
Abstract Quantitative trait loci (QTL) detection

experiments have often been restricted to large biall-

elic populations. Use of connected multiparental

crosses has been proposed to increase the genetic

variability addressed and to test for epistatic interac-

tions between QTL and the genetic background. We

present here the results of a QTL detection performed

on six connected F2 populations of 150 F2:3 families

each, derived from four maize inbreds and evaluated

for three traits of agronomic interest. The QTL

detection was carried out by composite interval map-

ping on each population separately, then on the global

design either by taking into account the connections

between populations or not. Epistatic interactions be-

tween loci and with the genetic background were tes-

ted. Taking into account the connections between

populations increased the number of QTL detected

and the accuracy of QTL position estimates. We de-

tected many epistatic interactions, particularly for

grain yield QTL (R2 increase of 9.6%). Use of con-

nections for the QTL detection also allowed a global

ranking of alleles at each QTL. Allelic relationships

and epistasis both contribute to the lack of consistency

for QTL positions observed among populations, in

addition to the limited power of the tests. The potential

benefit of assembling favorable alleles by marker-as-

sisted selection are discussed.

Introduction

Detection of quantitative trait loci (QTL) for agro-

nomic traits has received considerable attention in

plant genetics since the late 1980s, to understand the

genetic basis of the traits variation and subsequently

perform marker-assisted selection (MAS). To perform

QTL detection, the general practice has been to de-

velop a few specific biparental mapping populations of

large size, in order to guarantee sufficient power of the

tests. Analyzing these large specific populations indi-

vidually has clearly been successful in detecting QTL in

plants (Kearsey and Farquhar 1998; Asins 2002; Ber-

nardo 2002) and some QTL could be cloned, in par-

ticular not only in rice and tomato (Takahashi et al.

2001; Kojima et al. 2002; Liu et al. 2002, 2003) but also

in maize (Doebley et al. 1997; Salvi et al. 2005).

However, one can wonder which fraction of the vari-

ability available for breeding has been analyzed so far.

Indeed, when several populations could be analyzed

for the same trait in a given species, inconsistency in

QTL positions were generally reported (Beavis et al.

1991; Mihaljevic et al. 2004). A meta-analysis of flow-

ering time and related traits in maize from 55 QTL

detection studies concluded that a total of 62 different

QTL are likely involved in the variation of these traits,

whereas on average 4 to 5 QTL were detected in sin-

gle-population analyses (Chardon et al. 2004). This

suggests that, for complex traits involving several tens
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of QTL, the genetic diversity in most studies is narrow

when compared to that available within the species of

interest. There is therefore a growing consensus on the

fact that QTL studies should now address diversity

more globally. This can be of great interest for applied

purposes and for more fundamental research, to

understand the nature of allelic variation at QTL.

Considering several populations derived from di-

verse parental materials increases the probability that a

QTL will be polymorphic in at least one population. To

go beyond comparison of results between populations,

some authors have proposed analyzing jointly the dif-

ferent populations. This can be done first for inde-

pendent populations (no known pedigree relationship

between the parents of the different populations)

(Muranty 1996; Xu 1998). In this case, QTL effects are

nested (in the statistical sense) within populations and

the number of parameters to be estimated increases

with the number of populations. Also, the lack of

connections between populations does not allow a

global comparison of the effects of all QTL alleles

segregating in the different populations. An alternative

approach is therefore to develop connected popula-

tions (common parents among populations). Under the

assumption of additivity, considering identical allelic

effects over populations rather than nesting effects

within populations reduces the total number of

parameters and, consequently increases the power of

QTL detection (Rebai and Goffinet 1993; Jannink and

Jansen 2001). In such an analysis, the effects of alleles

segregating are estimated simultaneously, which facil-

itates a global comparison. This is of particular interest

to identify the parental origin(s) of favorable allele(s)

at each QTL.

A further interest of connected designs is their po-

tential to address epistatic interactions between QTL

and the genetic background, provided the mating de-

sign contains ‘‘loops’’ (in the simplest case, three

populations derived from three parents A·B, B·C and

A·C). In such designs, epistasis can be tested through

the comparison between (1) a ‘‘connected additive’’

model where the allele effects at a QTL are assumed to

be identical in the different populations and (2) a

‘‘hierarchical’’ model where allele effects are nested

within populations, which accounts for possible inter-

actions with the genetic background. Such an analysis

tests for consistency of allelic effects over populations

and therefore permits to evaluate the contribution of

QTL-by-genetic-background epistatic effects to varia-

tion in QTL results observed among populations, rel-

ative to that of other factors such as allelic

relationships between parental inbreds and statistical

noise. Tests for epistasis in connected designs following

this principle have been proposed by several authors

(Rebai et al. 1994; Charcosset et al. 1994; Jannink and

Jansen 2000, 2001). One of the advantages of these

tests, when compared to testing only for digenic

interactions, is to enable the detection of epistatic

interactions of higher order (Charcosset et al. 1994).

The statistical properties of QTL-by-genetic-back-

ground interaction tests in the case of a single digenic

interaction has been analyzed by means of simulations

(Jannink and Jansen 2001). This study showed that it

was possible to identify the two QTL involved by using

an appropriate statistical test and also proposed

guidelines for the interpretation of the sign of the

QTL-by-genetic-background interaction effects. For

more complex situations, the results are less predict-

able. Several digenic epistatic interactions that involve

a given QTL may add up if similar in sign, yielding a

significant interaction with the genetic background

whereas none of them were significant. They may also

cancel out each other if opposite in signs and lead to no

detectable interaction with the genetic background. It

is therefore interesting to compare both types of

interactions.

Despite these potentialities, very few experimental

studies involving connected populations in plants have

been reported. Using an interval mapping method

based on regression (described by Rebai et al. 1994),

significant epistatic effects for silking date QTL in

three connected maize recombinant inbred lines were

detected (Charcosset et al. 1994). Using the same ap-

proach in a diallel among four maize inbreds, silking

date QTL were detected but little evidence of inter-

action with the genetic background was found (Rebai

et al. 1997). The lack of power for detecting epistasis

might be attributed to the trait considered, indeed sil-

king date in maize is generally assumed to be more

additively inherited than more complex traits such as

grain yield, and also to the method used, which was

simple interval mapping. Composite interval mapping

(Zeng 1994), which uses cofactors in QTL detection,

increases the power of detection as well as the preci-

sion of estimates of QTL position and effects (Jansen

1993; Zeng 1994). To our knowledge only one study

(Charcosset et al. 2000) has been published using a

composite interval approach in multipopulation de-

signs. But this study was focusing on dominance effects

and did not consider epistatic interactions.

We present here the results of a QTL detection

carried out for traits of agronomic interest in six con-

nected F2 populations of maize using the MCQTL

software (Jourjon et al. 2005). This software permits

the joint analysis of multiple populations using a com-

posite interval mapping method based on a linearized
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regression model (Haley and Knott 1992; Charcosset

et al. 2000). Our main objective was to compare

experimentally the power of different models of QTL

detection and to look for epistasis. To do so, we first

detected QTL in each population independently, sec-

ond on the whole design without taking into account

connections, then on the global design using connec-

tions. Lastly, we tested for digenic interactions and for

locus-by-genetic-background interactions, estimated

the contribution of epistasis to the variation of the traits

studied and checked if epistatic interactions could ex-

plain discrepancies among analyses. The joint estima-

tion of the different parental allele effects in a

connected model allowed us to identify, for each QTL,

the parental inbred line(s) that carried the most inter-

esting allele(s). Based on these results, we will discuss

the benefit of assembling favorable alleles coming from

the different parental lines, in a more diverse genetic

context than simple biparental populations that have

been considered so far for MAS in crop breeding.

