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Abstract R2R3-MYB transcription factors of plants are
involved in the regulation of trichome length and density.
Several of them are diVerentially expressed during initiation
and elongation of cotton Wbers. We report sequence phyloge-
nomic characterization of the six MYB genes, their chromo-
somal localization, and linkage mapping via SNP marker in
AD-genome cotton (2n = 52). Phylogenetic grouping and
comparison to At- and Dt-genome putative ancestral dip-
loid species of allotetraploid cotton facilitated diVerentia-
tion between genome-speciWc polymorphisms (GSPs) and
marker-suitable locus-speciWc polymorphisms (LSPs). The

SNP frequency averaged one per 77 bases overall, and one
per 106 and 30 bases in coding and non-coding regions,
respectively. SNP-based multivariate relationships conformed
to independent evolution of the six MYB homoeologous loci
in the four tetraploid species. Nucleotide diversity analysis
indicated that the six MYB loci evolved more quickly in the
Dt- than At-genome. The greater variation in the Dt-D
genome comparisons than that in At-A genome comparisons
showed no signiWcant bias among synonymous substitution,
non-synonymous substitution, and nucleotide change in non-
coding regions. SNPs were concordantly mapped by deletion
analysis and linkage mapping, which conWrmed their value as
candidate gene markers and indicated the reliability of the
SNP discovery strategy in tetraploid cotton species. We con-
sider that these SNPs may be useful for genetic dissection of
economically important Wber and yield traits because of the
role of these genes in Wber development.

Introduction

Cotton (Gossypium spp.) is the world’s most important
natural textile Wber warranting increased exploration of
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Wber-related traits through various molecular genetic
approaches. Currently, two types of molecular markers are
primarily used in molecular mapping of cotton genome.
One is genomic markers which primarily target non-coding
regions such as RFLP (Reinisch et al. 1994), RAPD (Kohel
et al. 2001), AFLP (Mei et al. 2004), STS (Rong et al.
2004), and SSR (Zhang et al. 2002; Frelichowski et al.
2006). The other is candidate gene markers represented by
EST–SSR (Chee et al. 2004; Park et al. 2005; Guo et al.
2007), cDNA probe-based STS or RFLP markers (Rong
et al. 2004), and SNP i.e. single nucleotide polymorphism
(An et al. 2007). Development of candidate gene markers
has received much attention in recent years because of the
possible association of functional genes with complex
traits. However, the low polymorphism level of cDNA
probe-based STS or RFLP markers hampered candidate
gene mapping (Rong et al. 2004). SNPs have recently been
used as the choice for candidate gene markers in many
plant species and are reported to be the most abundant
molecular markers (Cho et al. 1999; Ching et al. 2002;
Zhang et al. 2003; Zhu et al. 2003). However, SNP devel-
opment in cotton is impeded by its allotetraploid nature,
high repetitive DNA content, and inadequate genome
sequence information.

The candidate gene approach is widely accepted as a
strategy for identiWcation of loci inXuencing complex and
economically important traits (Faris et al. 1999; Giroux
et al. 2000; PXieger et al. 2001; Beecher et al. 2002). Candi-
date gene markers derived from resistance genes or defer-
ence response genes were placed on regions containing
major resistance QTL in wheat (Faris et al. 1999), pepper
(PXieger et al. 1999), and rice (Wang et al. 2001). The stor-
age protein genes for puroindoline in wheat (Giroux et al.
2000) and hordoindolines in barley (Beecher et al. 2002)
were both implicated to play a role in grain hardiness and
texture by QTL analysis. Markers developed from genes
related to carbohydrate and nitrogen metabolism were found
to be associated with sugar content and yield in sugar beet
(Schneider et al. 2002). Wilson et al. (2004) detected signiW-
cant association between candidate genes involved in kernel
starch biosynthesis and traits for maize kernel composition
and starch quality. In cotton, Rong et al. (2007) also found
evidence of a general association between concentrations of
candidate genes and cotton Wber-related QTL.

R2R3-MYB transcription factors, characterized by two
imperfect repeats (R2 and R3) in the DNA-binding domain,
are one of the largest regulatory gene families in plants
(Riechmann et al. 2000). Some of them were shown to con-
trol trichome initiation, expansion, branching, and matura-
tion in Arabidopsis (Oppenheimer et al. 1991; Glover et al.
1998; Szymanski et al. 2000; Schiefelbein 2003). Cotton
Wbers are elongated trichomes derived from ovule epider-
mis. Previous reports suggested a similarity in genetic con-

trol of MYB transcription factors in Arabidopsis trichomes
and cotton Wbers (Suo et al. 2003; Wang et al. 2004;
Humphries et al. 2005; Perez-Rodriguez et al. 2005; Wu
et al. 2006). Expression analysis demonstrated that six
R2R3-MYB transcription factors were expressed in Wber
cells but regulated diVerentially during Wber initiation and
expansion (Loguercio et al. 1999; Cedroni et al. 2003). In
addition, several other MYB genes have been indicated to
play an important role in cotton Wber initiation (Suo et al.
2003; Hsu et al. 2005; Lee et al. 2006; Yang et al. 2006).

