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Abstract Efficiency of genomic selection with low-cost

genotyping in a composite line from a cross between inbred

lines was evaluated for a trait with heritability 0.10 or 0.25

using a low-density marker map. With genomic selection,

selection was on the sum of estimates of effects of all

marker intervals across the genome, fitted either as fixed

(fixed GS) or random (random GS) effects. Reponses to

selection over 10 generations, starting from the F2, were

compared with standard BLUP selection. Estimates of

variance for each interval were assumed independent and

equal. Both GS strategies outperformed BLUP selection,

especially in initial generations. Random GS outperformed

fixed GS in early generations and performed slightly better

than fixed GS in later generations. Random GS gave higher

genetic gain when the number of marker intervals was

greater (180 or 10 cM intervals), whereas fixed GS gave

higher genetic gain when the number of marker intervals

was low (90 or 20 cM). Including interactions between

generation and marker scores in the model resulted in

lower genetic gains than models without interactions.

When phenotypes were available only in the F2 for GS,

treating marker scores as fixed effects led to considerably

lower genetic gain than random GS. Benefits of GS over

standard BLUP were lower with high heritability. Genomic

selection resulted in greater response than MAS based on

only significant marker intervals (standard MAS) by

increasing the frequency of QTL with both large and small

effects. The efficiency of genomic selection over standard

MAS depends on stringency of the threshold used for QTL

detection. In conclusion, genomic selection can be effec-

tive in composite lines using a sparse marker map.

Introduction

Selection on phenotype or on estimates of breeding values

derived from phenotype has resulted in significant genetic

improvement in many economically important traits in

crops and livestock (Dekkers and Hospital 2002). Use of

information on molecular markers associated with QTL for

the trait through marker-assisted selection (MAS) can,

however, increase rates of genetic improvement because

marker information allows for an increase in selection

accuracy, a reduction of generation intervals, or an increase

in selection intensity (Soller and Beckmann 1983).

The standard strategy for MAS involves a two-stage

approach (e.g. Lande and Thompson 1990): (1) conduct a

genome scan to identify the most significant markers or

QTL and estimates of their effects on phenotype, and (2)

include those markers or QTL in genetic evaluation and

MAS. A genome scan is, however, subject to false posi-

tives and negatives and estimates of the most significant

markers or QTL tend to be biased (Beavis 1994, 1998)

depending on the distribution of QTL effects, the power of

the mapping design, and the stringency of the significance

threshold used (Bost et al. 2001; Xu 2003a), and has been

confirmed by experimentation (Melchinger et al. 1998).

The impact of these factors on efficiency of MAS was
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evaluated by Hospital et al. (1997), Moreau et al. (1998),

Spelman and Garrick (1998), and Hayes and Goddard

(2003). Several strategies have been investigated to ame-

liorate the impact of false negatives, false positives, and

overestimation of effects on response to MAS, including

re-estimation of effects in an independent data set (Lande

and Thompson 1990; Zhang and Smith 1992), cross-vali-

dation (Whittaker et al. 1997), ridge regression (Whittaker

et al. 2000), or mixed model and Bayesian approaches

(Gianola et al. 2003).

All approaches just described involve selection of

markers or QTL for inclusion in MAS. Meuwissen et al.

(2001) suggested a one-step approach for implementation

of MAS by using all markers for MAS, skipping selection

of markers for inclusion in the model for marker-assisted

genetic evaluation. To deal with the number of markers

being large or even larger than the number of phenotypic

observations, which would result in overparameterization

and problems from colinearity when markers are fitted as

fixed effects, they proposed fitting marker haplotypes for

each region across the genome as independent random

effects and used mixed model and Bayesian approaches for

prediction of effects associated with each haplotype.

Resulting estimates of haplotype effects were then used to

select individuals in future generations using marker

information alone, by selecting on estimates of breeding

values derived by summing estimates of effects for each

haplotype carried by the individual across the genome.

They applied their approach, which they termed genomic

selection (GS) to simulated populations representing out-

bred livestock populations with high-density marker

genotype data and found correlations between true and

estimated breeding values derived from marker data to be

substantial, ranging from 0.73 to 0.85. Subsequent research

has extended these results, but fitting individual marker

genotypes rather than marker haplotypes (Solberg et al.

2006). Similar models fitting genotypes for all markers

were used by Xu (2003b) for QTL mapping in line crosses.

