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Abstract Most quantitative trait locus (QTL) mapping
studies in plants have used designed mapping popula-
tions. As an alternative to traditional QTL mapping, in
silico mapping via a mixed-model approach simulta-
neously exploits phenotypic, genotypic, and pedigree data
already available in breeding programs. The statistical
power of this in silicomappingmethod, however, remains
unknown. Our objective was to evaluate the power of in
silico mapping via a mixed-model approach in hybrid
crops. We used maize (Zea mays L.) as a model species to
study, by computer simulation, the influence of number of
QTLs (20 or 80), heritability (0.40 or 0.70), number of
markers (200 or 400), and sample size (600 or 2,400 hy-
brids). We found that the average power to detect QTLs
ranged from 0.11 to 0.59 for a significance level of
a=0.01, and from 0.01 to 0.47 for a=0.0001. The false
discovery rate ranged from 0.22 to 0.74 for a=0.01, and
from 0.05 to 0.46 for a=0.0001. As with designed map-
ping experiments, a large sample size, high marker den-
sity, high heritability, and small number of QTLs led to
the highest power for in silicomapping via amixed-model
approach. The power to detect QTLs with large effects
was greater than the power to detect QTL with small ef-
fects.We conclude that gene discovery in hybrid crops can
be initiated by in silico mapping. Finding an acceptable
compromise, however, between the power to detect QTL
and the proportion of false QTL would be necessary.

Introduction

Quantitative trait loci (QTLs) mapping is useful for
dissecting complex traits [Lander and Botstein 1989;
Lynch and Walsh 1998, (p 379); Mackay 2001]. Most
QTL mapping studies in plants have used designed
mapping populations, such as F2 or backcross popula-
tions between two inbreds (Kearsey and Farquhar
1998). As an alternative approach, in silico mapping
aims to exploit existing phenotypic and genomic data-
bases to discover QTLs (Grupe et al. 2001).

The mixed-model approach, which was developed to
exploit massive amounts of phenotypic and pedigree
data in animal breeding (Henderson 1984), has been
successfully adapted in plants (Panter and Allen 1995;
Bernardo 1996). The integration of genomic data in the
mixed-model approach for the purpose of QTL mapping
in hybrid crops was first suggested by Bernardo (1998).
Recently, Parisseaux and Bernardo (2004) found that in
silico mapping via a mixed-model approach can detect
repeatable associations across different populations.
Specifically, they attempted to identify simple sequence
repeat (SSR) markers associated with different traits in
maize (Zea mays L.) by utilizing the following data al-
ready available in a private breeding program: (1) mul-
tilocation phenotypic data for 22,774 single-cross
hybrids; (2) SSR marker data at 96 loci for the 1,266
parental inbreds of the single-cross hybrids; (3) pedigree
records for the 1,266 parental inbreds. By in silico
mapping via a mixed-model approach, they detected 37
SSR markers with significant effects for plant height, 24
for smut [Ustilago maydis (DC.) Cda.] resistance, and 44
for grain moisture.

The statistical power of in silico mapping via the
Parisseaux and Bernardo (2004) approach, however,
remains unknown. It has been shown that the herita-
bility and genetic architecture (e.g., number of QTLs
and distribution of effects) of the trait and the resources
available for QTL mapping (e.g., sample size and
number of markers) affect the statistical power of
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designed QTL mapping experiments (Lander and
Thompson 1990; Beavis 1994; Utz and Melchinger
1994). These genetic and non-genetic factors are also
expected to affect the power of in silico mapping via a
mixed-model approach. Moreover, the false discovery
rate (FDR), which is the probability of a QTL being
false given that a QTL has been declared, has recently
been proposed as another criterion to assess the ability
to detect QTLs (Benjamini and Hochberg 1995; Fer-
nando et al. 2004). Our objective was to evaluate, by
computer simulation, the power of in silico mapping via
a mixed-model approach in hybrid crops. We used maize
as a model species, but the results should generally apply
to other hybrid crops.