Here we report the sequence phylogenomic characteriza-
tion of the six MYB genes in selected tetraploid and diploid
cotton species, their chromosomal locations and molecular
linkage map using candidate gene derived SNP markers.
The chromosomal locations and genetic linkage mapping of
SNP markers with framework SSR markers will improve
the resolution of the cotton comparative map. SNP markers
derived from MYB genes in this study will be useful as
diagnostic markers for exploration of the roles of these can-
didate genes in complex Wber traits.

Materials and methods

Plant materials

HS46 and MARCABUCAG8US-1-88 (MAR), two G.
hirsutum (AD1) lines of diverse agronomic and Wber prop-
erties, and three lines of other tetraploid species including
G. barbadense L. (AD2, accession 3-79), G. tomentosum
Nuttall ex Seemann (AD3), and G. mustelinum Miers ex
Watt (AD4) were used for PCR ampliWcation, cloning, and
sequencing of the six MYB genes. Chromosomal assign-
ment of SNP markers was accomplished using three diVer-
ent sets of hypoaneuploid F1 stocks developed from an
interspeciWc cross between TM-1 (genetic standard for G.
hirsutum, AD1) and one of the three species, 3-79, G.
tomentosum or G. mustelinum, together with one set of eup-
loid interspeciWc backcrossed chromosome substitution
lines (CS-B, BC5S1) of 3-79 in TM-1. Hypoaneuploid F1

cytogenetic stocks between TM-1 and 3-79 consisted of 10
primary monosomic and 28 monotelodisomic lines;
whereas, hypoaneuploid F1 lines between TM-1 and G.
tomentosum included 11 primary monosomic and 27
monotelodisomic lines (Liu et al. 2000; Saha et al. 2006b).
The new hypoaneuploid F1 chromosome substitution stocks
between TM-1 and G. mustelinum (unpublished informa-
tion) were also used for deletion analysis. Euploid CS-B
stocks contain 12 diVerent chromosome and 8 chromosome
arm substituted from 3-79 in TM-1 background (Stelly
et al. 2005). Fresh leaves were collected from individual
plant, frozen in liquid nitrogen, and then subjected to geno-
mic DNA extractions by a Qiagen DNeasy plant maxi kit
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(Qiagen Inc., Valencia, CA, USA). A set of 186 recombi-
nant inbred lines (RILs) generated from an interspeciWc
cross between TM-1 and 3-79 were used as a mapping pop-
ulation for constructing molecular linkage map of SNP
markers speciWc to the MYB genes and the selected frame-
work SSR markers in cotton (Park et al. 2005; Frelichowski
et al. 2006).

PCR ampliWcation, cloning, and sequencing

Gene-speciWc PCR primers of MYB1 (COT105 and
COT106), MYB2 (Myb2F and COT108), MYB3 (Myb3F
and COT110), MYB4 D-genome locus (COT111 and
COT112), and MYB6 (Myb6F and COT116) were adopted
from Loguercio et al. (1999). Gene-speciWc PCR primers of
MYB4 A-genome locus (Myb4A_F and Myb4A_R) and
MYB5 (Myb5_F and Myb5_R) were designed based on
GenBank deposited sequences generated from the previous
works by Loguercio et al. (1999) and Cedroni et al. (2003)
(Table 1). Pfu polymerase (Stratagene, La Jolla, CA, USA)
was used for PCR ampliWcation following the protocol
described elsewhere (An et al. 2007). The PCR products
were separated on a 1% (w/v) agarose gel and puriWed
using QIAEX II gel extraction kit (Qiagen Inc, Valencia,
CA, USA). The puriWed products were ligated into TOPO
TA cloning vector and transformed into TOPO10 compe-
tent E. coli cells (Invitrogen, Carlsbad, CA, USA). Both
strands of the recombinant plasmid were sequenced using
an ABI 3730XL automated sequencer with ABI Prism Big-
Dye Terminator Cycle Sequencing Kit v3.1 (Applied Bio-
systems, Foster City, CA, USA). In order to avoid possible
complications from PCR recombination (Cronn et al. 2002)
and to identify the duplicated copies in the genome, we
picked up multiple clones (12 clones) for sequencing of
each amplicon and considered one identical sequence from
at least three clones.

