
Abstract Increasing the stearic acid content to improve
soybean [Glycine max (L) Merr] oil quality is a desirable
breeding objective for food-processing applications. 
Although a saturated fatty acid, stearic acid has been
shown to reduce total levels of blood cholesterol and 
offers the potential for the production of solid fat prod-
ucts (such as margarine) without hydrogenation. This
would result in the reduction of the level of trans fat in
food products and alleviate some current health con-
cerns. A segregating F2 population was developed from
the cross between Dare, a normal stearic acid content
cultivar, and FAM94-41, a high stearic acid content line.
This population was used to assess linkage between the
Fas locus and simple sequence repeat (SSR) markers.
Three SSR markers, Satt070, Satt474 and Satt556, were
identified to be associated with stearic acid (P < 0.0001,
r2 > 0.61). A linkage map consisting of the three SSR
markers and the Fas locus was then constructed in map
order, Fas, Satt070, Satt474 and Satt556, with a LOD
score of 3.0. Identification of these markers may be use-
ful in molecular marker-assisted breeding programs tar-
geting modifications in soybean fatty acids.
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Introduction

Over the past decades soybean [Glycine max (L) Merr]
has become an important crop because of its varied use-
fulness in an array of products, including pharmaceuti-

cals, livestock feed, and industrial and food products.
Products containing soybean have, for example, an abili-
ty to lower serum cholesterol levels (Kito et al. 1993).
Soy products such as tofu, soymilk, tempeh, flour, con-
centrates, isolates, textured protein and oil are increas-
ingly popular as healthy foods (Liu 1997). Improvements
in nutritional value and functional properties of soybean
proteins and oils is a major objective in the food-
processing industry (Utsumi et al. 1997). This provides
breeders with an incentive and a challenge to optimize
the composition and concentration of soybean protein
and oil.

Soybean oil accounts for about 30% of the world’s
vegetable oil market (Rebetzke et al. 1998). The average
fatty acid content of commercial soybean oil is 11%
palmitic, 4% stearic, 24% oleic, 54% linoleic and 7% 
linolenic (Hui 1996). Soybean genotypes with modified
fatty acids, including stearic acid, are useful for certain
food and industrial products.

Soybean breeders would benefit by having the poten-
tial to increase stearic acid, because approximately 52%
of USA soybean oil is utilized for the production of vari-
ous ‘baking fats’ such as margarines and shortenings.
The solid-fat content of a vegetable oil determines its
suitability for use in the production of baking fats. 
A common industry parameter is the solid-fat index
(SFI), which is directly related to the concentration of
saturated fatty acids in vegetable oil. The process of hy-
drogenation increases the SFI of soybean oil in order to
make it suitable for use as margarine or for shortening.
However, hydrogenation also forms trans fatty acids.
Public concerns regarding trans fatty acids has prompted
the U.S. Food and Drug Administration (FDA) to pro-
pose a regulation (U.S. FDA 1999) which will require
food manufacturers to list the levels of trans fatty acids
on food labels. Hence, vegetable oil processors are ac-
tively seeking to find ways to minimize hydrogenation,
while maintaining quality products. A soybean oil,
which contains approximately 30% total saturates, can
make a suitable trans-free margarine through the process
of interestification (List et al. 2000). Palmitic acid and
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stearic acid are the two predominant saturated fatty acids
found in soybean oil. Unlike palmitic acid, stearic acid
has been show to either reduce or to have no effect on
serum cholesterol levels in humans (Emken 1994;
Grundy 1994; Kris-Etherton and Yu 1997). Identification
of novel sources of soybean with an enhanced stearic ac-
id content will help to meet the needs of consumers and
the oil-processing industry.

Stearic acid concentration in soybean may be geneti-
cally altered by mutations at the Fas locus. Nearly all the
variants currently known have been induced by chemical
or X-ray mutagenesis. Five soybean germplasm lines are
reported to carry modified stearic acid alleles: fasa [A6,
(Hammond and Fehr 1983)], fasb [FA41545 (Graef et al.
1985a)], fas [A81-606085, (Graef et al. 1985b)], st1
[KK-2 (Rahman et al. 1997)] or st2 [M25, (Rahman et al.
1997)]. As reported by Graef et al. (1985b), fasa (30%
stearic acid), fasb (15% stearic acid) and fas (19% stearic
acid) are allelic and represent different mutations in the
same gene.