Materials and methods

Maize breeding comprises two stages, inbred develop-
ment and hybrid testing (Hallauer 1990). During inbred
development, pairs of elite inbreds that belong to the
same heterotic group are crossed to form an F2 or
backcross population from which new inbreds are
developed. Lines are developed by selfing and are crossed
to one or two inbred testers from a different heterotic
group. The testcrosses are then evaluated in field trials at
several locations (Smith et al. 1999). During hybrid
testing, single-cross hybrids made from pairs of inbreds
from different heterotic groups are evaluated in multi-
location performance trials. The tested hybrids, however,
often account for only 10% to 15% of all potential
combinations of single-crosses (Bernardo 1996).

Our simulation mimicked this two-stage breeding
process in maize. First, we considered two opposite
heterotic groups, each having a total of n1=n2=112
inbreds developed from different ancestral inbreds.
Second, we assumed that n=600 or 2,400 hybrids,
among all potential single-cross hybrids (112·112=
12,544) between the two heterotic groups, had data
available from multilocation performance trails. The
number of inbreds in each heterotic group and the
number of hybrids with available phenotypic data were
chosen to agree with the empirical data of Parisseaux
and Bernardo (2004).

We conducted a total of 64 simulation experiments.
These 64 experiments had contrasting values of six dif-
ferent parameters: level of initial linkage disequilibrium
(t=10 or 20 generations of random mating), significance
level (a=0.01 or 0.0001), number of QTLs (l=20 or 80),
heritability (H=0.40 or 0.70), number of markers
(m=200 or 400), and sample size (n=600 or 2,400 hy-
brids). For each experiment, 50 runs were conducted
with different locations of QTLs and markers on the
genetic map and different inbreds and hybrids. Data
from each run of a particular experiment were individ-
ually analyzed with the mixed-model method and the
results from 50 runs were then summarized. We wrote a
simulation program in C++ and conducted the
simulation and data analysis on an IBM Power4

supercomputer at the Supercomputing Institute for
Digital Simulation and Advanced Computation, Uni-
versity of Minnesota.

Inbred development

Two ancestral inbreds in heterotic group 1 were crossed
and random-mated for t=10 or 20 generations. Like-
wise, two ancestral inbreds in heterotic group 2 were
crossed and random-mated for t=10 or 20 generations.
The purpose of considering both t=10 and t=20 was to
create different levels of initial linkage disequilibrium
(i.e., high for ten generations of random mating and low
for 20 generations of random mating) between the QTL
and markers. A total of 16 founder inbreds were
obtained through single-seed descent from the random-
mated F2 population of each heterotic group.
These founder inbreds were denoted by I1

1, I1
2, ..., I1

16 for
heterotic group 1 and I2

1, I2
2, ..., I2

16 for heterotic group 2.
For heterotic group 1, chain crosses were made among
the 16 founder inbreds, i.e., I1

1·I12, I12·I13, ..., I116·I11. The
recombinant inbreds from I1

1·I12 were then testcrossed to
I2
1, the recombinant inbreds from I1

2·I13 testcrossed to I2
2,

and so on. Heritability on a testcross mean-basis (across
testing locations) during inbred development was 0.40 or
0.70. Based on testcross performance, the best two re-
combinant inbreds from each cross were selected,
resulting in a total of 32 second-cycle inbreds. Using the
same chain-cross and testing system, a total of 64 third-
cycle inbreds were developed. The above process for
inbred development was simultaneously performed for
the heterotic group 2. Coefficients of coancestry among
inbreds within each heterotic group were calculated
from pedigree records by tabular analysis (Emik and
Terrill 1949).