SNP characterization and phylogenetic analysis

Six MYB gene sequences from the Wve allotetraploid cotton
lines together with GenBank deposited sequences from
TM-1 and living models of two allotetraploid ancestral
genomes: G. herbaceum L. (A-genome; accession A1-73)
and G. raimondii Ulbrich (D-genome; “Galaus”) were used
for SNP characterization. The GenBank sequences of Gos-
sypoides kirkii (Masters) J.B. Hutchinson were used as an
outgroup to cotton genus (Malvaceae) in phylogenetic anal-
yses (Cedroni et al. 2003). DNASTAR (DNASTAR Inc.,
Madison, WI, USA) and Clustalx (Thompson et al. 1997)
were used for vector-trimming and sequence alignment.
Before SNP characterization, diVerentiation between para-
logous and homoeologous loci was performed by phyloge-
netic grouping and comparison of sequences from the two

diploid species (An et al. 2007). Phylogenetic analyses
were performed by maximum parsimony (MP) method
using MEGA 3.1 (Kumar et al. 2004). To determine the
conWdence levels for each tree, an MP bootstrap analysis
with 100 replicates was conducted. DnaSP 4.0 software
was used to identify SNP by comparative analysis of
aligned sequences from diVerent genotypes at a putative
locus (Rozas et al. 2003). Nucleotide diversities (�), haplo-
type number (H) and diversity (Hd), rate of silent (Ksil) and
non-synonymous (Ka) substitutions of pairwise compari-
sons were also calculated by DnaSP 4.0 software (Tajima
1983; Nei 1987; Rozas et al. 2003).

Chromosomal assignment and linkage mapping

In order to minimize the potential problems associated with
homoeologous sequences in SNP genotyping, genome-spe-
ciWc (or locus-speciWc) PCR primers were designed accord-
ing to sequence diVerences between two subgenomes in
tetraploid cotton when applicable (Table 1). Interspecies
SNP primers were designed based on a single nucleotide
diVerence among sequences at a putative locus (each clade
or group in the phylogram of individual MYB gene)
between the genotypes of TM-1 and 3-79, G. tomentosum
or G. mustelinum. The primer was designed to anneal just
upstream or downstream of the SNP site as the forward or
reverse primer, respectively, so that the polymorphism
could be detected by one base extension technology with an
ABI Prism SNaPshotTM multiplex kit (Applied Biosystems,
Foster City, CA, USA). All the primers used for genotyping
are summarized in Table 1. The deletion analysis method
frequently used for molecular marker chromosomal assign-
ment in cotton (Liu et al. 2000; An et al. 2007) was
employed to assign chromosomal locations for six MYB
genes using the four sets of cytogenetic stocks mentioned in
the plant materials. A total of 90 SSR markers, which are
polymorphic between TM-1 and 3-79 and span the cotton
genome, were selected based on the information available
in cotton microsatellite database (CMD, http://www.cotton-
marker.org/; Blenda et al. 2006), and used as anchored
markers for linkage mapping of sections of selected chro-
mosomes with SNP markers. Chromosomal assignment of
the constructed linkage groups was achieved by deletion
analysis, comparison to the allele size with CMD panel,
published integrated molecular maps (Lacape et al. 2005;
Park et al. 2005; Frelichowski et al. 2006; Guo et al. 2007),
and the assignment of cotton linkage maps to chromosomes
(Wang et al. 2006b). The SSR markers used in this study
were Xuorescent labeled by Sigma Genosys (The Wood-
lands, TX, USA) or Applied Biosystems (Foster City, CA,
USA). PCR reactions and thermal cycle protocols for geno-
typing the RILs population were conducted according to
the method of Gutierrez et al. (2002). One polymorphic
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SNP marker between TM-1 and 3-79 was selected, if avail-
able, from each gene for linkage mapping. The procedures
of SNP marker genotyping described in An et al. (2007)
were employed for cytogenetic stock and RIL population
genotyping. An automated capillary electrophoresis system
ABI3100 Genetic Analyzer with GeneMapper software 4.0
(Applied Biosystems, Foster City, CA, USA) was used to
analyze both PCR-ampliWed DNA fragments of SSR mark-
ers and the single nucleotide extension of SNP markers.
The genotyping output data of both SNP and SSR markers
were coded for linkage analysis using JoinMap® 4 (Van
Ooijen 2006). The Wt of marker segregation to the 1:1 ratio
expected was evaluated according to Chi-square tests.
Recombination frequencies were converted into map dis-
tances (centiMorgan, cM) using the Kosambi mapping
function (Kosambi 1944) and linkage groups were deter-
mined at LOD scores ¸6.