Materials and methods

Plant material and experimental design

Six F2 populations, with 150 individuals each, were

obtained from a diallel cross between four unrelated

maize inbreds, DE, F283, F810 and F9005. F9005 is a

dent-flint inbred whereas the other three parents are

flint inbreds. Each F2 plant was selfed to obtain a F2:3

family. Testcross progenies were produced in isolation

plots by crossing the 900 F2:3 families and the 4

parental inbreds to a dent inbred tester, MBS847. The

testcross progenies were evaluated in a total of ten field

trials carried out during 2 years (2000 and 2001) at five

different locations in Northern France (Dreux, Gif sur

Yvette, Lusignan, Mons and Rennes). The testcrosses

were grown in two-row plots of 5 m length, spaced

80 cm apart and at plant population densities ranging

from 96,000 to 120,000 plants ha–1, depending on the

location. In each trial, only 768 testcrosses were eval-

uated. But considering the whole experimental design,

each testcross was evaluated in at least three locations.

Within each trial, most testcrosses were not replicated.

To assess the precision of the trials, 13 randomly cho-

sen testcrosses were replicated twice and the test-

crosses of each parental inbred were replicated

between eight and nine times. All the testcross prog-

enies, replicated or not, were arranged in a randomized

incomplete block design.

Three agronomic traits were measured. Silking date

was the number of days after 1 January when half of

the plants in a plot exhibited silks. Grain moisture at

harvest (%) and grain yield adjusted to zero percent

grain moisture (tons per hectare, t ha–1) were mea-

sured. These three traits are of major importance in

maize breeding. Silking date is known to be involved in

the adaptation of maize to environmental conditions.

As the interest of breeders is to increase grain yield

while keeping low drying costs at harvest, an economic

index is commonly considered for variety registration

in France. This index, further referred to as index and

equal to 10 · (grain yield) – 2.5 · (grain moisture),

was also included in the analyses.

Genetic map

Genomic DNA was extracted from the four parental

inbreds and from a bulk of 20 F3 plants derived from

each of the 900 F2. We used 269 microsatellites

markers available from Maize GDB (http://

www.maizegdb.org). Electrophoresis was performed

on 4% Metaphor agarose gels. Markers that deviated

significantly from expected ratios, based on a Chi-

square test at a=1& were not used. Genetic maps were

build using MAPMAKER software (Lander et al.

1987) with the Haldane mapping function (Haldane

1919) and a LOD threshold of 3.0. A linkage map was

first built for each population. Then, a consensus map

was constructed by considering non-segregating

markers in a given population as missing data.

Agronomic data analyses

Plots with less than 70% of the expected stand were

excluded from the analysis. Analyses of variance were

performed for each trial using SAS GLM procedure

(SAS 1990). Models including a random block effect or

row and column effect were applied to the field plot

performances. When significant, these effects were

used to adjust the field data (Moreau et al. 1999). An

analysis of variance, with a trial effect, a genotypic

effect and the interaction effect between both factors,

was then performed on these adjusted data, for each of

the six populations. These results were used to estimate

broad sense heritability (h2) within each population,

along with a 95% confidence interval (CI) (Knapp

et al. 1985). A clustering analysis (Moreau et al. 2004)

was performed in order to potentially classify the trials

into groups of environments. However, as no clear

structure among the trials was found, we calculated

adjusted means for each genotype using all trials.

Phenotypic correlations between all traits were calcu-

lated on these adjusted means over all populations

using SAS CORR procedure (SAS 1989b).
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QTL detection

Quantitative trait loci detection was conducted on the

adjusted (for environmental effects) means of testcross

families. We did not consider QTL detection for indi-

vidual environments because precision of performance

in individual trials was limited. Also, the clustering

approach did not reveal any clear structure among the

trials that would have allowed us to define groups of

environments to work with. QTL analysis was con-

ducted using MCQTL software (Jourjon et al. 2005),

which performs composite interval mapping (CIM) in

bi- or multiparental populations, using a linear

regression model (Haley and Knott 1992; Charcosset

et al. 2000). Several genetic models described below

were considered. Since phenotypic evaluation was

performed on testcross progenies, statistical additive

effects described below include dominance effects be-

tween parental alleles and those of the tester (noted T).

Indeed, in an F2 population derived from lines A and

B, the testcross progenies of homozygous plants AA

(or BB) at a QTL are heterozygous AT (or BT), and

the testcross progenies of heterozygous plants, AB, are

either AT or BT in equal proportion. So the average

testcross value of AB genotypes is intermediate be-

tween those of AA and BB genotypes. Dominance

effect between parental alleles A and B cannot be

tested and the estimated additive QTL effect which

corresponds to half the difference between perfor-

mances of AT and BT progenies is affected by domi-

nance effects of allele T over alleles A and B.

First, we performed an analysis in each individual

population (further referred to as single-population

analyses) using the following model:

ypi ¼ mp þ aq
px

q
pi þ

X

c 6¼q

ac
pxc

pi þ epi ðmodel 1Þ

where ypi was the adjusted mean performance value of

individual i in population p; mp was the mean of pop-

ulation p; a p
q (ap

c) was the estimated substitution effect

of one parental allele (B) by the other parental allele

(A) of population p at the QTL q (or cofactor c); xpi
q

(xpi
c ) was the expected number of the parental allele

(A) given the genotypes at flanking markers; epi was

the residual error.

In matrix notations, this model can be written as:

Yp ¼ mpJp þXqpAqp þ
X

c 6¼q

XcpAcp þ e ðmodel 10Þ

where Yp was an I · 1 column vector of performances

of the I individuals of the population p; mp was the

mean of population p; Jp was a I · 1 column vector of

ones; Xqp(Xcp) was a I · 2 matrix containing the ex-

pected number (ranging from 0 to 2) of each parental

allele of population p at QTL q (cofactor c) given the

marker data for each individual i; Aqp (Acp) was a 2 · 1

column vector of the additive effects associated with

each parental allele at QTL q (cofactor c) in popula-

tion p; and e was the vector of the residuals of the

model. The additive effects were estimated so that

their sum equaled zero for each QTL or cofactor.

Second, we detected QTL on the global design by

considering the populations as independent (further

referred to as multipopulation disconnected analyses),

the allelic effects being nested within populations:

Y ¼ JMþXqAq þ
X

c 6¼q

XcAc þ e ðmodel 2Þ

where Y was a N · 1 column vector of performances of

N individuals (N = 900) coming from P populations

(P = 6 in our case); J was a the N · P matrix whose

elements were 0 or 1 according to whether or not

individual i belonged to population p and M was a

P · 1 vector of population-specific means, mp. Xq(Xc)

was an N · K matrix containing the expected number

(ranging from 0 to 2) of allele k at QTL q (cofactor c)

given the marker data for each individual i. The total

number of allele effects estimated in the global design

was K = 2P (K = 12 in our case). By definition, on a

given line of Xq(Xc), only the two elements corre-

sponding to alleles segregating within the population of

individual i can be non-null, and their sum equals 2.

Aq(Ac) was a K · 1 column vector of the within pop-

ulation allele additive effects at QTL q (cofactor c), the

sum of the additive effects of the two alleles segre-

gating in a given population was constrained to be

zero. e was the vector of the residuals.

Third, we detected QTL on the complete design

while accounting for relationships between parental

inbreds (further referred to as multipopulation con-

nected analyses) using the following model:

Y ¼ JMþX�qA�q þ
X

c 6¼q

X�cA�c þ e ðmodel 3Þ

where Y, J, M and e were as described in model (2). Xq
*

(Xc
*) was a N · K* matrix containing the expected

number of parental allele k* at the QTL q (cofactor c)

given the marker data for each individual i, K* = 4

being the number of parental inbreds; Aq
* (Ac

*) was a

K* · 1 column vector of the additive effects associated

with parental allele k* at QTL q (cofactor c). In com-

parison with model (2) this model assumes that the
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allelic effects are the same whatever the population

considered. The K* additive effects were estimated so

that their sum equaled zero for each QTL q (or co-

factors c). Difference in effects among pairs of alleles

was tested a posteriori using a t test (a=5%).

Genotypic probabilities used in the models de-

scribed above were computed every 2 cM, taking into

account information from neighbor markers. Cofactor

selection and test of QTL effects were performed with

F tests. F thresholds were determined by 1,000 per-

mutation tests, to correspond to a global type I risk of

10% (across all populations and total genome). This F

threshold was equal to 4.11 in multipopulation dis-

connected analyses (model (2)) and to 5.96 in multi-

population connected analyses (model (3)). To

compare monopopulation analyses (model(1)) to

multipopulation ones, using the same genome-wide

significance level of 10% over the six populations, we

determined the significance level per population by

applying the Bonferroni correction. This led us to ap-

ply a per population genome-wide level risk of 1.74%.