In N-nitroso-N-methyurea (NMU)-treated sunflower
(Helianthus annuus L.), two additive alleles designated
fas2 and fasx have been described for determining lower
stearic acid concentration (Miller and Vick 1999). In 
ethylmethanesulfonate (EMS)-treated Arabidopsis two
alleles influencing stearic acid concentration have been
observed (Lightner et al. 1997). These alleles represent
mutations at loci designated Fab and are identified as
Fab2-1 (20% stearic acid) and Fab2-2 (6% stearic acid).
Another property of these alleles in Arabidopsis is to
cause up to a 5-fold reduction in plant size. Interestingly,
fasa, fasb and fas alleles also severely depressed yield in
soybean (Lundeen et al. 1987; Hartman et al. 1997). This
decrease in yield may be one of the reasons for the slow
progress in the development of acceptable commercial
cultivars with higher stearic acid content.

A newly developed soybean line, FAM94-41, carrying
a natural mutation, fasnc, has been recently described
(Pantalone et al. 2002). FAM94-41 is an agronomically
robust high stearic acid line, which may become useful
in reversing the apparent yield depression of material 
developed with other fas alleles.

An initial step toward the testing of this hypothesis
would be the identification of molecular markers closely
associated with stearic concentration. Such markers have
not yet been reported in soybean and could enable 
further marker-assisted breeding for rapid genetic gain.
In this report, we identified and mapped SSR markers
(Akkaya et al. 1992; Cregan and Quigley 1998; Cregan
et al. 1999) linked to the Fas locus using bulk segregant
analysis (Giovannoni et al. 1991; Michelmore et al.
1991).

Materials and methods

Plant material

The genetic material used consisted of F2 and F2:3 individuals
from the cross between the parental lines Dare (normal stearic 

acid content approximately 4%) and FAM94-41 (high stearic acid
content approximately 7%). The cross was made at the University
of Tennessee in the summer of 1998. The F1 was grown at the
Knoxville Experiment Station in Knoxville, Tenn. in 1999. F2
individuals were grown at the Knoxville Experiment Station in
Knoxville, Tenn., in 2000.

Gas chromatography

Fatty acid analyses were performed using gas chromatography, as
described by Hammond, (1991). Fatty acids were extracted by
soaking crushed seed chips with 0.5 ml of a mixture of chloro-
form:hexane:methanol (8:5:2 v/v/v) for a minimum of 4 h. 
Extracts were subsequently transferred to a 1.5-ml autosampler 
vial, and 75 µl of methylating reagent [methoxyde/methanol: pe-
troleum ether: ethyl ether (1: 4: 2 v/v/v/)] were added and the vial
tightly capped with a crimper.

Composition of palmitic, stearic, oleic, linoleic and linolenic
acids were determined with a Hewlett-Packard model HP 6890
gas chromatograph (Palo Alto, Calif.) equipped with a model 7673
autosampler, a flame ionization detector, and an immobilized 30 ×
0.53-mm inner diameter Alltech AT-Silar capillary column with an
0.5 µm fused stationary phase. Operating conditions were as fol-
lows: carrier, Helium (20 ml/min); 20:1(v/v) split injection; injec-
tion temperature 250 °C; detector temperature 275 °C, and column
temperature 230 °C. The RM-1 standard (suitable for measuring
soybean oil) was used to calibrate and determine the relative fatty
acid content of each of the experimental samples.