Application of genomic selection to outbred popula-

tions, as in Meuwissen et al. (2001), requires large numbers

(thousands) of markers because linkage disequilibrium

(LD) extends over only short distances (Dekkers and

Hospital 2002). Although costs of genotyping have reduced

significantly, this may still be prohibitive for routine

application. However, because of the much more extensive

LD, this would not be the case for line crosses and genomic

selection could be implemented with a limited number of

markers. Thus, the objective of this study was to evaluate

the efficiency of genomic selection in a cross between

inbred lines. Several alternative models for estimation of

marker effects were evaluated, including fitting markers as

fixed or random, inclusion of polygenic effects, and

inclusion of interactions between marker effects and

generation. The impact of availability of phenotypic

information in later generations and level of heritability

was also considered.

Materials and methods

Genetic model and population structure simulated

A cross between two inbred lines (1 and 2) was simulated

stochastically. The genome consisted of 18 chromosomes

of 100 cM, with markers at an interval of 20 cM that were

informative for line origin. A random 50% of the intervals

was simulated to contain a QTL, with position within the

interval assigned at random. Effects of the biallelic additive

QTL were sampled from a standard normal distribution and

rescaled relative to a random normally distributed envi-

ronmental effect that was added, to result in an overall

heritability of 0.1 and a phenotypic standard deviation of

14.14. Presence of the favorable QTL allele in parental line

1 or 2 was sampled with either equal (50/50) or unequal

(75/25) probabilities. An alternative scenario with marker

intervals of 10 cM was also simulated by adding an

informative marker to the center of each 20 cM interval.

Each generation, 5% of males and 25% of females were

selected, mated at random, and produced 8 offspring per

female, resulting in 400 progeny per generation. Individ-

uals were genotyped for all (108 or 198) markers, starting

in the F2. Phenotypes were observed in each generation or

only in the F2.

Models for marker-assisted genetic evaluation

for genomic selection

For each marker interval and each individual, a marker

score (MS = 0–4) was computed as the number of alleles at

the flanking markers that originated from line 1. If phe-

notypes were recorded beyond the F2, each generation the

data from that and all previous generations, starting from

the F2, were included in the analysis. The model used for

MA-genetic evaluation in generation k was:

yjk ¼ generationk þ
XN

i¼1

biMSijk þ ujk þ ejk;

where MSijk is the MS for interval i of individual j of

generation k, bi is the effect associated with interval i, ujk is

the residual polygenic breeding value of individual j of

generation k; N is the number of marker intervals (N = 90

and 180 for marker intervals of 20 and 10 cM, respec-

tively); ejk is a random environmental deviation which was

assumed to be normally distributed with mean zero and
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variance ð1� h2Þr2
P; where h2 is the true heritability (total

genetic variance/phenotypic variance) in the F2 and r2
P is

the phenotypic variance in the F2. Polygenic variances used

for MA-genetic evaluation were varied to 0, 10, 25 and

50% of VG, where VG ¼ h2r2
P; i.e. the true genetic variance

in the F2. Use of a polygenic variance of zero, means that

the model contained only marker scores. This was used

when phenotypes were available in the F2 only because

only marker information would be available for candidates

in later generations. The above model assumes the effect

associated with an interval (bi) was the same for each

generation. A model in which a separate effect was fitted

for each generation was also fitted for cases where phe-

notype was available each generation by replacing bi by

bik.

Effects associated with the marker score for each marker

interval (bi) were either treated as fixed (=fixed GS) or as

independent normally distributed random variables (=ran-

dom GS). For random GS, each marker interval was

assumed to contribute equal variance V, which was equal to

(see ‘‘Appendix’’ for derivation) V ¼ VG

ðN�
P4

i¼0

i2PMS¼iÞ
; where

PMS=i is the probability that the markers score is equal to i

(i = 0 to 4), which was derived ignoring double recombi-

nants (see ‘‘Appendix’’).

Selection was on the sum of estimates of marker interval

effects across the genome, plus the estimated polygenic

effect (if fitted), resulting in the following selection crite-

rion for individual j of generation k: Ijk ¼
PN

i¼1

b̂iMSijk þ ûjk;

where b̂ijk are the estimated marker interval effects; and ûjk

is from the estimated breeding value for residual

polygenes.

