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Abstract Analytical formulae are derived for the con-
fidence interval for location of a quantitative trait locus
(QTL) using a saturated genetic map, as a function of the
experimental design, the QTL allele substitution effect,
and the number of individuals genotyped and phenotyped.
The formulae are derived assuming evenly spaced recom-
bination events, rather than the actual unevenly spaced
distribution. The formulae are useful for determining
desired sample size when designing a wide variety of QTL
mapping experiments, and for evaluating a priori the
potential of a given mapping population for defining the
location of a QTL. The formulae do not take into account
the finite number of recombination events in a given
sample.

Introduction

Many studies have shown that individual quantitative trait
loci (QTL) can be detected and mapped with the aid of
genetic markers. With multiple linked genetic markers, the
approximate map location of QTL for a given set of
experimental data can be determined by single marker or
interval mapping. Both analytical (e.g., Lander and
Botstein 1989) and empirical methods (Visscher et al.
1996) have been proposed to obtain confidence intervals
(CI) for estimated QTL location, based on a given set of
experimental results. While it is possible to derive
empirical formulas for various specific situations by

extensive simulation (e.g., Darvasi and Soller 1997;
Darvasi et al. 1993; Ronin et al. 2003), it is clearly
preferable to have a generally applicable simple formula
for the CI of QTL map locations that enables the mapping
potential of complex designs to be evaluated without the
need for simulations. This is becoming particularly
important with the availability of physical maps and
complete genome sequences, since the width of the CI of a
given QTL map location will determine the potential
population of candidate genes for the QTL.

With many tightly linked markers, the limiting factors in
locating a QTL are the number of recombination events in
the sample and the magnitude of the QTL effect relative to
the residual standard deviation (VanRaden and Weller
1994). This enables the map resolution attainable in a
given experiment to be estimated by simply estimating the
expected number of recombinants in a given interval. The
objective of this study is to derive analytical formulas to
predict the CI of any QTL map location within a saturated
genetic map as a function of sample size, QTL effect, and
experimental design.

Theory

A saturated genetic map consisting of many evenly spaced
completely informative markers is assumed. We will
further assume that the number of recombination events in
a finite sample of individuals is a continuous variable,
even though it is in fact discrete. The consequences of
these assumptions will be considered in the Discussion.
QTL location can then be estimated by single marker
mapping, involving a t-test at each marker, and the most
likely QTL location will be at the marker with the greatest
estimated effect. With single markers, Simpson (1989)
proposed that linkage of a segregating QTL to a marker
could be detected by a likelihood ratio test, with the null
hypothesis that the recombination frequency between the
QTL and genetic marker is 0.5. Simpson (1992) showed
for the backcross (BC) design that the statistical power for
this test is equal to that obtained by a t-test with the null
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hypothesis of equal means for the two marker genotypes.
It follows that for single markers, the (1−α) CI for QTL
location, CI(1-α), can be determined from the CI(1-α) for the
QTL effect. Consequently, with single marker mapping,
given that the marker with the greatest estimated QTL
effect is M1, the CI for QTL location will include marker
M2 if the CI for the QTL effect at marker M1 also includes
the effect estimated at marker M2. Thus, the CI for QTL
location can be derived from the CI for the difference of
the expected QTL effect for a marker at the QTL and the
expected effect for a marker at some other chromosomal
location. Clearly, this difference will be due solely to those
individuals that are recombinant in the interval between
the two markers. Therefore, given that the marker with the
greatest estimated QTL effect is M1, the CI for QTL
location will include marker M2 if the CI for QTL effect at
marker M1, considering recombinant individuals only, also
includes the effect estimated at marker M2.

Assuming a normal distribution of the estimated
marker-associated effects and considering recombinant
individuals only, the probability that the QTL effect at
marker M1 also includes the effect estimated at marker M2

is equal to the probability, α/2, of obtaining the value:

Z�=2 ¼ D=SEðDÞ (1)

where Zα/2 is the value of the standard normal variable
corresponding to a probability of α/2. The “contrast”, D=
E(M1)−E(M2), where E(M1) is the expected QTL effect
evaluated at M1, and E(M2) is the expected QTL effect
evaluated at M2; SE(D) is the standard error of D.