Hybrid testing

A total of n=600 or 2,400 hybrids were assumed eval-
uated in P performance trials. Each performance trial
included 30 different hybrids. The effects of performance
trials were randomly drawn from a normal distribution
with zero mean, and the variance of performance trial
effects was scaled to account for 70% of the total vari-
ation (Delacy and Cooper 1990). The heritability was
adjusted upward from H=0.40 or 0.70 during inbred
development to H=0.67 or 0.88 during hybrid testing.
This adjustment was necessary given that the number of
locations in each performance trial is about three times
greater during hybrid testing than during inbred devel-
opment (Smith et al. 1999).

Genetic model

We considered a published maize linkage map with
1,749 cM for ten chromosomes (Senior et al. 1996).
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A total of l=20 or 80 QTLs and m=200 or 400 markers
were randomly located across the genome. Four alleles
were present at each QTL or marker locus, but each
heterotic group has two alleles at a locus. The two
ancestral inbreds in heterotic group 1 had a QTL
genotype of Q1Q1 or Q4Q4 and a marker genotype of
M1M1 or M4M4 at the odd-numbered loci, and a QTL
genotype of Q2Q2 or Q3Q3 and a marker genotype of
M2M2 or M3M3 at the even-numbered loci. The two
ancestral inbreds in heterotic group 2 had a QTL
genotype of Q2Q2 or Q3Q3 and a marker genotype of
M2M2 or M3M3 at the odd-numbered loci, and a QTL
genotype of Q1Q1 or Q4Q4 and a marker genotype of
M1M1 or M4M4 at the even-numbered loci. For single
crosses between heterotic groups, the four possible
genotypes were Q1Q2, Q1Q3, Q2Q4, and Q3Q4 at each
QTL locus, and M1M2, M1M3, M2M4, M3M4 at each
marker locus.

The effects of QTL followed a geometric series. The
effect of the ith QTL was a function of ai where a=0.9
for l=20 QTL, and a=0.98 for l=80 QTL (Lande and
Thompson 1990). The genotypic values for the four
homozygous genotypes at each QTL were ai for Q1Q1,
1/2 ai for Q2Q2, �1/2 ai for Q3Q3 and �ai for Q4Q4.
Assuming complete dominance among alleles at each
QTL, the genotypic values at the ith QTL for single-
cross hybrids were ai for Q1Q2, a

i for Q1Q3, 1/2 ai for
Q2Q4, and �1/2 ai for Q3Q4. The differences in testcross
general combining ability (GCA) effects were ai between
Q1 and Q4, and 1/2 ai between Q2 and Q3. The testcross
dominance deviations were �1/4 ai for Q1Q2, 1/4 ai for
Q1Q3, 1/4 ai for Q2Q4, and �1/4 ai for Q3Q4.

Mixed model

The mixed model used for analysis with k<m markers
was

y=Xb+M1a1 +M2a2+M3d +Z1g1+Z2g2 +e

where y=n·1 vector of observed performance for a given
trait; b=p·1 vector of fixed effects associated with per-
formance trials; a1=2k·1 vector of GCA effects associ-
ated with the marker alleles in heterotic group 1;
a2=2k·1 vector of GCA effects associated with the
marker alleles in heterotic group 2; d=4k·1 dominance
deviation vector for four hybrid genotypes; g1=n1·1
vector of background GCA effects, not associated with
the marker being tested, of the inbreds in heterotic
group 1; g2=n2·1 vector of backgroundGCA effects, not
associated with the marker being tested, of the inbreds in
heterotic group 2; e=n·1 vector of residual effects; X,
M1,M2,M3,Z1, andZ2 were incidence matrices of 1s and
0s relating y to b, a1, a2, d, g1 and g2, respectively.