Comparison of analysis models

Responses to genomic selection (GS) were compared with

selection on standard estimated breeding values (EBV)

derived from only phenotypic data using animal model

BLUP (Henderson 1975). For GS, phenotypes were either

available each generation, in which case b̂i were re-esti-

mated each generation using data from all generations, or

available in the F2 only. Results with a model that included

a polygenic effect were also compared to those of two-

stage MAS, in which MAS was on marker intervals that

were found to be significant in the F2, along with estimates

of polygenic effects. This approach, which is described in

Piyasatian et al. (2006) involved identification of signifi-

cant marker intervals by backward selection, starting from

a model that included all intervals, using a p-value

threshold of 0.05 to remove intervals.

The efficiency of alternate models for genetic evaluation

and methods of selection was evaluated based on cumu-

lative response in each generation k (CRk) and cumulative

discount response in generation k ðCDRk ¼ ð
Pk

i¼1

1

1þrð Þi CRiÞ;

where r is a discount rate and was set to 10% per gener-

ation), over ten generations (F2–F11). The CR and CDR

were presented as percentage superiority over responses to

phenotype BLUP selection. Rates of increase in frequen-

cies of favorable QTL alleles were evaluated also. Results

were based on 100 replicates.

Results

Responses to selection

Table 1 shows the impact of alternate selection strategies

on CR and CDR with an equal distribution of favorable

QTL alleles across parental lines and a marker interval of

20 cM. Extra responses to GS over selection on BLUP

from phenotype were greatest for the first round of selec-

tion (F3), giving up to 109% greater response, but

decreased over generations (Table 1). Treating marker

effects as random instead of fixed resulted in substantially

greater responses in early generations but differences were

not significant in later generations. Allowing for the effects

of marker scores to change over generations by including

interactions between marker scores and generation,

reduced responses. When compared to MAS on significant

markers (10 marker intervals) only (Piyasatian et al. 2006),

random GS resulted in significantly higher CR in all

generations.

Responses to GS tended to be affected by the level of

residual polygenic variance used for genetic evaluation but

differences were not large (Table 1). In general, setting

polygenic variance equal to zero tended to result in greatest

responses for random GS but was slightly inferior for fixed

GS. From now on, results from genetic models for GS will

be based on models without interaction and zero polygenic

variance.

Table 2 shows the effects of size of marker intervals,

distribution of favorable QTL effects across parental lines,

and availability of phenotypes on CR and CDR. The size of

marker intervals had a larger impact on CR and CDR for

fixed GS than for random GS (Table 2), especially when

phenotypes were available only in the F2. Unlike random

GS, fixed GS performed noticeably better for the larger

marker intervals. In contrast, random GS gave higher CR

and CDR when the size of the marker intervals was

smaller. This was true when phenotypes were available in

all generations and only in the F2.
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When phenotypes were available in all generations with

10 cM marker intervals, both fixed and random GS out-

performed BLUP (Table 2). This was true for both the 50/

50 and 75/25 probability cases. Although with the 75/25

probability case with phenotypes in all generations, all

strategies gave higher absolute responses to selection than

the 50/50 probability case, it tended to give lower CR and

CDR (% over BLUP) than the 50/50 probability case.

With availability of phenotypes in the F2 only, GS had

greater CR than BLUP (which had phenotypes for all

generations) up to the F4 when treating marker effects as

fixed, but up to the F6 when treating them as random

(Table 2). Fixed GS with phenotypic data only in the F2

resulted in substantially lower CDR than BLUP, but ran-

dom GS was just as good as BLUP. With 10 cM marker

intervals, fixed and random GS for the 50/50 probability

case outperformed BLUP until the F3 and F7, which were

sooner (F4) and later (F6) than those with 20 cM

(Tables 2). Furthermore, with 10 cM marker intervals,

fixed and random GS for the 75/25 probability case out-

performed BLUP until F3 and F8, respectively.

QTL frequencies

Tables 3 shows the effects of selection strategy, size of

marker intervals with an equal distribution of favorable

QTL effects across parental lines on average frequencies of

favorable QTL alleles in the F5 and F11, as a function of

magnitude of QTL effects. The 20 and 10 cM marker

intervals resulted in 50% of QTL having zero effects, as

expected (Table 3). For the 75/25 probability case, 75% of

QTL had zero effects (results not shown). The average

frequencies for the zero QTL effects represented average

frequencies of alleles from line 1, rather than favorable

average frequencies. Average frequencies of QTL with

zero effects did not change for the 50/50 probability case

(Table 3), but increased slightly over generations for the

75/25 probability case (results not shown) because of

linkage drag. Average frequencies increased with magni-

tude of the QTL effect for all strategies. In the F11, QTL

with very large effects (2–3.5) were nearly fixed (fre-

quency > 0.95) for all strategies and all scenarios, except

for GS strategies that used only F2 data with 20 cM marker

Table 1 Cumulative and cumulative discounted (10% interest)