D and SE(D) are functions of the experimental design.
Their derivation is now exemplified for a BC design
initiated by a cross between two parental lines. The two
QTL alleles are denoted Q and q, the QTL is assumed to
be located at marker M1, and the parental genotypes are
denoted M1QM2/M1QM2 and m1qm2/m1qm2. Relative to
the genetic markers, there are two recombinant genotypes
in the BC1 generation: M1m2/m1m2 and m1M2/m1m2, with
expected mean values denoted M1=m2 and m1M2:
EðM1Þ ¼ M1m2 �m1M2 and EðM2Þ ¼ m1M2 �M1m2;
giving:

D ¼ EðM1Þ � EðM2Þ ¼ 2M1m2 � 2m1M2

¼ 2ðM1m2 �m1M2Þ (2)

Letting the phenotypic variance within the marker
genotypes equal 1.0, standardized effects at the QTL are:
QQ=+d, Qq=h, and qq=−d. Defining E(M1)=δ=d+h, and
R=the number of individuals carrying a recombinant
chromosome in each marker genotype group, we have:

D ¼ 2ðd þ hÞ ¼ 2� (3)

VarðM1m2Þ ¼ Varðm1M2Þ ¼ 1=R (4)

To derive SE(D), recall that when X and Y are

independent, Var[b(X−Y)]=b2(VarX+VarY). Applying this
to (2) yields

SE2ðDÞ ¼ 4½VarðM1m2Þ þ Varðm1M2Þ� ¼ 8=R (5)

Substituting (3) and (5) in (1), gives

Z�=2 ¼ 2�= 8=Rð Þ0:5 (6)

Defining k as the proportion of the mapping population
included in each marker genotype group, r as the
proportion of recombination between M1 and M2, and N
as the population size, we have: R=rkN. For the BC
design, k=0.5. Substituting rkN for R in (6) gives:

Z�=2 ¼ 2�=ð8=rkNÞ0:5 ¼ �=ð2=rkNÞ0:5 (7)

Note that the interval between markers M1 and M2

defines half of the CI(1-α). Assuming a chromosome of
infinite length, the CI will be symmetrical, so that r=
CI(1-α)/2, with the CI of QTL map location in units of
proportion of recombination. Generally, the CI of map
location is given in cM. To convert cM to proportion of
recombination, cM are first converted to percent recom-
bination using an appropriate mapping function, such as
the Haldane mapping function, and then to proportion of
recombination by dividing by 100. Thus, r=CI*(1-α)/200,
where CI*(1-α) is the CI expressed as percent recombina-
tion. Substituting for r for 2R/N gives:

R ¼ CI�ð1��ÞN=400 (8)

Substituting (8) in (7), gives Zα/2=2δ/(3,200/CI*(1-α)N)
0.5,

and solving for CI*(1-α) and N, yields:

CI�ð1��Þ ¼ 800Z2
�=2=�

2N (9)

and

N ¼ 800Z2
�=2=�

2CI�ð1��Þ (10)

In a similar, but more complex derivation (see the
Appendix) for the F2 design, the contrast between the
appropriate marker genotype groups, D′, is: 2δ/(2−r),
where E(M1)=δ=2d; and SE2(D′)=32/(2−r)2rN (Eqs. 18
and 19). Thus for the F2 design:

Z�=2 ¼ 2�=ð32=rNÞ0:5 ¼ �=ð2=rkNÞ0:5 (11)

For the F2 design only homozygotes for alternative
marker alleles are used to construct the contrast (Appen-
dix). Therefore, k=0.25 for this design. Letting r=
CI*(1-α)/200, substituting in (1), and solving for CI*(1-α)
and N yields:
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CI�ð1��Þ ¼ 1; 600Z2
�=2=�

2N ; (12)

and

N ¼ 1; 600Z2
�=2=�

2CI�ð1��Þ (13)

Taking α=0.05, so that Zα/2=1.96 and substituting δ=d
+h and δ=2d in Eqs. 9 and 12 for CI*(1-α) yields
CI*(1-α)=3,073/(d+h)

2N for a BC design, and CI*
(1-α)=1,537/d

2N for an F2 design. These equations are
virtually identical to those obtained by extensive simula-
tion in Darvasi and Soller (1997).