Bulked segregant analysis

Chipped F2 and F2:3 seeds from the cross Dare × FAM94-41 were
used to determine fatty acid composition. Twelve single seeds
from each extreme were identified and germinated. DNA was iso-
lated from young F2 and F2:3 leaves according to Fulton et al.
(1995), or using the QIAGEN DNeasy Plant Mini Kit (QIAGEN
Inc. Valencia, Calif.). Aliquots of 2 µg of DNA from each individ-
ual were bulked together into two groups: with a high and normal
content of stearic acid. Each combined mixture was then diluted to
a final concentration of 20 ng/µl (Giovannoni et al. 1991; Michel-
more et al. 1991). The DNA bulks were screened with 85 random
SSR markers distributed throughout the 20 molecular linkage
groups, and 16 other SSR markers which mapped to molecular
linkage group (MLG) B2 (Cregan et al. 1999).

PCR amplification and analysis

PCR conditions in a final volume of 12 µl containing 20 ng/µl of
template DNA, were: 1 µl of × 1 PCR-2 Klentaq buffer (Ab Pep-
tides, Inc. St Louis, Mo.); 0.2 mM of each deoxynucleotide tri-
phosphate (USB Corp., Cleveland, Ohio); 1.0 µM of each forward
and reverse SSR primer (SIGMA Genosys, The Woodlands, Tex.);
and 0.5 Units of KlenTaq1 polymerase (Ab Peptides, Inc. St Louis,
Mo.). PCR reactions were carried out in a Hybaid multiblock
thermocycler (CLP, San Diego, Calif.) with the following profile:
(1) 94 °C for 3 min × 1 cycle; (2) 94 °C for 25 s, 47 °C for 25 s
and 72 °C for 1 min × 35 cycles; and finally (3) 72 °C for 5 min ×
1 cycle. PCR products were then separated by electrophoresis us-
ing a 6% non-denaturing polyacrylamide gel containing ethidium
bromide dye for visualization. Loci polymorphic between the
bulks were confirmed to correlate with the polymorphisms 
between the parents, Dare and FAM94-41, and were used to
screen F2 individuals in order to determine segregation ratios and
map order.
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Statistical analyses and mapping

Stearic acid F2 genotypic classes were constructed based upon two
standard deviations about the parental means (Narvel et al. 2000;
Rahman et al. 2001; Primono et al. 2002). Molecular marker F2
genotypic classes for Satt070, Satt556 and Satt474 were construct-
ed based upon the observed DNA banding pattern of the parents 
(a random line that expressed the same allele as FAM94-41 for
that specific SSR locus was designated as an FAM94-41 type; a
random line that expressed the same allele as Dare for that specific
SSR locus was designated as a Dare type; a random line that 
expressed both parental alleles at that specific SSR locus was 
designated as a heterozygous type. Chi-square analyses were per-
formed to determine goodness of fit with expected 1:2:1 F2 geno-
typic class ratios.

Data were analyzed using SAS (SAS Institute Inc., 1998, Cary.
N.C.) to establish associations between the trait and the SSR
markers. Regression of stearic acid content in the F2 population
was used to establish the linkage between the Fas locus and the
markers. The Mapmaker program (Lander et al. 1987) was used to
develop a linkage map for the Fas locus in our population. The
most-likely order was determined using a LOD threshold of 3.0.

Results and discussion

Fatty acid analysis of F2 seeds of the population from the
cross between Dare and FAM94-41 demonstrated the 
existence of three stearic acid groups: one of normal
content (stearic acid ≤ 4%), one of high content (stearic
acid > 6%), and a third (intermediate) group formed by
individuals whose stearic acid content was between 4
and 6% (Fig. 1). These stearic acid classes fit χ2 good-
ness of fit criteria for 1:2:1 genotypic class ratios 
(Table 1). This is consistent with the observation that an
elevated stearic acid in FAM94-41 is governed by an 
alternative allele showing single gene inheritance 
(Pantalone et al. 2002). 

From the total of 101 SSR primers tested, three
(satt070, satt474 and satt556) showed strong and consis-

tent polymorphisms between the two extreme bulks of F2
individuals, indicative of linkage with the Fas locus.
These three SSR markers showed the same correspond-
ing pattern of polymorphisms between the two parents:
for each marker, the banding pattern for the normal
stearic acid content bulk corresponded to the pattern in
Dare; the banding pattern for the high stearic aid content
bulk corresponded to the one in FAM94-41. DNA from
bulks of normal or high stearic content in the F2:3 indi-
viduals also exhibited the corresponding banding 
patterns, indicative of hertitable transmission of this trait.
(Fig. 2). 