The corresponding F threshold, obtained by means of

permutations for each population, was on average

equal to 14.93.

The choice of cofactors was based on an iterative

process (Charcosset et al. 2000). In the first step, co-

factors were selected from all the markers, on a per

chromosome basis by backward selection. The cofac-

tors were then used for a CIM analysis on each chro-

mosome to determine the most likely positions of the

QTL. On chromosomes where more than one cofactor

were found, separate scans were performed to deter-

mine the most likely position of each QTL. All the

cofactors identified in the first step were taken into

account in the model, except the one corresponding to

the QTL under study. The analysis stopped in a win-

dow of 10 cM around the other cofactors detected on

this chromosome. The new QTL positions detected on

the different chromosomes were then used as cofactors

in a next iteration and a new CIM analysis was per-

formed. The iterative process stopped when the model

converged. For the multipopulation disconnected

analysis, the markers taken as cofactors for the first

step were chosen through a forward selection proce-

dure. It was not possible to apply a backward selection

procedure because the large number of parameters

during the early steps of the multiple regression pro-

cedure created singularities in matrix Xc. For sake of

simplicity we used the same threshold for the selection

of markers taken as cofactors in the first step as for the

QTL detection, whereas it is often advocated to release

on the threshold for choosing cofactors to increase the

power of QTL detection. Using the same threshold in

the initial step of detection might have slightly lowered

the power of QTL detection.

F values at final QTL position(s) were converted

into the corresponding LOD values (Haley and Knott

1992), in order to estimate QTL CI(s) on the basis of a

1.5 LOD unit fall. This led to larger CI than the usually

considered 1 LOD unit fall but this value seems to be

appropriate for a 95% confidence rate for an F2 pop-

ulation (van Ooijen 1992; Lynch and Walsh 1998). The

allelic effects at each QTL, as well as the phenotypic

variance explained, either by each QTL (individual r2)

or by all the detected QTL (R2), were estimated.

After performing QTL detection, we compared the

different analyses in terms of number of QTL detected,

size of CI and R2. We also sought for congruency of

QTL among analyses. For this, two QTL with over-

lapping CI were considered as corresponding to a same

QTL.

Epistasis test

QTL-by-genetic-background interactions

Multipopulation connected analyses (model (3)), as-

sume that one allele has the same effect over popula-

tions, whereas multipopulation disconnected analyses

(model (2)) account for possible epistatic interactions

between QTL and the genetic background. These

interactions were tested using the following model:

Y ¼ JMþXqAq þ
X

c 6¼q

X�cA�c þ e ðmodel 4Þ

where Y, J, M, Xc
* and Ac

* were as defined in model (3);

Xq and Aq were as defined in model (2); and e was the

vector of the residuals. In this model the estimated

additive effects of a QTL are nested within populations

(using the same constraint as in model (2)). The QTL-

by-genetic-background interaction sum of squares,

calculated as the difference between the residual sum

of squares in model (3) (RSS(3)) and in model (4)

(RSS(4)), has P–(K*–1) degrees of freedom (df).

Models (3) and (4), allowed us to perform an F test for

QTL-by-genetic-background interaction:

F ¼
ðRSSð3Þ �RSSð4ÞÞ=½P� ðK� � 1Þ�

RSSð4Þ=½N � 2P� ðK� � 1ÞðC � 1Þ� ð5Þ

where N, P, K* and C were as defined before. The

model used for this test corresponded to the final

model (3) reached after convergence, with final esti-

mated positions of QTL. The same positions were used

in model (4). Note that this test (5) follows an F
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distribution under the hypothesis that the estimated

QTL positions are the true ones.

This test for epistasis can be interpreted as a test for

consistency of QTL effects estimated in the different

populations. Suppose that, at a given QTL, aDE is the

additive effect of allele DE and aF283 is the additive

effect of allele F283. The contrast between these two

alleles can be directly estimated by analyzing the

population DE · F283. This contrast will be further

noted (aDE – aF283)DE· F283. If epistasis is absent, each

contrast estimated in one population can be written as

a linear combination of two or more contrasts esti-

mated in other populations. For instance, (aDE –

aF283)DE· F283 can be written as the linear combination

(d1) of two other contrasts estimated in related popu-

lations i.e. (aDE – aF283)DE· F283=(aDE – aF810)DE·

F810+(aF810 – aF283)F283· F810. Among all the linear

combinations between individual population contrasts

that can be defined, only three of them are indepen-

dent (3 being the number of df associated with the

QTL-by-genetic-background interaction test). For in-

stance, we can define four different linear combina-

tions of three population contrasts, all equal to zero

when epistasis is absent:

d1 ¼ aDE � aF283ð ÞDE�F283

� aDE � aF810ð ÞDE�F810

�

þ aF810 � aF283ð ÞF283�F810

�
;

d2 ¼ aDE � aF283ð ÞDE�F283

� aDE � aF9005ð ÞDE�F9005

�

þ aF9005 � aF283ð ÞF283�F9005

�
;

d3 ¼ aDE � aF810ð ÞDE�F810

� aDE � aF9005ð ÞF9005�DE

�

þ aF9005 � aF810ð ÞF9005�F810

�
;

d4 ¼ aF9005 � aF283ð ÞF9005�F283

� aF9005 � aF810ð ÞF9005�F810

�

þ aF810 � aF283ð ÞF283�F810

�
:

Only three of them are independent as d4=d1+d3 – d2.

QTL-by-QTL interactions

Digenic epistasis between the two detected QTL was

tested by comparing model (3) to the model:

Y ¼ JMþX�qA�q þX�q0A
�
q0 þX�qq0A

�
qq0 þ

X

c 6¼q;q0
X�cA�c þ e

ðmodel 6Þ

where elements indexed with q (q¢) corresponded to

the first (second) locus involved in the interaction; X�qq0

was a N · (K*)2 matrix equal to the horizontal direct

product of each column of X*
q by each column of

X�q0 ; Aqq0 was a (K*)3 · 1 vector of the effect of the

interaction between QTL q and QTL q¢; and the other

parameters were as defined in model (3). The inter-

action has (K*–1)2 df. We were able to calculate the

right probability matrix X�qq0 as there was at least one

polymorphic marker between QTL q and q¢ in each

population, otherwise the expected number of alleles

at both QTL positions would have been correlated. We

used the same constraints as in model (3) to make the

allelic QTL (or cofactors) main effects estimable. The

interaction effects between two loci were estimated so

that the sum of the interaction effects between a given

allele at one QTL and the K* alleles at the other QTL

equaled zero. This led to include eight different con-

straints (two QTL times K* alleles), but only seven of

them were independent.

Model combining both type of epistasis

To globally quantify the importance of epistatic inter-

actions for the detected QTL, we used a ‘‘combined

model’’ that includes epistatic terms of models (4) and

(6):

Y ¼ JMþ
X

b

XbAb þ
X

q;q0
X�qA�q þX�q0A

�
q0 þX�qq0A

�
qq0

h i

þ
X

k 6¼q;q0;b
X�kA�k þ e

ðmodel 7Þ

where all parameters were as defined in models (4) and

(6). Elements indexed with b represented QTL inter-

acting with the genetic background; those indexed with

q, q¢ represent QTL involved in QTL-by-QTL inter-

actions; and all other QTL were indexed with k. QTL

involved in QTL-by-QTL or QTL-by-genetic-back-

ground interactions correspond to those detected with

model (3). The epistatic interactions included in this

model were selected by a backward selection proce-

dure, among interactions detected individually as sig-

nificant. The R2 of this model was compared with R2 of

model (3).

Whole genome scan of epistatic interactions

In addition to the tests presented above, we tested all

possible marker-by-marker interactions and marker-

by-genetic-background interactions to look for chro-

mosome regions involved in epistatic effects and that

may have not been detected based on their individual
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effect. The models used were similar to models (3), (4)

and (6), except that the indices q and q¢ corresponded

to the marker(s) under study. The cofactors in these

models were all the QTL detected in multipopulation

connected analysis (model (3)) except those QTL

whose CI included the position(s) of the marker(s)

under study (to avoid model over-parameterization).