Equations 7 and 11 can readily be generalized to other
mapping designs according to the corresponding values
for δ, the expectation of the contrast for the marker M1

located at the QTL, and k, the proportion of the mapping
population in each marker genotype group making up the
contrasts for the markers M1 and M2. More complex
mapping designs that accumulate recombination events,
such as advanced intercross lines (AIL, Darvasi and Soller
1995), full-sib intercross lines (FSIL, Song et al. 1999),
and recombinant inbred lines (RIL, Soller and Beckmann
1990) differ from the BC and F2 designs in the proportion
of recombination per cM. To take this into account, Eq. 7
must be modified as follows to convert the proportion of
recombination, r, which is the proportion of recombination
in an F2 or BC generation, into the effective accumulated
proportion of recombination obtained in generation g:

Z�=2 ¼ �D=ð2=tDkDrNÞ0:5 (14)

where δD and kD are the appropriate δ and k values for the
given design; and tD is a factor that converts the proportion
of recombination obtained in generation g into the
effective accumulated proportion of recombination ob-

tained in actuality. Substituting r=CI(1-α)/2 in (14) gives
the general expressions:

CI�ð1��Þ ¼ 400Z2
�=2= �2DtDkDN

� �
(15)

N ¼ 400Z2
�=2= �2DtDkDCI

�
ð1��Þ

� �
(16)

Results

The predicted CI with a saturated genetic map for various
experimental designs are given in Table 1. BC, F2, and
AIL designs are assumed to be initiated from fully inbred
parental lines. Half-sib and full-sib designs in outcrossing
populations (Soller and Genizi 1978) are the equivalent of
BC and F2 designs respectively, assuming that the parents
of the families are heterozygous at the QTL and that the
family size is sufficiently large so that the marker-QTL
phase can be determined virtually without error. The FSIL
design is a variant of the AIL design, adapted to
outcrossing populations. It is initiated as a large F1 family
produced by a mating between two individuals, and is
maintained by continued random mating within the
families of each generation. In the cumulative AIL and
FSIL designs (CAIL and CFSIL), progeny are phenotyped
and genotyped in each generation from the F2 generation
on, to build a cumulating mapping population consisting
of individuals from all of the generations. The mapping
resolution of such a population will depend on the
accumulated recombinants over all generations.

In the AIL design, from the F2 generation on, only half
of the chromosomal regions in any generation will be in
the heterozygous state. Thus recombination accumulates at
a rate of tD=0.5g, relative to the BC and F2 designs, where
g is the number of generations. In the FSIL design, three-
quarters of the descendants of any one of the four parental
chromosomes will be in the heterozygous state. Thus

Table 1 Confidence interval of QTL location with a saturated
genetic map for various experimental designs. δ represents the
contrast value between marker genotype groups for the quantitative
trait (codominance is assumed), tD the effective proportion of
recombination per cM, kD the proportion of the mapping population
in each of the marker genotype groups forming the mapping
contrast, CI1-α the length of the CI of 1-α in percent recombination,
CI(0.95) the length of the 95% CI in percent recombination, and N
(10, 0.25) the required total population size for CI(0.95)=10 cM with
d=0.25. The codes representing the design of the population groups
are as follows: BC backcross, AIL(g) advanced intercross line

carried to generation g, FSIL(g) full-sib intercross line carried to
generation g, CAIL(g) and CFSIL(g) cumulative AIL and FSIL
respectively carried to generation g, RIL(n) recombinant inbred lines
with n individuals phenotyped per line. The additive effect at the
QTL is represented as d. σf =(2h

2+(1−h2)/n)0.5, where h2 equals
heritability in the narrow sense and h2=0.25 is assumed. Zα/2 gives
the value of the standard normal variable with a probability of α/2.
For the CAIL and CFSIL designs the number of individuals per
generation is given in parenthesis, and for the RIL designs the total
number of individuals phenotyped is given in parenthesis

Design δ tD kD CI(1-α) CI(0.95) N(10, 0.25)

BC d 1.0 0.5 800Zα/2
2/δ2N 3,073/d2N 4,917

F2 2d 1.0 0.25 1,600Zα/2
2/δ2N 1,537/d2N 2,458

AIL (g=6) 2d 0.5g 0.25 3,200Zα/2
2/gδ2N 512/d2N 819

FSIL (g=6) 2d 0.75g 0.25 2,130Zα/2
2/gδ2N 341/d2N 547

CAIL (g=6) 2d 0.25g 0.25 6,400Zα/2
2/gδ2N 1,024/d2N 1638 (328)

CFSIL (g=6) 2d 0.38g 0.25 4,210Zα/2
2/gδ2N 674/d2N 1078 (218)

RIL (n=1) 2d/σf 2.0 0.5 400Zα/2
2/δ2N 480/d2N 768 (768)

RIL (n=20) 2d/σf 2.0 0.5 400Zα/2
2/δ2N 207/d2N 330 (6,600)
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recombination accumulates at a rate of tD=0.75g, relative
to the BC and F2 designs. In the RIL design the final
proportion of recombination over small distances is twice
that in the F2 generation, so that tD=2.0 (Soller and
Beckmann 1990).