Results

SNP characterization and haplotype analyses 
of six MYB genes

In vitro SNP discovery through amplicon cloning and
sequencing was accomplished by homoeologous diVerenti-
ation and gene speciWc fragment ampliWcation in cotton
(Supplementary Fig. 1; Table 2). In this study, no dupli-

cated or heterogeneous loci were found within each subge-
nome. SNPs and indels were detected from 8,301 bp of
aligned sequences (7,084 and 1,217 bp of coding and non-
coding regions, respectively). From the eight cotton geno-
types, 108 SNPs were detected from Gossypium species
(Table 2), giving an average SNP frequency of one SNP
every 77 bases. Results showed the presence of one SNP
per 106 bp in the coding regions and one SNP per 30 bp in
the non-coding regions (Table 2). The SNP distribution
varied among the six examined genes. The highest rate of
SNP occurrence was observed in MYB6 (one SNP every
34 bp) and the lowest rate of SNP frequency was present in
MYB3 (one SNP every 260 bp). Transitions (“A/G” or “C/
T”) were the most common cause of sequences variation in
the selected cotton genotypes (49%) compared to transver-
sions (“A/T”, “G/C”, “A/C” or “G/T”, 26%) and indels
(25%). In MYB6, two nucleotide (“C” and “T”) substitu-
tions were observed in three indel positions (A-genome
sites 101 and 111, D-genome site 99). A signiWcant bias to
“T” insertion/deletion was detected in the overall sequences
(59.30%). In coding regions of the six MYB genes, 41 out
of 67 cSNPs (SNPs in coding region) sites were predicted
to result in amino acid changes (Table 2). The number of
haplotypes deWned by sequence polymorphism ranged from
two to seven among the seven selected cotton genotypes,
and haplotype diversity varied from 0.286 § 0.196 to
1.000 § 0.076 among six MYB genes (Table 2 and Supple-
mentary Tables 1–12).

Table 2 SNP characterization of the six MYB genes in selected cotton genotypes

a Sites with alignment gaps were not considered for haplotypte analysis; H haplotype number; Hd haplotype diversity
b At positions 101 and 111 of the aligned sequences, two kinds of nucleotide substitution (“C” and “T”) occur at the indel positions. Here, we
considered them as “C’”nucleotide indel in data analysis
c At position 99 of the aligned sequences, two kinds of nucleotide substitution (“C” and “T”) occurs at the indel position. Here, we also considered
it as “C” nucleotide indel in data analysis

Gene Genome Haplotypesa Transitions Transversions Indels Coding region Total

H Hd A/G T/C A/T G/C A/C G/T A C G T Length 
(bp) 

SNP number 
(non-synonymous 
changes)

Length 
(bp) 

SNP 
number

MYB1 A 5 0.857 § 0.137 2 2 1 0 0 1 0 0 0 0 492 6 (4) 492 6

D 4 0.714 § 0.181 2 2 0 0 0 0 0 0 0 0 492 4 (3) 492 4

MYB2 A 4 0.714 § 0.181 1 2 1 1 1 1 0 0 0 2 473 5 (3) 551 9

D 4 0.714 § 0.181 1 3 1 0 0 0 0 0 0 1 473 5 (4) 550 6

MYB3 A 2 0.286 § 0.196 0 0 0 1 0 0 0 0 0 0 537 1 (0) 778 1

D 4 0.714 § 0.181 3 1 0 1 0 0 0 0 0 0 537 2 (1) 779 5

MYB4 A 5 0.857 § 0.137 1 3 2 2 2 2 0 0 0 0 842 12 (8) 853 12

D 5 0.857 § 0.137 2 3 2 0 1 0 0 0 0 0 842 8 (5) 853 8

MYB5 A 3 0.714 § 0.127 1 0 1 0 0 0 0 0 0 0 571 2 (1) 591 2

D 2 0.286 § 0.196 1 2 0 0 0 0 0 0 0 0 571 3 (0) 591 3

MYB6 A 5 0.857 § 0.137 2 6 1 2 0 0 0 4b 1 5 627 7 (4) 882 21

D 7 1.000 § 0.076 6 7 2 0 2 0 1 4c 1 8 627 12 (8) 889 31
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Phylogenomic sequence characterization