Implementation of epistasis tests and investigation

of the proportion of significant tests

As tests of epistasis were not yet implemented in

MCQTL software, we developed programs with the

SAS/IML (SAS 1989a) language using the genotypic

probabilities at QTL (or markers) positions computed

by MCQTL to built the incidence matrices of the

models. The QTL-by-genetic-background as well as

the QTL-by-QTL interactions effects were tested with

an F test, considering an individual risk level of 5%.

This corresponded to an approximate F threshold of

2.6 and 1.9 for each type of test, respectively. Given the

very high number of tests for marker-by-marker and

marker-by-genetic-background interactions (about

35,000 for marker-by-marker interactions), we applied

the False Discovery Rate (FDR) approach (Storey and

Tibshirani 2003). For each trait and each type of

epistasis all individual P values were analyzed using the

Qvalue software (Storey and Tibshirani 2003) to

compute the corresponding q values (i.e. the propor-

tion of false positive tests among all the tests significant

at this P value level risk) as well as p0, the proportion

of true null hypotheses (i.e. no epistasis). We chose to

consider a rather stringent FDR value equal to 10% to

declare effects as significant at the genome wide level.

As the q values computation depends on the observed

distribution of the P values, a given FDR may corre-

spond to a different P value level risk for each trait and

type of epistasis.

Results

Genetic map

Between 117 and 160 markers (144 on average) were

segregating with reliably reading polymorphism in

each individual population, yielding a total of 269

mapped markers. Out of these, seven markers were

segregating in all the six populations. Markers were

most frequently polymorphic in three populations. On

average, the map length of individual populations was

1,663 centimorgans (cM) and the mean distance be-

tween two markers was 13 cM. The composite map

(Fig. 1) was 1,794 cM long with an average of 7 cM

between two markers.

Agronomic results

For silking date, the earliest parental inbred was DE

and the latest F810, with a 3.5 days difference (Ta-

ble 1). F810 had the highest grain yield and F283 had

the lowest grain yield, but the difference between these

two inbreds was small (0.45 t ha–1). F810 also had the

highest grain moisture. This result was consistent with

those observed for silking date, as these two traits were

positively correlated (q=0.57). Grain yield was also

positively correlated with silking date (q=0.49) and

grain moisture (q=0.41).

Testcross progenies of the populations derived from

F810 consistently had the latest silking dates and the

highest grain yields. Populations with DE as a parent

flowered earlier. Population testcross means for silking

date were intermediate between the parental inbred

testcross means, except for the population

F9005 · F283 which was earlier than its two parental

inbreeds. This suggests that silking date mainly be-

haved additively. This was not true for the other traits.

Population testcross means for grain yield were often

lower than the average of the two parental means,

whereas population means for grain moisture were

generally higher than the average of the two parental

means. These results suggest the presence of epistasis

for these traits (see Discussion), although the differ-

ences could also be due to uncontrolled maternal ef-

fects during testcross seed production.

Genotype · environment interactions were found

significant for all the traits (results not shown). How-

ever, the clustering approach did not reveal any clear

structure among the trials. Across populations, broad

sense heritabilities (h2) ranged from 0.63 to 0.81 for

grain yield, from 0.72 to 0.87 for grain moisture, and

from 0.63 to 0.80 for silking date (Table 1). These val-

ues were high, due to the number of trials performed.

Silking date and grain moisture were the most heritable

traits on average. Populations derived from F283, which

was one of the earliest parental inbred, had the highest

h2 for silking date. Two populations, both having F810

as a parent, had a high h2 for grain yield: DE · F810

(0.78) and F283 · F810 (0.80). This last result could be

related to the fact that F283 and F810 had the most

divergent parental means for this trait.

QTL detection and comparison across analyses

A total of 37 QTL were detected for the four traits in

single-population analyses (Table 2). Zero to three

212 Theor Appl Genet (2006) 113:206–224

123



(generally either one or two) QTL were detected

within a population for a given trait (Table 2). These

QTL explained on average (over populations) 28.9,

29.6 and 25.9% of the phenotypic variation of grain

moisture, silking date and grain yield (Table 3),

respectively. The average CI of QTL positions were

rather large, varying between 30 and 49 cM for the

different traits. Several QTL found in different popu-

lations for the same trait had overlapping CI (Figs. 2,

3). So considering globally the results found in the

different populations, seven regions were detected for

grain yield, seven for grain moisture, eight for silking

date and five for index (Table 2, Fig. 4). These

numbers corresponded to minimum values. Indeed for

a given trait, some QTL were sometimes detected on a

same chromosome in different populations but at

positions rather distant from each other. In cases where

the CI of these QTL were large and overlapped, it was

difficult to conclude from single-population analyses

whether there were one or more QTL implicated in the

variation of the trait. To be conservative and avoid

overestimation of the QTL number, we considered in

this case a single QTL, even if more might be involved.

A total of 26 QTL were detected with the multi-

population disconnected model (2) (Table 2). The

number of QTL detected with model (2) is quite
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Fig. 1 Consensus map and
QTL detected for silking
date, grain moisture, grain
yield and index in the
multipopulation connected
analyses (model (3)). Each
vertical box for a chromosome
represents one population,
from left to right, DE · F283,
DE · F810, F283 · F810,
F9005 · DE, F9005 · F283
and F9005 · F810. A
horizontal line in the box
shows a polymorphic marker
in the corresponding
population. The QTL are
represented in a different
bearing for each trait on the
left of each chromosome. The
vertical line represents the
confidence interval (CI) and
the horizontal one is placed at
the estimated position of the
QTL. Its length is
proportional to the individual
r2. A star on the left of a QTL
means this QTL interacted
with the genetic background
at the 5% significance level
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equivalent to the number of regions detected with

model (1). Most regions (18) are common between the

two analyses (Fig. 4). However, the nine QTL detected

in single-population analysis (model(1)) were not de-

tected with model (2), and the seven QTL detected

with model (2) were not detected with model (1).

Model (2) detected all the QTL that were significant in

at least two different populations. CI for QTL detected

by model (2) were shorter than or at least equivalent to

those of corresponding single-population QTL. For

example, the grain moisture QTL detected at position

29.9 cM on chromosome 1 had a 7 cM long CI. This is

shorter than the shortest CI of the QTL detected in this

region in single-population analyses (15.8 cM long for

DE · F810 population; Fig. 2).

When taking into account the connections using

model (3), 46 QTL were detected in total. This is

nearly twice the number detected with model (2).

Eleven QTL were detected for silking date, 12 for

grain yield, 13 for grain moisture and 10 for index

(Table 2, Fig. 1). Multipopulation connected analyses

allowed the detection of 15 additional QTL (Fig. 4) not

detected by models (1) or (2). Most of these QTL

were detected on chromosomes regions where no QTL

had been detected with models (1) or (2). Others

corresponded to chromosome segments where model

(3) concluded to two or three different QTL whereas

model (1) had detected a QTL in several populations,

at different positions and with large overlapping CI, so

that we considered a single QTL for the synthesis

(Table 3). Only three QTL detected with model (1)

were not detected with model (3) (Fig. 4). Two of

them, for grain moisture and index, had an F test value

just below the defined threshold. The average CI

length of QTL detected by model (3) ranged from

20 cM (for grain moisture) to 52 cM (for grain yield).

On average, the QTL CI estimated with model (3)

were shorter than the ones obtained with other models

(Table 3). For example, the grain moisture QTL de-

tected at position 55 on chromosome 6 had a CI of

14 cM in the multipopulation connected analysis

(model (3)), whereas the shortest CI of the corre-

sponding QTL detected in single-population analyses

(model (1)) was equal to 37 cM (Fig. 2). The only

exceptions to this general tendency were for grain yield

QTL and to a less extent for silking date QTL (Ta-

ble 3). For grain yield, three QTL specific to the mul-

tipopulation connected analysis (model (3)) had very

large CI. These large QTL CI were due to very flat F

curves around the maxima, just above the threshold.