Assuming codominance at the QTL, the contrast values
will be δD=d for the BC design and δD=2d for the F2 and
AIL designs. The effect for the FSIL designs approaches
δD=2d, depending on the specific configuration of the
marker and the QTL alleles (Song et al. 1999). The
contrast value for the RIL design depends on the number
of individuals phenotyped in each line, and will be
δD=2d/σf, where σf

2 is the variance among means of
inbred lines. σf

2=2h2+(1−h2)/n where h2 is the heritability
in the narrow sense and n is the number of individuals
scored for the quantitative trait from each RIL (Soller and
Beckmann 1990).

As in the BC design, kD=0.5 for the RIL design, for
which one half of all lines are homozygous for one allele
at each marker, and the other half are homozygous for the
alternative allele. In the F2 and AIL designs one quarter of
the population are in each of the two contrasted marker
genotype groups, so that kD=0.25. In the FSIL population,
at the optimal configuration of marker and QTL alleles,
the proportions will be the equivalent of kD=0.25 in each
marker genotype group (Song et al. 1999).

Table 1 also shows the general expressions for CI(1-α) as
a function of Zα/2, δD, tD, kD and N, and specific values for
CI(0.95). These expressions demonstrate that the CI is
inversely proportional to population size and the square of
the contrast value. Thus, methods such as multi-trait
analysis that increase the contrast value (Korol et al. 1995)
can markedly reduce the CI for given population size.
General expressions for N as a function of Zα/2, δD, tD, kD,
and CI(1-α), as derived from Eq. 16, are also presented.

The required number of individuals genotyped to obtain
a CI(0.95) of 10 cM with d=0.25 are listed in the right-hand
column. g=6 is assumed for the AIL and FSIL designs,
and h2=0.25 for the RIL design. Sample sizes are quite
large for the BC and F2 designs, about 5,000 and 2,500
respectively. The numbers of genotyped individuals
required by the AIL and FSIL designs are one-third and
one-fifth respectively those for the F2. Values for the FSIL
assume an optimal configuration of marker and QTL
alleles. Cumulative AIL and cumulative FSIL with g=6
require just twice the total numbers required for a single
generation, but the numbers per generation are only 40%
of the total. Thus, these designs are useful when total
facilities are limited and not elastic. For the RIL design,
the number of individuals genotyped is the total number of
lines, while the number of individuals that must be scored
for the quantitative trait is the number of lines multiplied
by the number of individuals per line. This value is given
in Table 1 in parenthesis. When a single individual is
phenotyped for each line, 768 RIL have mapping power
equivalent to an AIL (g=6); but 330 RIL, each evaluated
on 20 individuals (6,600 individuals scored for the
quantitative trait), has the same mapping power as a BC
sample of 5,000 individuals. The formulas given in Table

1 demonstrate that very large samples are required for high
resolution mapping. Achieving a 1 cM CI(0.95) would
require 50,000 BC individuals, 8,000 AIL (g=–6), or
3,300 RIL with 20 individuals scored per line for a total of
66,000 phenotypes.

The equations for the BC and F2 designs are virtually
identical to Eqs. 1 and 2 of Darvasi and Soller (1997). The
only differences are that the values of k are 3,073 and
1,537, instead of 3,000 and 1,500 respectively, and that the
CI is measured in percent recombination, rather than in
cM. The value of 3,073 is well within the CI for the
empirical estimate of the corresponding parameter derived
by Darvasi and Soller (1997) and denoted “k”. Further-
more, Darvasi and Soller (1997) slightly underestimated
“k”, because they simulated a chromosome of 100 cM.
This imposes an artificial upper limit on the CI. This
problem can also be noted in Fig. 2 of Darvasi and Soller
(1997), where they used only a range of 1–20 cM to
estimate “k”.