responses (CDR) from genomic selection for alternate levels of

polygenic variances used for genetic evaluation, availability of

phenotypic data and having interactions between marker effects and

generations, for a trait with heritability 0.1, 20 cM marker intervals

and equal distribution of favorable QTL effects across parental lines

Model of analysis Phenotype

availability

for GS

Cumulative responses (% over BLUP) CDR

(% over

BLUP)Marker effects Polygenic

variancea
F3 F5 F8 F11

Fixed 0 All 69 31 21 13 23.3

10 All 69 30 20 14 23.0

25 All 70 33 23 16 23.0

50 All 70 34 25 19 27.7

Random 0 All 109 46 27 14 31.7

10 All 98 34 22 14 26.3

25 All 96 37 24 16 28.3

50 All 94 37 24 17 28.7

Fixed with Interaction 0 All 69 16 5 0 9.1

10 All 69 17 5 1 9.3

25 All 70 19 6 1 11.0

50 All 70 19 8 3 11.8

Random with Interaction 0 All 109 31 12 4 18.2

10 All 98 23 10 4 15.2

25 All 96 26 14 6 18.3

50 All 94 24 14 8 18.2

MAS on significant QTL onlyb

Fixed without Interaction True polygenic variance All 77 21 11 7 15.4

Fixed with Interaction True polygenic variance All 77 19 4 �2 8.9

Results from selection on true breeding values and from GS using only significant marker intervals (threshold = 0.05) are presented also for

comparison
a Polygenic variance used as a % of total genetic variance in the F2

b MAS using significant marker intervals in genetic evaluation (Piyasatian et al. 2006)
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intervals. Average QTL frequencies were greater with 10

than 20 cM intervals for all strategies, except for fixed GS

with phenotypes available in only the F2. The distribution

of favorable QTL effects across parental lines had a limited

impact on average QTL frequencies for all models (some

results not shown).

With phenotypes available for all generations and the

50/50 probability case, fixed and random GS for 20 cM

marker intervals resulted in very similar average frequen-

cies in the F11 for all QTL classes, whereas random GS for

10 cM marker intervals resulted in higher average fre-

quencies in the F11 for QTL with medium effects (0.5–1.5)

than for fixed GS (Table 3). These results are consistent

with the similar responses of random and fixed GS in the

F11 (Table 2). For the 75/25 probability case, random GS

resulted in slightly higher average frequencies than fixed

GS in the F11 for small QTL (>0–0.5) with 20 cM marker

intervals and for small to medium QTL (>0–1.5) with

10 cM marker intervals (results not shown).

Random GS with phenotypes in only the F2 resulted in

greater frequencies than BLUP for all QTL classes in the

F5 (Table 3). In contrast, with the 50/50 probability case,

fixed GS with phenotypes in only the F2 had lower fre-

quencies than BLUP in the F5 for larger QTL (effect >1)

and similar frequencies for smaller QTL (effect <1) for

20 cM marker intervals, but had smaller frequencies than

BLUP for all QTL classes for 10 cM marker intervals. In

addition, with the 75/25 probability case, fixed GS with

phenotype in only the F2 had lower frequencies than

BLUP in the F5 for medium to large QTL (0.5–3.5) for

20 cM and for all QTL effect classes for 10 cM marker

intervals.

Effect of heritability

Table 4 shows the effects of the sizes of marker intervals,

the distribution of favorable QTL effects across parental

lines, and the availability of phenotypes for alternate

selection strategies on CR and CDR for a trait with a

heritability of 0.25. Compared to heritability equal to 0.1

(Table 2), the larger heritability led to the higher absolute

responses for all models including BLUP (results not

shown) but in lower extra responses over BLUP. CR in F3

were smaller with h2 = 0.25 than with h2 = 0.1 for all

models, although the pattern of responses to selection was

not affected by heritability.