Table 1 Trait means and heritability (h2) for the four parental inbreds and the six F2 populations

Inbred or
population

Silking date (days after 1 January) Grain moisture (%) Grain yield (t ha–1)

Adjusted means h2 (CI) Adjusted means h2 (CI) Adjusted means h2 (CI)

DE 210.54 – 33.33 – 9.42 –
F283 211.75 – 32.87 – 9.20 –
F9005 211.25 – 32.27 – 9.34 –
F810 214.06 – 35.40 – 9.65 –
DE · F283 211.30 0.77 (0.71–0.82) 34.12 0.72 (0.65–0.78) 8.79 0.63 (0.53–0.71)
DE · F810 212.57 0.63 (0.53–0.71) 34.02 0.85 (0.81–0.88) 9.03 0.78 (0.72–0.83)
F283 · F810 212.79 0.77 (0.71–0.82) 34.48 0.87 (0.84–0.90) 9.34 0.81 (0.76–0.85)
F9005 · DE 211.18 0.73 (0.66–0.79) 33.39 0.84 (0.80–0.88) 8.81 0.70 (0.62–0.77)
F9005 · F283 210.66 0.80 (0.75–0.84) 33.27 0.85 (0.81–0.89) 8.68 0.69 (0.61–0.76)
F9005 · F810 212.29 0.76 (0.69–0.81) 34.06 0.80 (0.75–0.84) 8.85 0.70 (0.62–0.77)

CI95% confidence interval of heritability

Table 2 Number of
quantitative trait loci (QTL)
detected for the different
traits in single-population and
in multipopulation connected
or disconnected analyses

Type of analysis Silking date Grain moisture Grain yield Index Total

Single populations
DE· F283 2 2 1 1 6
DE· F810 1 2 3 2 8
F283· F810 2 1 1 0 4
F9005· DE 2 1 1 2 6
F9005· F283 3 3 1 0 7
F9005· F810 3 2 1 0 6
Total 8 7 7 5 27

Multipopulation
Disconnected 8 8 5 5 26
Connected without epistasis 11 13 12 10 46
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When considering only the QTL detected by at least

two models, we observed a reduction of the CI length

for positions estimated with model (3) compared to

those estimated by model (2) and for positions esti-

mated with model (2) when compared to those esti-

mated with model (1).

The QTL detected with model (3) explained 66% of

the phenotypic variance for silking date, 46.9% for

grain yield, 57.9% for grain moisture and 35.6% for

index (Table 3). The QTL for the different traits had

generally small effects, with r2 values of 2–10% for

grain moisture, 2–11% for grain yield and 2– 4% for

Table 3 Comparison of the number of QTL detected, average confidence intervals [CI in centimorgans (cM)], and percentage of
variance explained (global R2) in individual analyses and in multipopulation disconnected or connected analyses

Analyses Silking date Grain moisture Grain yield Index

Number
of QTL

CI R2 Number
of QTL

CI R2 Number
of QTL

CI R2 Number
of QTL

CI R2

Single-population
(model (1))

2.2a

(8b)
32 29.6 1.8a

(7b)
30 28.9 1.3a

(7b)
49 25.9 0.8a

(5b)
44 13

Multipopulation disconnected
(model (2))

8 25
(23c)

64.3 8 29
(26c)

52.2 5 40
(21c)

18.9 4 31
(39c)

27.7

Multipopulation connected
(model (3))

11 28
(16d)

66.0 13 20
(14d)

57.9 12 52
(17d)

46.9 10 33
(23d)

35.6

aAverage number of QTL detected per population
bNumber of different regions detected by single-population analyses (model(1))
cAverage CI of the QTL also detected in the single-population analyses (model(1))
dAverage CI of the QTL also detected in the multipopulation disconnected analyses (model(2))
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index (Table 4). For silking date, 10 QTL out of the 11

detected had relatively low r2 of 2–8%, whereas a

major QTL was detected on chromosome 10, which

explained 18% of the phenotypic variance.

In model (3), the additive effects of the four al-

leles are estimated simultaneously. For each QTL,

tests of the differences between the allele effects al-

lowed us to group them into two to four classes

(Table 4). Out of the 46 QTL that were detected, 27

displayed two classes, 18 displayed three classes and

only one displayed significant differences between all

the four alleles. The major QTL for silking date lo-

cated on chromosome 10 shows two very contrasted

allelic classes: a late flowering allele (+ 0.87 days)

specific to parental line F283 and three early flow-

ering alleles with very close effects (–0.25 to –

0.34 days). For grain yield, as expected from the

parental performances, the favorable alleles were

most often contributed by F810. For silking date, the

early alleles came most often from DE or F283, as

expected from the earliness of these two parental

inbreds. It also can be noted that, for all traits, each

parental inbred brought both positive and negative

allele effects at QTL.
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As illustrated by Fig. 1, several chromosomic re-

gions displayed significant effects for different traits,

suggesting a possible pleiotropic effect of a single QTL.

In these cases, additive effects for the different traits

were consistent with the correlations observed between

traits. For example, a region on chromosome 1 was

involved in the variation of all the traits. In this case,

the F810 allele reduced silking date of 0.46 days and

grain moisture of 0.34%, but it also decreased grain

yield of 0.195 t ha–1 (Table 4).

Table 4 Quantitative trait loci detected in the multipopulation connected design, using model (3), additive effects and epistatic interactions

Trait QTL

number

Chromosome

number

Position

(in cM)

CI r2 Estimated additive

effect of allele

Number of

significantly

different

alleles

First-order

interaction

with QTL (5%

significance

level)