SNP-based multivariate relationships suggested independent
evolution of the six MYB homoeologous loci in the four tet-
raploid species. Parsimony analyses revealed that sequences
(Supplementary Figs. 1, 2) fell into two clades, each con-
taining one of the two homoeologous loci from the allotetra-
ploid cotton lines and the corresponding copy from the
progenitor diploid genomes. Pairwise comparisons of the
nucleotide diversity (�) of the six MYB genes in both A- and
D-genomes are summarized in Table 3. The � value mea-
sures the average number of nucleotide diVerences per site
between two sequences (Nei 1987). The lowest nucleotide
diversities occurred among the three G. hirsutum lines in
both A- and D-genomes. Results from both A- and D-
genomes showed the highest nucleotide diversities were
between G. mustelinum and the extant relatives of the ances-
tral genome donors. Nucleotide diversities of MYB genes
were higher in the D–Dt comparisons than for the A–At
comparison of the allotetraploid cotton species, indicating
that G. herbaceum may be a closer ancestor of the At-
genome donor than G. raimondii is of the Dt-genome donor.

To further explore the nature of substitutions contribut-
ing to overall divergence in cotton, pairwise comparisons
among orthologous copies for the six MYB genes of both A-
and D-genomes are tabulated separately for non-synony-
mous substitution (Ka), silent substitution (Ksil), and the
Ka:Ksil ratio (Table 4). Ka and Ksil values in the D–Dt com-
parisons were higher than the corresponding values in the
A–At comparisons, except for the comparison between
MAR (G. hirsutum) and its two genome living models of
Ksil value. Contributing to the relatively level of D-Dt
diVerentiation were greater amino acid substitutions, nucle-
otide changes in non-coding regions, and synonymous
changes in the coding regions. Although these predictions
were based on the genomic sequence, they may allow spec-
ulation of evolutionary constraints placed on amino acid
substitutions without knowing the exact eVect of the SNPs
on predicted codons. Nucleotide diversities among the three

G. hirsutum lines in the Dt-genome were higher than those
in the At-genome, indicating six MYB genes loci in Upland
cotton Dt-genome exhibited a faster evolutionary rate than
the At-genome (Table 3). Most of the substitution ratios
(Ka:Ksil) of pairwise comparisons were less than 1, indicat-
ing the possibility of a high level of evolutionary constraint
placed on amino acid substitution in the six MYB genes
(Table 4).

Chromosome localization of six MYB genes

Hypoaneuploid stocks, developed from three interspeciWc
crosses between TM-1 (G. hirsutum) and 3-79 (G. barba-
dense), G. tomentosum or G. mustelinum, and one set of
euploid interspeciWc backcrossed chromosome substitution
lines (CS-B, BC5S1) of 3-79 in TM-1 were used for chro-
mosomal assignment of SNP markers by deletion analysis
(An et al. 2007). Thirteen diVerent SNP sites between the
common parent TM-1 and 3-79, G. mustelinum or G.
tomentosum, respectively, were selected for SNP primer
design in six MYB genes (Table 1). We conWrmed our iden-
tiWcation of chromosomal locations using deletion lines
from diVerent sources. Due to the conserved character of
the homoeologous sequences in the genes MYB3 and
MYB5, no suitable genome-speciWc PCR primers could be
designed. However, chromosomal assignment of genome-
speciWc alleles was still possible by euploid CS-B or hypo-
aneuploid F1 stocks (Table 1). Moreover, no SNP marker
could be designed from the Dt-genome of gene MYB2.
Therefore, only the At-genome location was considered for
chromosomal assignment by either deletion analysis or
linkage mapping. SNP markers used for chromosomal
assignment and the according genotyping results are listed
in Table 1. Deletion analyses of the six genes were per-
formed using all the available cytogenetic stocks and the
results are summarized in Table 5. We detected chromo-
somal locations of the gene MYB4 on the long arm of two
homoeologous chromosomes: 7 and 16. Only one subge-
nomic location of gene MYB1, MYB2, MYB5, and MYB6

Table 3 Pairwise comparison matrix of the eight cotton lines showing the nucleotide diversity (� value, £10¡2) in A- and D-genomesa

a The numbers above and below the diagonal line represent sequence comparisons within D- and A-genomes, respectively
b Taxa G. herbaceum and G. raimondii are designated by their genome designations, A1 and D5, respectively