A higher heritability decreased the benefit of random GS

over fixed GS in the F11 when the size of marker intervals

was small, but it increased the performance of fixed GS in

the F11 over random GS. However, random GS gave sim-

ilar CDR to fixed GS (P > 0.05) with 20 cM marker

Table 2 Effect of the distribution of favorable QTL alleles and size

of marker intervals on cumulative and cumulative discounted (10%

interest) responses (CDR) from genomic selection for selection

strategy, size of marker intervals, and availability of phenotypic data,

for a trait with heritability 0.1 and equal (50/50) and unequal (75/25)

distributions of favorable QTL effects across parental lines

% of favorable

QTL alleles

from line 1

Size of marker

intervals (cM)

Models Phenotype

availability

for GS

Cumulative responses (% over BLUP) CDR

(% over

BLUP)F3 F5 F8 F11

50 20 Fixed All 69 31 21 13 23.3

Fixed F2 only 69 �10 �28 �39 �22.4

Random All 109 46 27 14 31.7

Random F2 only 109 20 �6 �20 1.7NS

50 10 Fixed All 42 18 16 16 17.5

Fixed F2 only 42 �29 �48 �54 �40.7

Random All 112 49 30 23 36.7

Random F2 only 112 25 �2 �13 7.3

75 20 Fixed All 65 25 17 11 20.6

Fixed F2 only 65 �13 �33 �41 �24.7

Random All 103 38 22 13 28.1

Random F2 only 103 17 �7 �18 2.2

75 10 Fixed All 39 13 16 14 15.3

Fixed F2 only 39 �32 �48 �54 �41.3

Random All 106 43 32 23 36.4

Random F2 only 106 22 3 �8 10.1

Results from selection on true breeding values are presented also for comparison

NS not significantly different from BLUP (P > 0.05)
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intervals and h2 = 0.25 whereas higher CDR than fixed GS

with 10 cM marker intervals (Table 4).

Higher heritability increased CDR for fixed GS with

phenotypes available only in the F2. Fixed GS with small

number of marker intervals performed as well as random

GS with high heritability due to two reasons. First, accu-

racy of selection was already high with high heritability.

Second, random GS did not have much advantage over

fixed GS when the number of marker intervals was not so

high, i.e. 90 marker intervals for 20 cM in length

(Table 4).

Higher heritability resulted in higher average QTL

effects (1–3.5) and in a higher percentage of QTL from

medium to large effects (1 to 3.5) but had no significant

effect on the pattern of the average QTL frequencies,

regardless of the distribution of favorable QTL effects

across parental lines or size of marker intervals. Higher

heritability, however, resulted in slightly lower average

QTL frequencies for all scenarios (results not shown).

Discussion and conclusions

The efficiency of genomic selection in a composite line

using low-density marker maps with alternative analysis

models was presented. Owing to the development of

molecular technologies, the amount of genetic marker

information that can be available for genetic evaluation has

markedly increased, leading to insufficient phenotypic data

to estimate parameters. Lande and Thompson (1990) and

Zhang and Smith (1992) used splitting a data set to select a

subset of markers linked to QTL and to calculate marker

scores using multiple regression. However, there are a few

problems with the regression approach. First, splitting data

may cause suboptimal use of information (Meuwissen et al.

2001). Second, having too many parameters to be esti-

mated using regression leads to colinearity and results in

poor estimates and marker scores (Whittaker et al. 2000).

In addition, signs of the regression estimates of marker

effects can be different, although the true effects have the

Table 3 Average frequencies

of favorable QTL in the F5 and

F11 from genomic selection

depending on selection strategy,

availability of phenotypic data,

and size of marker intervals, for

a trait heritability was 0.1 and

equal distribution of favorable

QTL alleles across parental

lines

a Generations with phenotypic

data
b For QTL with zero effects,

line 1 alleles were considered

favorable

Marker

interval (cM)