Genetic-by-

background

interactione

DE F283 F9005 F810

Silking

date

1 1 46 38–56 0.06 0.22a 0.03a 0.21a –0.46b 2 10, 11

2 1 140 134–166 0.06 0.01a –0.42c 0.06a 0.35b 3 11

3 2 85 62–89 0.07 –0.48a 0.19bc 0.31c –0.03b 3 8

4 3 41 33–50 0.08 0.27a –0.51b –0.19b 0.43a 2 11

5 3 150 139–188 0.04 –0.07a 0.11a –0.3b 0.26c 3 –

6 4 75 45–97 0.02 –0.24a 0.09bc 0.00b 0.15c 3 –

7 5 26 10–38 0.02 0.06a –0.29b 0.10a 0.12a 2 –

8 6 25 2–31 0.04 0.13a 0.08a –0.37b 0.17a 2 3

9 7 145 135–167 0.04 –0.03a –0.36b 0.15a 0.25c 3 –

10 8 58 47–65 0.05 –0.23a –0.03a 0.40b –0.15a 2 1

11 10 30 28–32 0.18 –0.34a 0.87b –0.29a –0.25a 3 1, 2, 4 **

Grain

moisture

1 1 46 44–56 0.10 0.13ab 0.18a 0.04b –0.34c 3 –

2 1 125 121–127 0.04 –0.44a 0.29b 0.31b –0.15a 2 –

3 1 136 131–142 0.04 0.27a –0.42b –0.11b 0.26a 2 –

4 2 83 77–87 0.03 –0.18a 0.01ab –0.02b 0.20c 3 11

5 2 123 115–129 0.05 0.23a 0.07b –0.06c –0.23d 4 –

6 3 35 22–47 0.04 0.14a –0.22b 0.04a 0.04a 2 10, 11

7 6 55 47–61 0.07 0.17a 0.14a –0.20b –0.11b 2 –

8 6 126 107–136 0.05 –0.07a –0.16a 0.17b 0.05c 3 –

9 7 122 118–132 0.09 –0.11a –0.21a 0.22b 0.10c 3 –

10 8 65 31–71 0.07 –0.01a –0.22b 0.03ab 0.20c 3 6

11 9 75 64–83 0.06 –0.06a –0.05a –0.14a 0.25b 2 4, 6 *

12 10 34 19–38 0.06 –0.14a 0.27b –0.01c –0.13a 3 –

13 10 81 46–99 0.02 –0.14a 0.01b 0.03b 0.09b 2 –

Grain

yield

1 1 44 36–48 0.11 0.099a 0.114a –0.017b –0.195c 3 3, 11 *

2 1 105 94–142 0.03 0.102a –0.086b 0.017c –0.033bc 3 7, 11

3 1 160 142–170 0.04 0.067a –0.082b –0.083b 0.098a 2 1, 7

4 1 217 186–223 0.03 0.049a 0.057a –0.006a –0.101 b 2 10, 11, 12 *

5 3 35 0–139 0.02 0.039a 0.001a –0.094b 0.055a 2 –

6 4 79 67–87 0.04 –0.083a 0.015b –0.028ab 0.096c 3 7, 11, 12

7 4 164 133–210 0.03 –0.045a –0.007a 0.103b –0.052a 2 2, 3, 6, 10, 11 **

8 6 23 20–29 0.03 –0.021a 0.094b –0.087c 0.014a 2 11

9 7 139 112 – 149 0.03 –0.057a –0.057a 0.041b 0.073b 2 –

10 8 33 21–125 0.02 –0.032a –0.040a 0.073b 0.001a 2 4, 7

11 9 75 68–101 0.03 –0.020a –0.025a –0.054a 0.099b 2 1, 2, 4, 6, 7, 8, 12 *

12 10 2 0–79 0.03 –0.021a 0.088b –0.063a 0.003a 3 4, 6, 11 *

Index 1 1 40 32–62 0.04 0.84a 0.56a –0.36b –1.04b 2 3

2 1 105 94–119 0.04 1.26a –0.79b –0.13b –0.34b 2 –

3 1 162 150–172 0.04 0.91a –0.46b –1.05b 0.59a 2 1, 5, 8 *

4 1 219 190–227 0.03 0.21a 0.71a 0.05a –0.96b 2 8, 9

5 2 105 92–160 0.02 –0.51a –0.31a 0.82b 0.00c 3 3, 7

6 3 27 0–45 0.03 –0.02a 0.63a –0.99b 0.38a 2 –

7 4 79 67–82 0.03 –0.61a 0.02b –0.31ab 0.90c 3 5, 8

8 4 153 137–170 0.04 –0.50a 0.25b 0.94b –0.69a 2 3, 4, 7 *

9 6 23 13–36 0.02 –0.43a 0.73b –0.55a 0.24b 2 4

10 8 52 31–63 0.03 –0.30ab 0.22a 0.69c –0.62b 3 –

a,b,c,dAllelic effects followed by a common letter do not differ significantly at the 5% risk level
eInteraction: *5%, **=5&
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Epistasis

We performed between 21 and 78 QTL-by-QTL tests

for epistasis, depending on the trait (model (6)). Be-

tween 3 and up to 15 interactions were detected as

significant at the 5% significance level (Table 5). Ex-

cept for grain moisture, we detected more interactions

than expected by chance only at this risk level. More-

over, with 15 significant interactions out of 78 tests,

epistasis was detected more frequently for grain yield

than for silking date or grain moisture. Many QTL on

chromosome 1 were involved in interactions with other

loci, especially for silking date and grain yield (Ta-

ble 4). The grain yield QTL on chromosome 9 inter-

acted with seven other QTL, three of which were

located on chromosome 1. The silking date QTL on

chromosome 10 (30 cM position), explaining a large

part of the phenotypic variance (18%), interacted with

three other QTL (Table 4).

For each trait, we detected also more significant QTL-

by-genetic-background interactions than expected by

chance at a 5% significance level (model (4); Table 5).

Only one QTL interacted with the genetic background

for silking date and grain moisture and two for index.

Many interactions (5 out of 12 QTL) were detected for

grain yield. Significant QTL-by-genetic-background

interactions were only found for QTL involved in at least

two QTL-by-QTL interactions. Out of the eight QTL

interacting with at least three other QTL, all but one

(QTL 6 for grain yield) were involved in interactions

with the genetic background. Out of the ten QTL

interacting with two other QTL, only two exhibited a

significant QTL-by-genetic-background interaction, i.e.

QTL 11 for grain moisture and QTL 1 for grain yield.

Including significant epistatic interactions in a global

model increased the percentage of phenotypic variance

explained, especially for grain yield. Indeed, when

compared to the percentage of phenotypic variance

explained by the QTL detected with model (3), R2 of

model (7) increased of 9.6% for grain yield and only of

a few percent for silking date (+ 1.5%) and grain

moisture (+ 1.2%) (Table 5).

Table 5 QTL-by-QTL interactions (QTL · QTL) and QTL by genetic background interactions (QTL · background): number of
interactions individually significant at the 5% risk level and number of significant interactions in model (7)

Trait Test Number
of tests

Individually
significant
interactions

Model (7)

Number % Significant
interactions

R2 increase
compared
to model (3)

Silking date QTL · QTL 55 5 9.1 1 1.5%
QTL · background 11 1 9.1 1

Grain moisture QTL · QTL 78 3 3.8 1 1.2%
QTL · background 13 1 7.7 0

Grain yield QTL · QTL 66 15 22.7 7 9.6%
QTL · background 12 5 41.7 1

Index QTL · QTL 21 7 23.8 3 6.3%
QTL · background 10 2 20.0 0

Table 6 Marker-by-marker and marker-by-genetic background interactions: percentages of significant interactions for individual risk
level (P values) of 5% and 1& and a false discovery rate (q value) of 10%

Trait Type of interaction Percentage of significant tests Estimated
% of true
null hypothesesP < 5% P < 1& q < 10%

Silking date Marker · marker 10.44 0.38 0 69
Marker · genetic background 12.87 5.15 5.88 49

Grain moisture Marker · marker 7.72 0.22 0 75
Marker · genetic background 11.4 3.68 1.47 74

Grain yield Marker · marker 8.30 0.25 0.03 71
Marker · genetic background 13.60 2.57 1.47 80

Index Marker · marker 8.71 0.43 0.36 84
Marker · genetic background 7.72 4.41 1.84 93

The percentage of true null hypotheses is estimated based on the distribution of the P values

218 Theor Appl Genet (2006) 113:206–224

123



These analyses of epistatic effects for QTL detected

with model (3) were complemented by a whole gen-

ome scan at marker positions (Table 6). For marker-

by-marker interactions, observed P values yielded an

estimate of the percentage (p0) of true null hypotheses

(i.e. no epistasis) between 69% for silking date and

84% for index. Epistasis may therefore concern up to

31% of the tests for silking date. For this trait, the

lower q value, corresponding to the most significant

test, was equal to 11.7%. So, no test could be consid-

ered as significant if one wants to limit the FDR at a

level of 10%. This indicates that even if there is cer-

tainly some epistasis for this trait, it is likely explained

by numerous digenic interactions with limited indi-

vidual effect. On the contrary, for index and to a less

extent for grain yield, we observed higher p0 values but

detected several significant digenic interactions when

considering an FDR of 10%. The part of the genome

involved in epistasis should therefore be smaller for

these traits, but with higher contribution of individual

effects. As expected significant marker-by-marker

interactions were found in regions where QTL-by-QTL

interactions were detected. However, it can be noted

that the highest marker-by-marker interactions were

often found for markers either (1) within the CI of

QTL detected by model (3), but not at the markers

closest to the estimated QTL positions or (2) at

markers located outside the QTL CI but close to their

edges. Highly significant digenic interactions were

found for grain yield and index between markers lo-

cated on chromosome 4 and several markers located

on chromosomes 1, 7 and 9. For index, another

important interaction was found between the begin-

ning of chromosome 8 and the beginning of chromo-

some 1.

For marker-by-genetic-background interaction tests,

p0 varied between 49% for silking date and 93% for

index. As for marker-by-marker interaction tests, this

result suggests that epistasis affects a larger proportion

of the genome for silking date than for the other traits.

Significant marker-by-genetic-background interactions

were detected with an FDR of 10% for all the traits.