The variances of the random effects were
Var(g1)=G1VGCA(1), Var(g2)=G2VGCA(2), and Var(e)=
R VR, where G1=n1·n1 matrix of coefficients of coan-
cestry among group-1 inbreds; G2=n2·n2 matrix of
coefficients of coancestry among group-2 inbreds;

R=n·n matrix with the off-diagonal elements being zero
and the diagonal elements being the reciprocal of the
number of locations from which each phenotypic data
point was obtained. Best linear unbiased estimates
(BLUE) of b, a1, a2, and d (fixed effects), and best linear
unbiased predictions (BLUP) of g1 and g2 (random ef-
fects) were obtained by solving the mixed-model equa-
tions for single crosses (Henderson 1985). Restricted
maximum likelihood (REML) estimates of the variances
were obtained through iteration (Henderson 1985). We
assumed equal numbers of testing locations (s) among
performance trials. Correspondingly, R became an
identity matrix (I) and Var(e) was equal to I(VR/s).

Data analysis

In silico mapping via a mixed-model approach com-
prised three steps. In the first step, a mixed model
ignoring the marker data (i.e., without a1, a2, and d in
the model) was fitted to obtain estimates of VR, VGCA(1),
and VGCA(2) using the above formulas. In the second
step, single-marker analysis was performed for each
marker, using VR/VGCA(1) and VR/VGCA(2) ratios ob-
tained from the first step rather than from new estimates
obtained by iteration. Using REML estimates of
VR/VGCA(1) and VR/VGCA(2) ratios obtained from the
first step reduced the computational time 200- to 400-
fold, with little impact on the markers chosen for the
multiple-marker analysis (i.e., the third step). An F-test
was performed to test the significance (a=0.01 or
0.0001) of the marker effects (a1, a2, and d) as described
by Kennedy et al. (1992). To reduce multicollinearity,
only the marker with the most significant P-value was
chosen if several adjacent markers were significant.

In the third step, multiple-marker analysis was per-
formed by simultaneously fitting effects for those
markers retained from the single-marker analysis. The
BLUE of fixed effects and BLUP of random effects were
obtained by solving the mixed-model equations until
convergence of VR, VGCA(1), and VGCA(2). An F-test at
the a=0.01 or 0.0001 significance levels was performed
for the fixed marker effects. Based on the complete
dominance model, a=1.5·(a1+a2+d) was considered
the estimated effect for the significant marker. The
power of in silico mapping via a mixed-model approach
was evaluated based on the results from the final mul-
tiple-marker analysis. A marker is expected to have a
significant regression coefficient only if it is adjacent to a
QTL (Doerge et al. 1994; Whittaker et al. 1996). A true
positive was therefore declared if a marker had at least
one significant regression coefficient for a1, a2, or d and a
QTL was present in either or both of the marker’s
adjacent intervals. A false positive was declared if a
marker had at least one significant regression coefficient
for a1, a2, or d but no QTL was present in either of the
marker’s adjacent intervals.

In this manuscript, power refers to the ability to de-
tect a given QTL, whereas average power refers to the
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mean power across QTL. Power was calculated as the
proportion of the number of times a particular QTL was
detected out of 50 runs. The correlation was calculated
between the true effect of a QTL and the power to detect
that QTL. Average power was calculated as the number
of true positives divided by the total number of QTLs
simulated, averaged across 50 runs. The FDR was cal-
culated as the number of false positives divided by the
total number of significant markers detected, averaged
across 50 runs.

For a true positive, the true effect of a significant
marker was assumed to be equal to the effect of the
adjacent QTL (ai). The true effect was zero for a false
positive. The correlation was calculated between the
estimated effects and the true effects of significant
markers for each run whenever possible—i.e., more than
two significant markers were identified for that partic-
ular run. The mean and median of these correlation
coefficients across 50 runs were calculated. A chi-square
test was applied to the ratio between the number of
times the effect was overestimated and the number of
times the effect was underestimated, given the null
hypothesis of a 1:1 ratio.

Results

The average map distance between loci (both QTLs and
markers) under different combinations of the number of
QTLs and the number of markers ranged from 3.6 cM
to 8.0 cM (Table 1). The corresponding recombination
frequencies (r) in the initial F2 population between the
ancestral inbreds, for the Kosambi mapping function,
ranged from 0.04 to 0.08. The linkage disequilibrium
before random mating (D0) at the genome level was
similar among different combinations of the number of
QTLs and markers. After t=10 generations of random
mating, the linkage disequilibrium [Dt=D0(1 - r)

t] varied
from 0.09 to 0.16. After t=20 generations of random
mating, Dt varied from 0.04 to 0.11.