QTL effect

range

% of QTL Average

QTL effect

BLUP Fixed GS Random GS

Alla All F2 only All F2 only

Average frequency of favorableb QTL alleles in F5

20 0 50.3 0 0.50 b 0.50 0.50 0.50 0.50

>0–0.5 19.2 0.24 0.52 0.53 0.52 0.54 0.53

0.5–1.0 16.2 0.74 0.57 0.60 0.57 0.61 0.59

1.0–1.5 8.5 1.22 0.63 0.67 0.61 0.69 0.65

1.5–2.0 4.1 1.71 0.67 0.73 0.66 0.75 0.71

2.0–3.5 1.6 2.32 0.74 0.78 0.69 0.81 0.76

Average frequency of favorableb QTL alleles in F11

0 50.3 0 0.49 b 0.49 0.50 0.49 0.50

>0–0.5 19.2 0.24 0.57 0.60 0.54 0.60 0.54

0.5–1.0 16.2 0.74 0.69 0.74 0.61 0.74 0.64

1.0–1.5 8.5 1.22 0.82 0.86 0.68 0.86 0.75

1.5–2.0 4.1 1.71 0.89 0.93 0.76 0.93 0.83

2.0–3.5 1.6 2.32 0.96 0.96 0.80 0.96 0.89

Average frequency of favorableb QTL alleles in F5

10 0 75.1 0 0.50 b 0.50 0.50 0.49 0.49

>0–0.5 10.1 0.24 0.53 0.53 0.51 0.54 0.53

0.5–1.0 7.7 0.74 0.58 0.59 0.55 0.61 0.60

1.0–1.5 4.3 1.22 0.63 0.66 0.59 0.70 0.66

1.5–2.0 1.9 1.71 0.67 0.70 0.63 0.75 0.70

2.0–3.5 0.9 2.32 0.75 0.79 0.68 0.84 0.81

Average frequency of favorableb QTL alleles in F11

0 75.1 0 0.50 b 0.50 0.50 0.49 0.49

>0–0.5 10.1 0.24 0.57 0.59 0.53 0.60 0.56

0.5–1.0 7.7 0.74 0.71 0.75 0.57 0.79 0.67

1.0–1.5 4.3 1.22 0.82 0.88 0.65 0.91 0.78

1.5–2.0 1.9 1.71 0.89 0.94 0.70 0.95 0.84

2.0–3.5 0.9 2.32 0.97 0.98 0.77 0.98 0.94
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same sign (Gianola et al. 2003). Finally, a certain extent of

false positive and false negative errors has to be borne in

mind.

False negatives can occur when the QTL have margin-

ally larger P values than an assigned threshold. As a result,

they are not detected. In addition, cancellation of adjacent

QTL with opposite signs of effects may also result in not

detecting the QTL. False positives and negatives from high

power QTL detection designs (i.e. less stringent threshold),

result in high numbers of detected QTL with zero effects.

These QTL with zero effects bring about an overestimated

variance explained by QTL and thus, overestimated genetic

improvement. Using genomic selection can be beneficial

because it can avoid the problem of false positives and

negatives. Both large and small QTL effects are included in

the selection criteria, as seen via increased QTL frequen-

cies across QTL effects.

When marker information is available, selecting on all

marker regions regardless of significance resulted in

greater responses to what was observed in a previous study

(Piyasatian et al. 2006), which considered only markers

that were significant following a QTL scan within the same

cross of inbred lines. The magnitude of the difference

between genomic selection and MAS following QTL

detection depends on the stringency of the threshold used

for QTL detection.

Similar to what was found by Meuwissen et al. (2001)

for genomic selection in an outbred population with a high-

density map, genomic selection was found to substantially

outperform BLUP selection within a cross. Accuracy of

selection increased when marker density increased, and is

dependent on the type of markers used (Solberg et al.

2006). With a heritability of 0.5, the use of SNPs required a

4–5 times denser map than when using microsatellites for

genomic selection in an outbred population (Solberg et al.

2006). One limitation of the Meuwissen et al. (2001)

method is that they could not fit all markers (haplotypes) as

fixed effects because their number was greater than the

number of observations. This was not the case in this study.

In this study, only a sparse marker map (10 and 20 cM

intervals) is required because of the extent of LD that exists

within the cross.

With a large number of confounded parameters to be

estimated, regression leads to colinearity and to poor esti-

mates. Ridge regression has been used to improve the

precision of estimates in a linear model by using an

informative prior distribution of estimates. With ridge

regression, the usual estimates b̂ are shrunk towards zero,

to the degree of a specified scalar (Whittaker et al. 2000).

The use of genome-wide dense marker maps and ridge

regression was exploited in an outbred population by

Meuwissen et al. (2001). In one approach, Meuwissen et al.