The analytical formula derived can be used for any CI
up to 50% recombination on either side of the estimated
QTL location. The expressions in the sixth column of
Table 1 can also be used to derive the minimum value of
d2N for which a valid QTL CI can be derived. A
CI(0.95)≥100 will include any point up along the chromo-
some with up to 50% recombination relative to the point
with the maximum test statistic, which means that a
CI(0.95)>100 is essentially infinite. For the BC design, a
valid CI(0.95) is obtain only if d2N>30.73. For example, if
N=1,000, then a valid CI(0.95) can be obtained only for
d>0.175. If the estimated QTL position is near one end of
the chromosome, a “one-tailed” CI would be more
appropriate than a “two-tailed” CI that includes non-
existent DNA.

Discussion

The formulas we have derived here are only asymptoti-
cally correct. During analysis of an actual data set, the
likelihood profile across the chromosome may be far from
symmetrical, because chromosomes are of finite length,
information content differs among markers, and marker
spacing is not uniform. This would be taken into account
when deriving CI from the data. We emphasize, however,
that the purpose of this note is to derive a priori
expectations for the CI for design purposes, or for general
evaluation of the overall mapping resolution of an
experiment, and not to derive CIs for specific QTL from
an actual data set. In estimating CI for an actual
experimental data set, empirical methods, such as boot-
strap analysis (Visscher et al. 1996), can be used to obtain
the CI of estimated QTL map locations.

Although this study assumed that an infinite number of
markers were genotyped, Darvasi and Soller (1994)
demonstrated that for most experimental designs if
genotyping costs are large compared to phenotyping
costs, the power to detect QTL is economically optimized
by phenotyping many individuals for fewer markers. For
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crosses between inbred lines or half-sib designs the
optimum marker spacing is 80 cM, provided that unlimited
numbers of individuals are available for phenotyping.
Even if phenotyping costs are large relative to genotyping
costs, the optimum marker spacing is no less than 20 cM if
all markers are completely informative (Darvasi et al.
1993).

Percent recombination is close to cM for small values,
but underestimates cM for larger values for most
commonly used mapping functions. Measuring the CI in
cM, rather than percent recombination, would not affect
the relationship between the simulated and the predicted
CI if both are given in the same units, as long as the CI
(0.95) measured in percent recombination is <100.

The equations derived in this study do not account for
the fact that the number of events of recombination in a
finite sample is also finite. Although the expectation of the
number of recombinants will be equal to 2R, the number
of recombinants in a finite sample will have a binomial
distribution, which will increase the variance of the
standard error of the contrast. As noted by Kruglyak and
Lander (1995) in the BC design, N events of recombina-
tion per Morgan are expected in a sample of N individuals.
If in the sample of N individuals, there were no events of
recombination between point x1 and x2 on the chromo-
some, then the probability of QTL location will be equal
across the chromosomal segment x1–x2. [In this case the
likelihood function is completely flat between x1 and x2,
and has first and second derivatives of zero. This is one
reason why generic software, such as Proc NLIN (SAS
1999), often has difficulty obtaining QTL CI.] Thus even
for a gene with complete heritability, the mean length of
the “critical interval” for gene location will be 2/N in units
of Morgans, or 200/N in cM. The critical interval, as
defined by Kruglyak and Lander (1995), differs from the
CI in that with complete heritability there is zero
probability that the gene is outside this interval.

The effect of the finite distribution of events of
recombination will be negligible, unless the QTL effect
is very large relative to the phenotypic standard deviation.
For example even if δ=0.88, then for the BC design, CI
(0.95)=20 for N=200. In this case, 2R=20, and ten
recombinants are expected in each marker class. When
simulating, taking into account the binomial distribution of
the number of recombinants, the standard error of the
contrast was increased by 3.7%. As the effect of the QTL
decreases, the discrepancy from the analytical formula will
also decrease.

We were informed by a reviewer that Visscher and
Goddard (2004), using somewhat different methodology,
also derived the same formulas to predict CI(0.95) for the
BC and F2 designs.

Acknowledgements This research was supported by a grant from
the Israel Milk Marketing Board, the US-Israel Binational
Agricultural Research and Development fund (BARD) and FP5
program of the EU under the BovMAS proposal. We thank A.
Genizi for useful discussions, and the reviewers for their comments.