Both the number of QTLs controlling a trait and the
heritability of the trait had a prominent effect on
the average power of in silico mapping (Table 2). The
average power decreased as the number of QTLs
increased. The average power across experiments (i.e.,
averaged across experiments at a specified level of a
factor) decreased from 0.34 when 20 QTLs controlled

the trait, to 0.17 when 80 QTLs controlled the trait. This
decrease in the average power was more evident at more
stringent significance levels. The FDR across experi-
ments, on the other hand, decreased from 0.41 when 20
QTLs controlled the trait, to 0.23 when 80 QTLs con-
trolled the trait. Moreover, the average power increased
as the heritability increased. Increasing heritability from
0.40 to 0.70 led to an increase in the average power
across experiments from 0.21 to 0.29, but it led to only a
slightly increase for the FDR, from 0.30 to 0.34. Nota-
bly, the gain in average power (37%) outweighed the
loss in FDR (15%).

Having more resources available for in silico mapping
led to a higher average power. When the number of
markers increased from 200 to 400, the average power
across experiments increased from 0.21 to 0.29 (Ta-
ble 2). The FDR across experiments, on the other hand,
increased from 0.27 to 0.37. With a sample size of 600
tested hybrids, the average power across experiments
was 0.19 and the FDR across experiments was 0.26.
Increasing the sample size to 2,400 tested hybrids led to
a higher average power across experiments (0.32), but
also to a higher FDR across experiments (0.38). The
gain in the average power across experiments (69%),
however, still outweighed the loss in the FDR across
experiments (45%).

We found a strong association between the average
power and the FDR. An increase in the average power at
different levels of each parameter generally led to an in-
crease in the FDR, and vice versa. However, when a high
marker density and a large sample size were used, a more
stringent a level allowed a compromise between the
average power and the FDR. With a=0.01, the average
power across experiments was 0.33 and the FDR across
experiments was 0.47 (Table 2). A more stringent sig-
nificance level of a=0.0001 led to an average power
across experiments of 0.17, half of that at a=0.01, and an
FDR across experiments of 0.17, a 63% decrease from
a=0.01 (Table 2). At both significance levels, the maxi-
mum average power (0.59 for a=0.01, and 0.47 for
a=0.0001) was achieved when a trait was controlled by
20 QTLs and had a heritability of 0.70, linkage disequi-
librium was high (i.e., ten generations of random mat-
ing), and in silico mapping was conducted with 400
markers and 2,400 hybrids. The minimum average power
(0.11 for a=0.01, and 0.01 for a=0.0001) was achieved
when a trait was controlled by 80 QTL and had a

Table 1 Genome-wide linkage disequilibrium before and after 10 or 20 generations of random mating with different numbers of QTLs
and markers

Number
of QTLs

Number
of markers

Map distance
(cM)

Recombination
frequency

Linkage disequilibrium

Before random
mating (D0)

After 10
generations (D10)

After 20
generations (D20)

20 200 8.0 0.08 0.21 0.09 0.04
400 4.2 0.04 0.23 0.15 0.10

80 200 6.2 0.06 0.22 0.12 0.06
400 3.6 0.04 0.23 0.16 0.11
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Table 2 Average power, false discovery rate (FDR), mean and median (in parentheses) of the correlation between estimated and true effects,
and v2 test for the number of underestimates versus the number of overestimates from a ratio of 1:1, using in silico mapping via a mixed-
model approach

Significance
level (a)