(2001) suggested the use of equal variance for each inter-

val, calculated as VG/N, where VG = total genetic variance

and N = the number QTL loci. A similar approach was

used in the present study, but with the degree of shrinkage

determined by the expected variance contributed by the

region. Instead of using VG/N directly, the variance

Table 4 Responses to genomic selection for a trait heritability of 0.25, showing effect of selection strategy, the distribution of favorable QTL

alleles and size of marker intervals on cumulative and cumulative discounted (10% interest) responses (CDR)

Percent of

favorable QTL

alleles from line 1

Size of marker

intervals (cM)

Models Phenotype

availability

for GS

Cumulative responses (% over BLUP) CDR
(% over

BLUP)F3 F5 F8 F11

50 20 Fixed All 40 19 12 6 14.19

Fixed F2 only 40 �6 �22 �31 �16.62

Random All 52 20 8 2 12.27

Random F2 only 52 4 �14 �23 �7.40

50 10 Fixed All 27 15 13 11 13.84

Fixed F2 only 27 �22 �37 �42 �30.62

Random All 54 24 16 10 19.09

Random F2 only 54 8 �7 �15 �1.58

75 20 Fixed All 40 19 12 6 13.86

Fixed F2 only 40 �5 �21 �30 �15.16

Random All 50 22 11 3 14.41

Random F2 only 50 8 �9 �18 �3.04

75 10 Fixed All 25 15 14 11 14.02

Fixed F2 only 25 �20 �34 �40 �28.00

Random All 50 26 17 11 20.02

Random F2 only 50 11 �2 �10 2.84

Results from selection on true breeding values are presented also for comparison
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accounted for recombination rates between markers and

QTL. Here, we also assumed each interval to be indepen-

dent and to contribute equal variance, which does not

represent the real situation. Equal variance not only pre-

vents zero QTL effects to have too extreme estimates, but

also prevents large QTL effects to have near true estimates

beyond the variance. However, the advantage of having

incorrect prior (equal variance) outweighs the disadvantage

of not having a prior at all due to the small number of large

QTL effects relative to the number of QTL with small or

zero effects. Methods can be further improved by Bayesian

methods similar to Meuwissen et al. (2001), which estimate

the variance associated with each interval. In addition, a

covariance structure could be imposed across intervals.

Both fixed and random GS outperformed selection on

BLUP EBV estimated from phenotype in the initial gen-

erations. There was strong evidence that the use of ridge

regression (random b̂) outperformed the usual multiple

regression (fixed b̂), especially in early generations.

Treating marker scores as fixed resulted in substantially

lower responses in all generations than treating marker

scores as random effects, except when trait heritability was

0.25 and size of marker intervals was 20 cM for both

distributions of favorable QTL alleles. Ridge regression

has great potential in GS, especially with a small set of

data. Random GS also outperformed fixed GS when phe-

notypes were only available for the F2, again demonstrating

the better behavior of the random estimates, which will be

beneficial for traits that are difficult or expensive to mea-

sure. Using GS is also advantageous when phenotypes are

recorded in only one sex, such as milk yield, or only on

culled animals, such as meat quality traits or after selection

(Visscher et al. 2000; Goddard and Hayes 2002).

Heritability of the trait affected the magnitude of the

extra gain obtained from GS over selection on BLUP using

only performance records. The lower the heritability, the

greater the benefit of GS over BLUP. This is because when

heritability is low, phenotype contains less information for

estimation, leading to inaccurate marker effects and less

response for GS. Treating marker scores as fixed for a large

number of marker intervals (90) resulted in poor estimates

caused by colinearity and led to lower responses than

treating marker scores as random. The extent of colinearity

was greater when the number of marker intervals increased

(180). As a result, fixed GS gave lower responses (% over

BLUP) whereas random GS gave higher response (% over

BLUP) when the number of marker intervals increased.

Fixed GS gave even lower response when phenotypes were

available only in the F2.

Unequal distribution of favorable QTL alleles across

parental lines increased absolute genetic gains in all strat-

egies due to an increase in positive QTL effects lying on the

same chromosome. However, benefits of GS over BLUP

selection were greater for equal distribution of favorable

QTL effects across parental lines (i.e., 50/50), except for

fixed GS with phenotype available only in the F2.

Models without interactions between generation and

marker score outperformed those with interactions. The

reason is because the amount of data points available to

estimate individual effects was greater for models without

interactions. With large marker intervals (20 cM), allowing

marker score effects to be different across generations had

a much larger impact on limiting the amount of data and

accuracy of marker score estimates. The accuracy of esti-

mating marker effects is the key to quantifying genetic

variance explained by QTL and accuracy of MAS selection

(Goddard and Hayes 2002). Recombination rate between

marker and QTL is one of the factors to indicate accuracy

of estimates of marker score effects based on LD generated

by a cross, especially in later generations of a breeding

program. Interactions may be beneficial when using dense

marker maps.

