AB164415, and GluB3-33 had the
same sequence as AB164415. GluB3-4 shared 99.1-99.9%
of identities with AB062852 and X84960, and GluB3-41
had only 1 bp difference from X84960 at position 1,303 in
the coding region.

Based on the first N-terminal amino acid of the mature
protein, LMW-GS were divided into three types: LMW-m,

@ Springer
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and isoleucine, respectively (Lew et al. 1992). In this study,
BP4 started with the amino acids METSHIP in the N-ter-
minal domain and could therefore be classified as a LMW-
m type. The LMW-m type was found to be the main type
by gene sequencing, but the LMW-s type was the pre-
dominant type found by N-terminal sequencing of proteins
(Lew et al. 1992; Masci et al. 2002). It was suggested that
the LMW-s type might originate from post-translational
cleavage by an asparaginyl peptidase (Masci et al. 1998;
Dupont et al. 2004). Consequently, BP1, BP2 and BP3
starting with MENSHIP in the N-terminal domain could be
classified as LMW-s types based on asparagine at the third
position (Ikeda et al. 2002, 2006). Previous studies also
indicated that such classification of LMW-m and LMW-s
type genes might be highly tenuous, as the LMW-m and
LMW-s type genes have high homologies in wheat and its
relatives (Jiang et al. 2008; Huang and Cloutier 2008).
The overall results of this study showed that the protein
mobility alleles determined by SDS-PAGE were consistent
with the screening results obtained using the allele-specific
markers in 165 of 170 genotypes. The inconsistent results
for five genotypes were attributed to the low discrimination
power of SDS-PAGE in distinguishing some LMW-GS and
the impurity of some materials. The ten Glu-B3 allele-
specific markers can be used in the marker-assisted
breeding aimed at the improvement of wheat quality.
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