Genotypeb A1 TM-1 HS46 MAR 3–79 G. mustelinum G.tomentosum

D5 – 0.5267 0.5752 0.5605 0.5200 0.6823 0.5670

TM-1 0.3703 – 0.1055 0.0905 0.1472 0.2897 0.1748

HS46 0.3705 0 – 0.05267 0.1962 0.3195 0.2050

MAR 0.4085 0.03817 0.0382 – 0.1810 0.2857 0.1898

3–79 0.4180 0.2113 0.2113 0.2495 – 0.3018 0.1875

G. mustelinum 0.5572 0.3310 0.3312 0.2930 0.3795 – 0.2727

G. tomentosum 0.4950 0.2878 0.2690 0.3260 0.3362 0.4558 –
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was found by deletion analysis using SNP markers, which
was on the long arm of chromosome 18, short arm of chro-
mosome 8, short arm of chromosome 11, and short arm of
chromosome 11, respectively. We do not have complete
coverage for all the chromosomes in the cytogenetic stocks.
The putative chromosome location of gene MYB3 in Dt-
genome could not be determined due to incomplete cover-
age of Dt-genome; however, it is probably on one of the
chromosomes for which we do not have aneuploid stock
coverage (long arm of chromosomes 14, 15, or chromo-
somes 19, 21, 23, and 24).

Linkage mapping of MYB genes by SNP markers

Framework SSR markers were utilized to construct linkage
maps with SNP markers. We used 186 RILs, from the cross
of TM-1 and 3-79, for genotyping by 90 SSR markers and
Wve polymorphic SNP markers speciWc to genes MYB1,
MYB2, MYB4, and MYB6. Genetic linkage mapping results
conWrmed the deletion analysis for the chromosomal loca-
tions of MYB1, MYB2, and MYB4. Linkage mapping also
revealed chromosomal locations of two genes’ homoeolo-
gous loci (At-genome of gene MYB1 and Dt-genome of

gene MYB6), which were on chromosome 13 and 21,
respectively (Table 5). Moreover, it showed the linkage
relationship between 15 SSR markers and 5 SNP markers
(Fig. 1). Three SNP markers showed distorted segregation
in the mapping population. The segregation of SNP mark-
ers Myb1Gbmt_238_R and Myb4Gbmt_105_R was
skewed toward TM-1 and the segregation of SNP marker
Myb2Gb_204_R was skewed toward 3-79.

Discussion

SNP in cotton

EYcient SNP discovery in polyploids, such as cotton, must
address the problem with appropriate methods of distin-
guishing between genome-speciWc polymorphisms (GSPs)
and locus-speciWc polymorphisms (LSPs). In this study, we
reduced the possibility of identifying false SNP by applying
the following approaches: (1) designing PCR primers from
well-characterized genes to generate an amplicon pool from
each genotype; (2) sequencing multiple clones to avoid ran-
dom sequencing errors and to ensure getting the duplicated

Table 4 Pairwise comparison matrix of molecular evolutionary rates for the six MYB genes in cottona

a The numbers above and below the diagonal line represent D- and A-genome sequences comparisons, respectively
b Taxa G. herbaceum and G. raimondii are designated by their genome designation, A1 and D5, respectively
c Three parameters were used to characterize each comparison: nonsynonymous substitution per nonsynonymous sites in coding sequences (Ka,
top), substitutions per site including intron and synonymous sites (Ksil, middle), and Ka:Ksil ratio (bottom)

Genotypeb A1 TM-1 HS46 MAR 3-79 G. mustelinum G. tomentosum

D5 0.0050c 0.0047 0.0051 0.0046 0.0045 0.0040

– 0.0071 0.0087 0.0071 0.0076 0.0108 0.0094

0.6956 0.5411 0.7096 0.6009 0.4155 0.4281

TM-1 0.0027 0.0011 0.0015 0.0020 0.0019 0.0014

0.0067 – 0.0016 0 0.0005 0.0036 0.0023

0.4040 0.7053 - 4.0690 0.5185 0.6370

HS46 0.0027 0 0.0004 0.0017 0.0017 0.0012

0.0067 0 – 0.0016 0.0021 0.0052 0.0038

0.4040 – 0.2211 0.8306 0.3119 0.3087

MAR 0.0032 0 0 0.0021 0.0020 0.0015

0.0076 0.0009 0.0009 – 0.0005 0.0036 0.0023

0.4163 0 0 4.2414 0.5463 0.6815

3-79 0.0039 0.0020 0.0020 0.0020 0.0015 0.0010

0.0051 0.0034 0.0034 0.0042 – 0.0041 0.0027

0.7647 0.5842 0.5842 0.4646 0.3648 0.3804

G. mustelinum 0.0038 0.0018 0.0018 0.0018 0.0030 0.0009

0.0084 0.0066 0.0066 0.0058 0.0051 – 0.0050

0.4484 0.2764 0.2764 0.3179 0.6007 0.1873

G. tomentousm 0.0039 0.0015 0.0015 0.0015 0.0027 0.0027

0.0078 0.0061 0.0061 0.0070 0.0045 0.0081 –

0.4989 0.2452 0.2452 0.2143 0.6022 0.3176
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loci of the gene; (3) putative locus identiWcation by phylo-
genetic clustering and comparing to the two progenitor dip-
loid genome species of allotetraploid cottons; (4) designing