The efficiency of GS was identified by using the per-

centage of the superiority of cumulative response (CR) and

cumulative discounted response (CDR) over selection on

BLUP from phenotype (% over BLUP). The CDR is the

CR over a time horizon weighted by an interest rate. The

idea of CDR is to put more emphasis on genetic

improvement made in the early generations, rather than in

the later generations. In this study, a 10% discounted rate

was applied to a simulated pig population, which is suitable

for species with short generation intervals such as poultry

or pigs (Dekkers and Chakraborty 2001). A higher interest

rate can be used for a species with a longer generation

interval such as cattle (Dekkers and Chakraborty 2001).

Early selection in a cross of inbred lines capitalizes on

the LD that exists between markers and QTL alleles. The

amount of useable LD decreases over generations,

depending on recombination rates between the QTL and

markers. The results presented here show that LD is still

substantial after a few generations, as seen when pheno-

typic data were available only in F2.

A polygenic effect was included in the genetic model to

in addition to marker effects to investigate the efficiency of

GS. As a result, the expanded selection criteria would be the

sum of estimated marker scores and estimated breeding

values. Different polygenic variances for genetic evaluation

were used. Adding a polygenic effect had limited impact on

results observed for crosses between inbred lines.

We simulated a cross between two inbred lines but

methods can in principle be extended to multi-breed

crosses by allowing for different effects for alleles derived

from different lines. Also, when crossing inbred lines, all

genetic variance present in the cross originates from QTL

differences between the lines and can be captured by

markers that are informative for breed origin. When

672 Theor Appl Genet (2007) 115:665–674

123



crossing outbred breeds, as would be the case for livestock,

genetic variance in the cross is a combination of between

and within-breed variances. In this case, only variance

generated by between-breed differences is amenable to the

strategies proposed here with selection on markers based

on line origin. As a result, the benefit of GS using between-

breed LD will be smaller than observed here. Nevertheless,

breed crosses between commercial lines have shown to

result in substantial numbers of QTL based on between-

breed LD, which would be amenable to GS using the

approach suggested here. In such crosses, to capitalize on

within-breed variation, a polygenic effect should be fitted

in addition to marker score effects. In addition to capturing

linkage disequilibrium generated by the cross, markers can

also be used to follow the co-segregation of markers and

QTL within families by adding a random QTL variable,

following (Perez-Enciso and Varona 2000).
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Appendix

The complete derivation is given below.

Using

VðAÞ ¼ E
B
½VðAjBÞ� þ V ½E

B
ðAjBÞ�:

Let

A ¼ bi �MSijk and B ¼ MSijk:

It was assumed that marker intervals were independent and

each marker interval contributed equal variance.

Then

Vðbi �MSijkÞ ¼ VG=N;

where N = number of marker intervals (90 or 180).

VðAÞ ¼ E
MS
½Vðbi �MSijkjMSijk ¼ iÞ�

þ V ½E
MS

ðbi �MSijkjMSijk ¼ iÞ�;

where

E
MS
½Vðbi �MSijkjMSijk ¼ iÞ�

¼
X4

i¼0

PðMSijk ¼ iÞ � Vðbi �MSijkjMSijk ¼ iÞ

¼
X4

i¼0

PðMSijk ¼ iÞ � i2 � VðbiÞ

and

V ½ E
MS
ðbi �MSijkjMSijk ¼ iÞ�

¼
X4

i¼0

PðMSijk ¼ iÞ � ½Eðbi �MSijkjMSijk ¼ iÞ�2

�
X4

i¼0

PðMSijk ¼ iÞ � Eðbi �MSijkjMSijk ¼ iÞ
" #2

¼
X4

i¼0

PðMSijk ¼ iÞ � ½i� EðbiÞ�
2

�
X4

i¼0

PðMSijk ¼ iÞ � i� EðbiÞ
" #2

¼ 0

because EðbiÞ ¼
lPhen Line1 � lPhen Line2

N
;

which in our case is equal to zero because the expected

means of the two lines are equal. This would be true for the

50/50 case but not for the 75/25 case.

Hence,

VG=N ¼
X4

i¼0

PðMSijk ¼ iÞ � i2 � VðbiÞ and

VðbiÞ ¼ VG=½N � i2 �
X4

i¼0

PðMSijk ¼ iÞ�
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