So, for silking date and grain moisture for which no

marker-by-marker interactions were found, marker-by-

genetic-background interactions mainly result from

several digenic interactions of relatively low effect that

add up each other. For the other traits, marker-by-

genetic-background interactions generally coincided

with markers involved in a few highly significant mar-

ker-by-marker interactions. Interestingly, investigation

of markers-by-genetic-background interactions re-

vealed significant epistatic effects for three chromo-

some regions where QTL had been detected with

model (1) and not confirmed with model (3): one sil-

king date QTL (chromosome 1), one index QTL

(chromosome 9) and one grain moisture QTL (chro-

mosome 3). The QTL for silking date detected in the

population DE · F283 at 105 cM on chromosome 1

(Fig. 3) is particularly interesting. In addition to model

(1), it was also detected with model (2) but not with

model (3). The F values curve (Eq. 5) for marker-by-

genetic-background interaction presents a maximum

very close to the QTL position estimated with model

(2). Estimation of the allelic effects nested within

populations underlines inconstancies in ranking. In the

DE · F9005 population, the contrast between the

segregating alleles was aDE – aF9005=–0.33 and in the

population F9005 · F283 the contrast aF9005 –

aF283=0.03. So, based on these values, we expected to

observe in population DE · F283 a contrast aDE –

aF283 equal to –0.30 (i.e. aF283 > aDE). The contrast

estimated in this population was opposite and equal to

+ 0.59 (i.e. aF283 < aDE). So, the difference between

the expected value under the hypothesis of additivity

and the observations (d2) was equal to 0.89. This result

is associated with the lack of consistency between the

ranking of alleles in the multipopulation connected

analyses, (e.g. aF810 > aDE>aF9005>aF283) and the

ranking in individual populations (for instance

aDE < aF9005 in population DE · F9005). When add-

ing this QTL, with disconnected effects, in model (4),

the R2 was increased by 0.75%.

Discussion

Comparison of models for QTL detection

The multiparental design analyzed here allowed the

detection of 46 QTL for four different traits. When

performing individual analyses of each of the six pop-

ulations, only few QTL were detected in two or more

populations (based on overlapping QTL position CI).

This is in accordance with other studies (Beavis et al.

1991; Mihaljevic et al. 2004) who also reported only

poor to moderate QTL congruency for agronomic

traits in different biparental populations of maize.

Consistent with Mihaljevic et al. (2004), congruent

QTL among different populations were often detected

in three crosses, that involved a same parental inbred

with a large allele effect at this QTL, relative to alleles

of the three other parental inbreds.

When compared to single-population analyses,

model (2) detected approximately the same number of

QTL but the two sets of detected QTL were slightly

different, some QTL being detected by model (1) but
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not by model (2) and conversely. It has to be noted that

the F value curve in these regions was often very close

to the threshold, leading to the detection of a QTL

with one model but not with the other. The lack of

consistency between the results of the two models,

which are using the same information, therefore seems

to be mainly attributed to the limited power of both

models.

Taking into account the connections for QTL

detection, (model (3)) allowed us to detect all QTL

detected in single-population analyses (model(1)) but

3, all QTL detected with model (2) but 1 and to detect

15 additional QTL detected neither by model (1) nor

by (2). Model (3), therefore, better valorizes the

information than model (1) and leads to relatively a

larger gain in power of detection than model (2). As a

consequence, model (3) explained a higher proportion

of phenotypic variance than model (2). These results

fall in line with the experimental results obtained by

Rebai et al. (1997) on silking date QTL in maize by

means of simple interval mapping. Moreover, model

(3) led to a reduction of the QTL position CI for the

different traits, when compared to models (2) and (1).

Based on theoretical results, the power of model (3)

was expected to be higher than the power of model (2)

for an additive determinism of the trait, due to a re-

duced number of parameters (Rebai and Goffinet

1993, 2000). On the other hand, Jannink and Jansen

(2001) showed by simulation that considering allele

effects as identical over populations may have a lower

power in case of epistatic effects and some conditions

on the repartition of alleles among parents. They also

concluded that nesting QTL effects within population

only lead to a small reduction of the power of QTL

detection in case of additivity. However, they consid-

ered the case of three connected populations derived

from the cross between three different inbred lines. In

this situation, considering allele effects as identical

over populations reduced the df for the QTL effect

only by one. In our case, the reduction is more sub-

stantial since considering model (3) instead of model

(2) led to remove 3 df per QTL fitted. In this experi-

mental study, out of a total of 46 detected QTL, we

found a single QTL detected by model (2) and not by

model (3), versus 22 detected by model (3) and not by

model (2) (Fig. 4). Only a very small minority of QTL,

therefore, present conditions that lead to an advantage

to model (2) for QTL detection, despite traits analyzed

include grain yield, known to display relatively strong

epistatic effects (see below). This suggests that model

(3) should be preferred to model (2) for QTL detection

in multiparental designs. The advantage of model (3)

over model (2) is expected to increase as the difference

between the number of populations and the number of

inbred lines from which these populations are derived

increases, that is to say as the degree of connectedness

between populations increases.

Besides a clear gain in power, a major interest of

model (3) relative to model (2) is to permit a global

evaluation of allelic effects at each detected QTL. This

allows ranking parental alleles at each QTL, testing for

differences in effects and therefore evaluating the

number of allele classes with equivalent effects. The

balanced number of favorable alleles found for the

parents used in this study illustrates the necessity to

address QTL mapping and breeding within broad ge-

netic pools. The design presented here attempts to do

so but still involved a limited number of parents when

compared to usual breeding practices (e.g. 100 popu-

lations started each year from tens of parents) or the

size of core-collections representing a large fraction of

diversity within one species (e.g. 24 accessions for 96%

of the molecular diversity of a worldwide collection of

Arabidopsis thaliana (McKhann et al. 2004)). The

statistical approach that we used here can in principle

be extended to more complex designs. We assumed

fully informative QTL (one allele per parent), which

led here to a relatively limited number of parameters

(three per QTL using model (3)), and yet needed a

quite long calculation time. If more parents were

considered, the number of parameters would have in-

creased considerably, leading to higher computation

time and/or a loss in power (if a same total population

size was considered). An improvement of the method

in case of more parents could be to reduce the number

of parameters by grouping alleles with equal effects

and testing for class effects. This idea is supported by

our results on a posteriori pairwise comparisons of

additive effects at the QTL (advocated by Rebai and

Goffinet 2000): out of 46 QTL, 26 displayed only two

significant different allelic effects. Jannink and Wu

(2003) proposed a solution to estimate the number of

allelic effects with an MCMC algorithm to infer the

probability that QTL alleles are identical in state. They

evaluated the impact of such a procedure on allelic

effect estimates in comparison to models assuming

parents that carry unique alleles. They showed it was

difficult to accurately assess the number of alleles, ei-

ther when the population sizes were low or when the

parental alleles had close effects. Another solution is to

infer the number of ‘‘real’’ alleles from the genotypes

at markers located around QTL position. Using the

assumption that marker haplotypes are a good indica-

tor of QTL allele sharing, Jansen et al. (2003) showed

by simulation that this a priori information could be

used to reduce the number of parameters in the model
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and to increase power. But using only few markers to

define a haplotype for a QTL might not be sufficient.

So this approach requires a quite dense genetic map

with highly informative markers. Recently, Li et al.

(2005) compared a combined cross QTL detection on

four connected inbred line crosses of mice issued from

five parents to single-population analyses. To reduce

the total number of parameters in the combined anal-

yses, they proposed to encode a priori the five parental

alleles in a biallelic manner. They could do so because

common strains of inbred laboratory mice are mainly

derived from two original subspecies and present a

biallelic segregation for most loci. This may not be

applicable to other species. Contrary to our results,

they did not observe a clear gain in power conferred by

the combined analysis, what may be due to a ‘‘false’’

biallelic encoding. However, the combined cross anal-

ysis allowed them to reduce the QTL position CI when

compared to single-population QTL CI. Other multi-

allelic approaches have been investigated by consid-

ering allelic effects as random (Xu 1998; Yi and Xu

2002; Crepieux et al. 2004). In these approaches, the

allelic effects at each QTL are assumed to be normally

distributed and one parameter per QTL (the variance

explained by the QTL) is estimated. So, the number of

parameters in the model does not increase with the

number of parental lines as in a fixed model. These

approaches are all the more appropriate as the number

of segregating alleles is large and the experimental

design complex.