locus-speciWc PCR and SNP primer for SNP marker geno-
typing to conWrm the reliability of the procedures (An et al.
2007). Thus, a total of 108 putative SNPs were identiWed
among selected genotypes at the same locus. The average
frequency was one SNP per 77 bp (1.30%), with one SNP
per 106 bp (0.94%) and one SNP per 30 bp (3.33%) in cod-
ing and non-coding regions, respectively. In Arabidopsis
thaliana, the rate of variation per nucleotide were detected
as 1.09 and 0.27% in GL1 gene (a member of the MYB gene
family) of 26 accessions (Hauser et al. 2001) and Atmyb2
gene of 20 ecotypes (Kamiya et al. 2002), respectively. In
cotton, the average rate of SNP per nucleotide was
observed as 2.35% in six EXPANSIN A genes (An et al.
2007). Another pilot SNP study revealed the rate of varia-
tion per nucleotide was 0.35% between G. hirsutum and G.
barbadense (one SNP every 286 bp), and the variations per
nucleotide were 0.14 and 0.37%, respectively within these
two species (Rong et al. 2004).

In other crops, Ching et al. (2002) reported the presence
of one SNP per 31 bp in non-coding regions and one per
124 bp in coding regions when analyzing 18 maize genes in
36 inbred lines. One SNP in every 273 bp was present in
soybean (Zhu et al. 2003). Genome-wide sequence align-
ment between rice subspecies Indica and Japonica revealed
a polymorphism rate of 1.70 SNP/kb and 0.11 indel/kb
(Feltus et al. 2004). In wheat, SNP frequency was one SNP
per 540 bp (Somers et al. 2003). The incidence of SNP in
barley was reported as one SNP per 27 bases in the intron-
less Isa gene (Bundock et al. 2003), and approximately one

Table 5 Chromosomal locations of the six MYB genes with previously reported QTL

a EL Elongation; FF Wneness; FL length; FS strength; FU uniformity; LI lint index; LP lint percentage; LY lint yield; MIC micronaire; SCY seed
cotton yield; 2.5% SL length at 2.5%; 50% SL length at 50%, bChee et al. (2005a), cChee et al. (2005b), dDraye et al. (2005), eFrelichowski et al.
(2006), fGuo et al. (2006), gHe et al. (2005), hHe et al. (2007), iJiang et al. (1998), jKohel et al. (2001), kLacape et al. (2005), lLin et al. (2005),
mPark et al. (2005), nPaterson et al. (2003), nRen et al. (2002), oSaranga et al. (2001), pShen et al. (2005), qShen et al. (2006), rShen et al. (2007),
sWang et al. (2006a), tZhang et al. (2005)

Gene Subgenome Chromosomal location Previously reported QTL associated with speciWc 
chromosome or chromosome arma

Deletion analysis Linkage 
mapping

MYB1 A – 13 ELb, m, n; FFn; FLc, k; FSk, n; 

D 18Lo 18 FSe, m; ELb, e; FFd, k; FLj, u; 2.5% SLe; 50% SLe; FUu; LPu

MYB2 A 8sh 8 ELi, n, q; FLc, h, n; FUu; LIh; LYg, h; SCYi; MICl; FSh, l, n, q, u

D – – –

MYB3 A – – –

D Possibly 
14Lo/15Lo/19/21/23/24

– ELb, e, i, k, m, n, q, t; FFd, k, n; FLc, h, i, k, l, n, q, r, s, t; LPs; FUk, u; 
LYg, h, r, s; MICh, l, q, r, s, t; SCYh, p, r, s; FSe, h, i,j, k, m, l, n, q, s, t, u

MYB4 A 7Lo – ELq; FLc, q; FUp; SCYg, h

D 16Lo 16 ELo; FFj, k; FLo, q; LIo; LPo; MICq; FSk, q, r

MYB5 A 11sh – ELb, r, s; FFd; FLc, n; FUn; LPf; LYg, h; MICl, q; FSn, q

D – – –

MYB6 A 11sh – ELb, r, s; FFd; FLc, n; FUn; LPf; LYg, h; MICl, q; FSn, q

D – 21 ELb; FFd, n; FLc, q, r; FSi, n, p

Fig. 1 Linkage maps of selected SNP markers derived from MYB
genes with SSR markers. The names of the linkage groups A01, A02,
and D02 and chromosomal locations were as per Wang et al. (2006b)
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SNP per 131 bases in the exonic region of the P450 gene
family members (Bundock and Henry 2004). Although
varying frequencies of SNP per length of DNA sequence
have been reported, they are highly dependent upon the
kind of sequence data and genotypes used to generate SNP
in each species. As expected, we observed more number of
SNPs at the interspeciWc level compared to intraspeciWc
level of six cotton MYB genes in this study.