Linkage
disequilibrium

Number
of QTLs

Number
of markers

Heritability Number
of hybrids

Average
power

FDR Correlation v2

a=0.01 Higha 20 200 0.40 600 0.28 0.44 0.68 (0.71) NSb

2400 0.43 0.54 0.72 (0.76) U**
0.70 600 0.41 0.45 0.72 (0.76) NS

2,400 0.49 0.62 0.74 (0.76) U**
400 0.40 600 0.38 0.58 0.72 (0.76) NS

2,400 0.53 0.67 0.77 (0.79) NS
0.70 600 0.48 0.59 0.78 (0.80) NS

2,400 0.59 0.73 0.77 (0.77) NS
80 200 0.40 600 0.13 0.24 0.31 (0.38) **

2,400 0.23 0.24 0.32 (0.34) **
0.70 600 0.20 0.22 0.34 (0.36) **

2,400 0.29 0.28 0.36 (0.38) **
400 0.40 600 0.18 0.39 0.34 (0.34) **

2,400 0.31 0.41 0.36 (0.38) **
0.70 600 0.26 0.35 0.36 (0.36) **

2,400 0.37 0.45 0.42 (0.43) **
Low 20 200 0.40 600 0.20 0.52 0.67 (0.67) NS

2,400 0.36 0.59 0.65 (0.65) NS
0.70 600 0.30 0.49 0.69 (0.73) NS

2,400 0.43 0.64 0.67 (0.73) NS
400 0.40 600 0.33 0.62 0.68 (0.70) *

2,400 0.48 0.68 0.73 (0.74) *
0.70 600 0.42 0.63 0.71 (0.73) NS

2,400 0.57 0.74 0.73 (0.74) NS
80 200 0.40 600 0.11 0.24 0.30 (0.36) **

2,400 0.21 0.30 0.35 (0.35) **
0.70 600 0.17 0.23 0.34 (0.34) **

2,400 0.26 0.34 0.36 (0.37) **
400 0.40 600 0.15 0.39 0.35 (0.35) **

2,400 0.31 0.42 0.38 (0.40) **
0.70 600 0.23 0.39 0.39 (0.39) **

2,400 0.39 0.48 0.39 (0.39) **
a=0.0001 High 20 200 0.40 600 0.12 0.11 0.67 (0.87) **