Appendix

Derivation of a formula for CI of QTL location for an
F2 mapping population using only the recombinant
progeny

The contrast for an F2 mapping population is based on
individuals homozygous for alternative marker alleles.
Thus, to be included in the recombinant F2 mapping
population, an individual must be recombinant for at least
one chromosome, and homozygous for at least one of the
marker alleles. Three of the nine possible F2 marker
genotypes do not meet these criteria. These are the two
homozygous parental types (M1M2/M1M2 and m1m2/
m1m2) and the double recombinant type (M1m2/m1M2).
The remaining six F2 marker genotypes that meet these
criteria are listed in Table 2. The genotypic value of each
genotype, assuming that the QTL is located at marker M1,
and the expected number of individuals having that
genotype in the mapping population are also listed in the
table.

The contrast for an F2 mapping population is composed
of the expected mean value of marker genotype groups
that are homozygous for the alternative markers M1, m1,
M2, and m2. Each of these, however, is composed of two
recombinant marker genotype groups. For example, the
marker genotype group M2M2 is composed of the
recombinant genotype groups: m1M2/M1M2 (class E in
Table 2) with genotypic value h and frequency 2(1−r)r/4
in the entire F2 population, and marker genotype group
m1M2/m1M2 (class D in Table 2) with genotypic value −d,
and frequency r2/4. The mean genotypic value of the
M2M2 group including recombinants only is the mean of
the genotypic values of the classes E and D, weighted by
their relative frequency in the M2M2 recombinant group
i.e., 2(1−r)r/[2(1−r)r+r2] and r2/[2(1−r)r+r2], which
simplifies to 2(1−r)/(2−r) and r/(2−r), respectively.
These relative frequencies are the “weighting factors”
listed in column three of Table 2. The contrast for the F2
mapping population, D′, is computed as follows:

D0 ¼ ðM1M1 �m1m1Þ � ðM2M2 �m2m2Þ (17)

Letting A, B, C, D, E, and F represent their respective
genotypic values, and letting k1=2(1−r)/(2−r), and k2=r/(2
−r), so that k1+k2=1, we have:

Table 2 Composition of the F2 including only recombinant progeny

Class Genotype Weighting factor Number in group Effect

A M1m2/M1M2 2(1−r)/(2−r) 2(1−r)rN/4 d
B M1m2/M1m2 r/(2−r) r2N/4 d
C m1M2/m1m2 2(1−r)/(2−r) 2(1−r)rN/4 −d
D m1M2/m1M2 r/(2−r) r2N/4 −d
E m1M2/M1M2 2(1−r)/(2−r) 2(1−r)rN/4 h
F M1m2/m1m2 2(1−r)/(2−r) 2(1−r)rN/4 h
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M1M1 ¼ k1Aþ k2B
m1m1 ¼ k1Cþ k2D
M2M2 ¼ k1Eþ k2D
m2m2 ¼ k1Fþ k2B

Substituting in (17) gives

D0 ¼ k1Aþ k2Bð Þ � k1Cþ k2Dð Þ½ �
� k1Eþ k2Dð Þ � k1Fþ k2Bð Þ½ �
¼ k1Aþ k1F� k1C� k1Eþ 2k2B� 2k2D
¼ k1 Aþ F� C� Eð Þ þ 2k2 B�Dð Þ
¼ 1= 2� rð Þ½ � 2 1� rð Þ½ �

d þ hþ d � h½ � þ 2r d þ d½ �
� �

¼ 4d= 2� rð Þ
(18)

To calculate SE(D), note that:

�2
A ¼ �2

F ¼ �2
C ¼ �2

E ¼ 1=½2ð1� rÞrN=4� ¼ 4=2ð1� rÞrN
�2
B ¼ �2

D ¼ 4=r2N

Thus:

SE2 D0ð Þ ¼ 4 2 1� rð Þ= 2� rð Þ½ �24= 2 1� rð ÞrN½ �
þ2 2r= 2� rð Þ½ �2 4= r2Nð Þ½ �
¼ 4 2 1� rð Þ½ �= 2� rð Þ2 4=rN½ �
þ2 4= 2� rð Þ2

h i
4=N½ �

¼ 32 1� rð Þ= 2� rð Þ2rN þ 32= 2� rð Þ2N
¼ 32 1� rð Þ þ 32r½ �= 2� rð Þ2rN

h i
¼ 32= 2� rð Þ2rN

(19)
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