Epistatic effects

Our results also illustrate that global analysis of con-

nected multiparental designs makes it possible to test

for epistatic interactions of individual QTL with the

genetic background. The approach we used was slightly

different from the one proposed by Jannink and Jansen

(2001). They performed the detection using maximum

likelihood, and first used a ‘‘full’’ model (where allelic

effects were nested within populations) to detect QTL.

Then to test for QTL-by-genetic-background interac-

tions, they kept a ‘‘full’’ model for the cofactors, and

considered a ‘‘reduced’’ model (i.e. considering allele

effects as identical over populations) only for the QTL

under study. The approach we followed is somehow

the reverse one. We performed the QTL detection with

a ‘‘reduced’’ model (by taking into account the con-

nections, model (3)) and then used a ‘‘full’’ model

(without connections, model (4)) only for the QTL

under study. The model we used is more parsimonious

and takes advantage of the gain of power conferred by

model (3).

Compared to former comparable analyses (Char-

cosset et al. 1994; Rebai et al. 1997), our results

underline more significant QTL-by-genetic-back-

ground epistatic effects, especially for grain yield (5

significant tests out of 12). This is consistent with the

complexity of the trait (Butron et al. 2004) and phe-

notypic evidence for epistatic effects. Consistent with

results of Lamkey et al. (1995), Melchinger et al.

(1988) and Moreno-Gonzalez and Dudley (1981), we

found a difference between the mean testcross per-

formance of the six F2 populations and the average

testcross performance of the corresponding parental

lines, which is an indication of epistatic effects. Note,

however, that other studies conducted with the same

approach did not report epistasis (Eta-Ndu and

Openshaw 1999; Hinze and Lamkey 2003), suggesting

that these effects depend on the genetic material which

is considered and possibly environmental factors. All

QTL presenting a significant epistatic interaction with

the genetic background also displayed at least two

significant pairwise interactions with other QTL.

Conversely, some significant interactions were de-

tected between two QTL in cases where none of them

displayed significant interaction with the genetic

background. This may be attributed to both (1) a rel-

atively high proportion of false positives in pairwise

tests and (2) a repartition of alleles among parents so

that several digenic epistatic effects cancel out each

other and result in no significant QTL-by-genetic-

background interactions. The QTL-by-genetic back-

ground interaction test did not allow the detection of

additional QTL showing epistatic effects compared to

QTL-by-QTL interaction test. This was not expected

and might be specific of this experiment.

Some regions were involved in epistatic interactions

for different traits. For example, around position 150

on chromosome 1 (Fig. 1), QTL were detected for all

traits and displayed numerous significant interactions

for grain yield, silking date and index. This region was

reported as presenting significant interactions with the

genetic background (Charcosset et al. 1994). A region

around position 50 on chromosome 9, which had sig-

nificant additive effect for grain moisture and grain

yield, displayed significant epistatic effects for all the

traits. In a study comparing maize growth and devel-

opmental QTL positions to gene localization, Khavkin

and Coe (1997) showed that numerous QTL have been

reported in this region (referred to as bin 9.03), which

corresponds to a cluster of developmental genes.

Developmental genes are known to interact in complex

regulatory patterns which may explain why we de-

tected many epistatic interactions in this region. Lastly,

many digenic interactions were significant for silking
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date and grain yield on chromosome 10 for a region

around position 30. This region corresponds to a major

silking date QTL (r2 = 18% for model (3)), which was

detected in the three populations involving F283 and

presents a significant QTL-by-genetic-background ef-

fect. Interestingly, this region corresponded to a QTL

‘‘hot spot’’ reported by Chardon et al. (2004), in a large

study about flowering time in maize, including 313

QTL from the literature. The numerous interactions

we detected in this region supports the assumption that

it is involved in a complex interaction pattern con-

trolling floral initiation.

Besides interactions between QTL that displayed

significant additive effects, some new ‘‘epistatic re-

gions’’ were detected using a whole genome scan at

marker positions. Interestingly, some of these regions,

that present significant background interactions, cor-

respond to QTL detected in single-population analysis

(model (1)) but not in the multipopulation connected

analysis (model (3)). So the test of interaction with the

genetic background helped us to conclude that epista-

sis at least partly explains differences between results

obtained with the different models. In this study,

epistasis tests were performed in a second step after

QTL detection. The occurrence of chromosome re-

gions showing epistasis without significant additive ef-

fect suggests that it could be beneficial to include

epistasis effects in the QTL detection step. Wang et al.

(1999), showed that including pairwise epistatic inter-

actions as random effects in the model of QTL detec-

tion may improve significantly the power of QTL

detection and the accuracy of the estimated QTL

parameters. A new Bayesian approach also including

epistasis was more recently proposed (Yi et al. 2005).

The authors also concluded that including epistasis

increases the accuracy of the QTL parameter esti-

mates. These methods are not yet implemented in

softwares adapted to multipopulation experimental

design but our results clearly illustrate that these

models deserve consideration for the development of

new versions.

Marker-assisted selection in multiparental

populations

In this experiment, the connections between popula-

tions allowed us to identify the parental origin of

favorable allele(s) at each QTL. An appealing per-

spective to this work from an applied point of view

would therefore be to assemble these favorable alleles

in a single line. This can be achieved thanks to marker-

assisted breeding schemes in which individuals are

selected based on information at markers in regions of

interest (see Servin et al. 2004, for a method adapted to

a multiallelic context). Application of this approach to

multiparental designs has to account for (1) the lack of

polymorphism of markers and (2) the size of CI around

QTL positions. In such context, knowing the genotypes

at markers flanking the QTL position is not sufficient

to control that a given candidate carries the allele of

interest. An haplotype-based approach combining

pedigree information and genotypes at several markers

within the CI is required.

One can anticipate that the efficiency of MAS in

terms of phenotypes of the end product material will

depend on the stability of QTL effects. Discrepancies

have indeed been observed between the predicted ge-

netic gain and the progress obtained after quantitative

trait allele transfer in biparental populations (Zhu

et al. 1999; Bouchez et al. 2002). These could be

interpreted as a lack of stability of QTL effects due to

statistical errors in initial QTL detection, epistasis and/

or interactions with the environment. Consequences of

epistasis might be even more important in a multiallelic

context where the genetic background is highly vari-

able. To prevent from consequences of epistasis one

can imagine selecting only on QTL not involved in

epistatic interactions. In our case, only 2 QTL among

the 12 detected for grain yield with model (3) were not

interacting neither with another QTL nor with the

genetic background. However, the gain of power that

we observed using model (3) versus model (2) indicates

the additive effects of QTL were preponderant.

Moreover, in model (3) the estimated allelic effects at

QTL can be interpreted as the ‘stable’ part of the QTL

effects over the different genetic backgrounds. So one

can expect that selecting on these effects will minimize

the impact of epistasis on the genetic gain.

Beside epistasis, QTL-by-environment interactions

can also generate QTL effects instability. As advocated

by Wang et al. (1999), it is therefore interesting to in-

clude both epistasis and QTL-by-environment inter-

action effects in QTL detection models, first to better

anticipate sources of QTL effect instability but also to

further increase the power of detection and the accu-

racy of QTL parameter estimates. Our populations

were phenotyped in a large range of environments (10

field trials) and genotype · environment interactions

were found significant for all the traits (results not

shown). However, contrary to what was observed in

another study by Moreau et al. (2004), a clustering

approach did not reveal any clear structure among

these trials that would allow us to define groups of

environments to work with. Besides, as no software

was available to combine QTL-by-environment inter-

actions and a multiparental analysis, we decided to
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work on the average performances over the whole

design and did not look for QTL-by-environment

interactions. Further efforts are needed to improve this

approach, but our results already clearly illustrate the

benefits of using connected populations for QTL

detection and MAS. Multipopulation QTL analyses are

certainly a good way to better valorize the numerous

connected populations produced each year in conven-

tional breeding programs to (1) detect QTL in elite

germplasm and identify sources of allelic variation

directly useful for selection and (2) to better under-

stand the genetic architecture of trait, and in particular

evaluate the contribution of epistasis. This should

contribute to strengthen the link between selection and

more fundamental research.
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