2,400 0.25 0.21 0.62 (0.73) NS
0.70 600 0.21 0.09 0.56 (0.71) **

2,400 0.36 0.36 0.73 (0.75) NS
400 0.40 600 0.19 0.08 0.47 (0.64) **

2,400 0.37 0.31 0.73 (0.78) *
0.70 600 0.30 0.13 0.59 (0.70) **

2,400 0.47 0.46 0.81 (0.85) NS
80 200 0.40 600 0.02 0.07 0.21 (0.48) **

2,400 0.09 0.09 0.24 (0.21) **
0.70 600 0.05 0.05 0.16 (0.25) **

2,400 0.16 0.13 0.31 (0.37) **
400 0.40 600 0.03 0.17 0.17 (0.46) **

2,400 0.15 0.14 0.34 (0.38) **
0.70 600 0.08 0.12 0.19 (0.17) **

2,400 0.25 0.24 0.44 (0.47) **
Low 20 200 0.40 600 0.09 0.08 0.50 (0.77) **

2,400 0.19 0.23 0.70 (0.80) NS
0.70 600 0.13 0.11 0.64 (0.82) **

2,400 0.28 0.40 0.73 (0.82) **
400 0.40 600 0.15 0.10 0.49 (0.77) NS

2,400 0.30 0.24 0.75 (0.85) NS
0.70 600 0.24 0.17 0.64 (0.70) **

2,400 0.42 0.45 0.81 (0.83) NS
80 200 0.40 600 0.01 0.05 �0.47 (�0.90) **

2,400 0.07 0.11 0.28 (0.25) **
0.70 600 0.03 0.06 0.34 (0.43) **

2,400 0.14 0.18 0.38 (0.38) **
400 0.40 600 0.02 0.09 0.01 (0.18) **

2,400 0.12 0.17 0.34 (0.39) **
0.70 600 0.06 0.12 0.35 (0.37) **

2,400 0.23 0.26 0.44 (0.46) **

*, ** v2 test for a ratio of 1:1 significant at the P<0.05, and P<0.01 levels, respectively
a Founder inbreds developed by ten generations (high linkage disequilibrium) or 20 generations (low linkage disequilibrium) of random mating
b NS, Not significant; U, more underestimates, otherwise more overestimates
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heritability of 0.40, linkage disequilibrium was low (i.e.,
20 generations of random mating), and in silico mapping
was conducted with 200 markers and 600 hybrids. The
FDR closely followed this pattern for average power.

The mean of correlation coefficients between the true
effects and the estimated effects was moderately high
when 20 QTLs controlled a trait but was low when 80
QTLs controlled a trait (Table 2). The median of cor-
relation coefficients followed the same pattern. Average
power was low when a trait was controlled by 80 QTLs
and had a heritability of 0.40, linkage disequilibrium was
low (i.e., 20 generations of random mating), and in silico
mapping was conducted with 200 markers and 600 hy-
brids at the a=0.0001 significance level (Table 2).
Consequently, the mean and median of correlation
coefficients were negative.

The correlations between the true effects of individual
QTLs and the power to detect the QTLs ranged from
0.69 to 0.98 and were all highly significant (results not
shown). In our model, the upper quartile QTLs (e.g.,
QTLs 1 to 20 for l=80) had larger effects than the lower
quartile QTLs (e.g., QTLs 61 to 80 for l=80). With
a=0.01, the average power across experiments for the
upper quartile QTLs (0.53) was 3.5-fold that for the
lower quartile QTLs (0.15). With a=0.0001, the average
power across experiments for the upper quartile QTLs
(0.37) was about tenfold that for the lower quartile
QTLs (0.04).

Discussion

In silico mapping has four advantages over designed
mapping experiments (Parisseaux and Bernardo 2004).
First, in silico mapping exploits larger populations than
designed mapping experiments. Second, the phenotypic
data used in in silico mapping are obtained through more
extensive testing under multiple, diverse environments.
Third, the hybrids and inbreds tested typically represent
wider genetic backgrounds. Fourth, the data used for in
silico mapping are available without extra cost.

In plant breeding programs, the phenotypic data are
highly unbalanced and the inbreds and hybrids have a
pedigree structure. The original in silico mapping pro-
cedure proposed by Grupe et al. (2001) does not con-
sider pedigree structures and becomes less powerful
when data are unbalanced. In contrast, in silico mapping
via a mixed-model approach accommodates unbalanced
data, pedigree relationships, and different heterotic
groups of parental inbreds by fitting relevant terms in
the mixed model. Furthermore, the relative effects of the
QTLs are measured by the regression coefficients of the
significant markers, and the approximate positions of
the QTL are indicated by the location of the significant
markers. Interval mapping, within the method we
described, can be conceivably used to estimate the
location of a QTL within a marker interval. An interval
mapping approach, however, might be computationally
prohibitive.

The power of in silico mapping via a mixed-model
approach in hybrid crops was affected by the heritability
and genetic architecture of the trait (e.g., number and
effects of QTLs), the resources available for mapping
(e.g. number of markers and sample size), and the genetic
structure of the particular breeding population (e.g.,
initial linkage disequilibrium among the founder in-
breds). As with designed mapping experiments (Haley
and Knott 1992; Beavis 1994), a large sample size, high
marker density, high heritability, and small number of
QTLs led to the highest power for in silico mapping via a
mixed-model approach. A higher power to detect QTLs
is expected for a trait with a high heritability and sup-
posedly controlled by few QTLs (e.g., grain moisture and
plant height in maize). A moderate power to detect QTLs
is expected for a complex trait with a low to medium
heritability and supposedly controlled by few QTLs (e.g.,
most disease resistance traits in maize). A low power to
detect QTLs is expected for a complex trait with a low
heritability and supposedly controlled by many QTLs
(e.g., stalk lodging and root lodging in maize).