MYB gene phylogenomic features

The cotton genus contains about 50 species with the basic
chromosome number of 13. The Wve tetraploid cotton spe-
cies (AADD, 2n = 4x = 52) are a monophyletic assemblage
putatively derived from a single allopolyploidization event
that occurred 1.5 million years ago (MYA) after divergence
of the diploid progenitors about 6.7 MYA (Senchina et al.
2003). The two diploid species that gave rise to the allote-
traplods were from the A- and D-genome groups which are
best represented by the extant species G. herbaceum L. and
G. raimondii Ulbr., respectively (Wendel and Cronn 2003).
Our results showed that the tetraploid MYB genes could be
broadly separated into two origins representing the putative
A- and D-genomes based on their similarity with the
sequences of the diploid ancestral species (Supplementary
Figs. 1, 2). SNP-based multivariate relationships con-
formed to independent evolution of the six MYB homoeolo-
gous loci in the four tetraploid species (Cronn et al. 1999;
Cedroni et al. 2003). We observed that the nucleotide diver-
sity was higher in the Dt-genome compared to the At-
genome of the three G. hirsutum lines. Previous studies
with Adh (Small et al. 1998, 1999; Small and Wendel 2002)
and FAD2-1 (Liu et al. 2001) showed a faster evolutionary
rate in the Dt-genome than in the At-genome of cotton. Rei-
nisch et al. (1994) reported that the RFLP marker polymor-
phism levels of the Dt-genome were 10% higher than the
At-genome. The Dt-genome, from an ancestor that does not
produce spinnable Wber, contributes substantially to Wber
quality of tetraploid cottons (Jiang et al. 1998; Saranga
et al. 2001; Paterson et al. 2003; Lacape et al. 2005; Rong
et al. 2007). Many QTLs that positively aVect Wber quality
have been detected on the Dt-genome (Table 5). In addi-
tion, many EST loci associated with Wber development
have also been mapped to the Dt-genome (Park et al. 2005).
However, some QTL inXuencing Wber quality and yield
have been identiWed in the At-genome as well (Mei et al.
2004; Frelichowski et al. 2006). Whether the spreading of
the At-genome repetitive DNA elements to the Dt-genome
(Zhao et al. 1998) or diVerent evolutionary pressures oper-
ating on the two genomes (Small and Wendel 2002) caused
the diVerent evolutionary dynamics is still obscure. But, all
these facts collectively indicated the importance of further

investigations of the Dt-genome for Wber improvement in
the tetraploid cottons.

Chromosomal locations of MYB genes

The chromosomal locations of six MYB genes were identi-
Wed via deletion analysis or linkage mapping (Table 5;
Fig. 1). The low level of polymorphism in molecular mark-
ers derived from functional genes such as EST-SSR (Park
et al. 2005; Guo et al. 2007) or cDNA probe-based STS or
RFLP (Rong et al. 2004) among mapping parents has hin-
dered their use in candidate gene mapping. Results pre-
sented here show the great potential for using SNP markers
to tag functional genes and improve the comparative maps
in cotton.

Previous studies have led to the discoveries of important
QTL on diVerent chromosomes in cotton. A comprehensive
summary of the previously reported cotton Wber quality and
yield component traits related QTL on the same chromo-
somes as the six MYB genes are summarized in Table 5.
Analyses on the eVects of chromosome-speciWc introgres-
sion in Upland cotton indicated that substitutions for chro-
mosomes 16 and 18 from 3-79 had additive eVects related
to reduced yield (Saha et al. 2006a). These chromosomes
are the locations of MYB1 and MYB4 genes. Further studies
using topcrosses of 13 CS-B lines with Wve commercial
cultivars showed that chromosomes 7 and 18 (locations of
gene MYB4 and MYB1, respectively) had additive eVects
for Wber strength (Jenkins et al. 2007). Given the role of
MYB transcription factors in Wber cell initiation and expan-
sion, the agreement of the chromosomal locations between
MYB genes and previously reported Wber yield and quality
QTL suggested these SNP markers may be useful in study-
ing the association between important Wber development
genes and economically important QTL in cotton.
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