The strong association between the average power
and FDR reflected a main challenge in dissecting com-
plex traits. A compromise between the power to detect
QTLs and the risk of having false positives can be
reached by choosing an appropriate significance level for
a given level of resources (e.g., sample size and marker
density) and trait complexity (e.g., number of QTLs and
heritability).

It would be useful to directly compare the power of a
designed QTL mapping experiment (e.g., Haley and
Knott 1992; Beavis 1994) versus the power of in silico
mapping via a mixed-model approach. Previous simu-
lations of designed QTL mapping experiments (Haley
and Knott 1992; Beavis 1994), however, involved less
realistic assumptions—i.e., fewer, unlinked QTL with
equal effects underlying a complex trait. In contrast, we
considered 80 randomly linked QTLs whose effects fol-
lowed a geometric series. Assuming few, unlinked QTLs
with equal effects optimizes the power to detect QTLs. A
recent study by Bernardo (2004), however, considered a
typical designed QTL mapping experiment with more
realistic assumptions of genetic architecture of a com-
plex trait, as in our study. Specifically, Bernardo (2004)
considered a trait controlled by 30–100 QTLs, a herita-
bility of 0.20 to 0.80, a sample size of 150 F2-derived
families, and 100 markers. For a significance level of
a=0.0001 to 0.01, the average power to detect QTLs
ranged from 0.01 to 0.17 (versus 0.01 to 0.59 in the
current study). These results suggest that the power of in
silico mapping via a mixed-model approach compares
favorably with the power of designed QTL mapping
experiments. Although this comparison involves differ-
ent population sizes used in the two studies, they do
reflect the population sizes available for the two ap-
proaches.

Previous studies using designed mapping populations
have found that if only a small proportion of underlying
QTLs were detected, the total variation accounted for by
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these detected QTLs was overestimated (Beavis 1994;
Utz and Melchinger 1994). Our results agreed with this
general finding. While a lower power was achieved when
80 QTLs controlled a trait, the effects of significant
markers were generally overestimated. Two factors
presumably led to differences between the estimated ef-
fects and true effects of QTL in our study: (1) a QTL
effect being confounded with the recombination distance
between the QTL and a significant marker, and (2) a
QTL effect being confounded with the effects of linked
QTLs. The balance between these confounded factors
determines the estimates of marker effects. As the
number of QTLs increased, separating the effects of
different linked QTLs became more difficult.

In gene discovery, one might want to identify pri-
marily those QTLs with large effects. For traits con-
trolled by few QTLs, the estimated effects of the
significant markers were highly correlated with the ef-
fects of the underlying QTLs. This was not the case for
traits controlled by many QTLs. The significant corre-
lation between the true effects of QTLs and the power to
detect QTLs, however, suggested that if an identified
QTL is verified to be true, it is more likely to be one with
large effect than with small effect, regardless of the
number of QTLs underlying the trait.

Overall, our results indicated that gene discovery in
hybrid crops can be initiated by in silico mapping via a
mixed-model approach. It would be necessary, however,
to find an acceptable compromise between the power to
detect QTLs and the FDR. As with other QTL mapping
methods, the results from in silico mapping should be
followed by fine-mapping at the target regions, sequence
analysis, and functional tests of gene effects (Glazier et al.
2002). In hybrid crops for whichmultiple heterotic groups
exist, in silico mapping via a mixed-model approach can
be applied to different heterotic patterns. Subsequently,
the markers or the genomic regions that show a repeat-
able association with the trait of interest across different
populations can be considered as the prime targets for
further analysis (Parisseaux and Bernardo 2004). Cross
validation by conducting in silico mapping in multiple
heterotic patterns would result in a better control in
overall FDR and provide increased confidence in con-
ducting further investigation in putative QTL regions.
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