Results presented in Table 1 suggested a strong asso-
ciation between each of the markers and the Fas locus
(r2 ≥ 61%). The P value for additive genetic effects was
highly significant (P < 0.0001). Our report is the first to
identify SSR markers on MLG B2, which are associated
with the Fas locus, governing stearic acid concentration.

Rennie and Tanner (1989) previously showed that Fas
and Fan loci are linked at a distance of 21.6 ± 1.7 map
units, and also that Fan and Idh2 are linked at a distance
of 24.6 ± 2.6, 25.2 ± 3.5 and 24.3 ± 3.4, 24.7 ± 3.5 map
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Fig. 1 Frequency distribution of stearic acid concentration of F2
individuals from the cross between the normal soybean cultivar,
Dare, and the elevated stearic acid line, FAM94-41

Table 1 Markers significantly associated with variation in 18:0 content in an F2 soybean population of Dare × FAM94-41

Item 18:0  Db Satt070  Db Satt556  Db Satt474  Db

Genotypic Genotypic Genotypic Genotypic
classa classa classa classa

FAM94-41 type 24 0.04 24 0.23 23 0.04 22 0.41
(18:0 > 6%)
Heterozygous type 41 0.54 39 0.46 36 1.45 39 0.57
(4% < 18:0 ≤ 6%)
Dare type (18:0 ≤ 4%) 27 0.70 24 0.23 29 0.04 24 0.18
Totalc 92 1.28 87 0.92 88 1.53 88 1.16
R2 0.67 0.65 0.61
Additive genetic effect P < 0.0001 P < 0.0001 P < 0.0001
Dominance genetic effect P < 0.05 NS P < 0.05

a 18:0 (stearic acid) genotypic classes constructed based upon two
standard deviations about the parental means; Satt070, Satt556
and Satt474 genotypic classes constructed based upon observed
DNA banding pattern of the parents (a random F2 individual that
expressed the same allele as FAM94-41 for that specific SSR lo-
cus was designated as an FAM94-41 type; a random F2 individual
that expressed the same allele as Dare for that specific SSR locus
was designated as a Dare type; a random F2 individual that ex-
pressed both parental alleles at that specific SSR locus was desig-
nated as a heterozygous type)

b D = Squared deviation from expectation of a 1:2:1 F2 genotypic
class ratio
c Total number of individuals analyzed reflects missing data for in-
dividuals whose bands were not scoreable for a specific marker;
total sum of squared deviations which are less than the tabled val-
ue of χ2

(0.05, 2 df) = 5.99 indicate that the data fit the expected
1:2:1 F2 genotypic class ratio



units for the crosses: Maple Arrow × PI 361088B, A5 ×
N78-2245, N78-2245 × A5 and N78-2245 × C1640.
These authors established that the genes Fan, Idh2 and
Fas were placed on the same classical linkage group 17
and suggested the order Fas, Fan and Idh2 (Rennie and
Tanner 1989).

Brummer et al. (1995) placed the Fan locus close to
RFLP markers pB194-1 and pB124 on MLG B2, using a
segregating population from the cross between C1640
and Zucc. PI 479.450. Since no molecular markers
linked to the Fas locus have yet been reported, the three
SSR markers that we identified are an important finding.

To assess the most-likely position and order of these
markers on MLG B2, we used Mapmaker to determine
the likelihood estimates for possible linkage. Results
showed that Satt070, Satt474 and Satt556 are on the
same linkage group as the Fas locus, with a LOD score
of 3.0. The most-likely order is Fas, Satt070, Satt474
and Satt556. The distance between the Fas locus and the
closest marker, Satt070, was 12.3 cM; Satt474 and
Satt556 were found at distances of 14.2 and 17.8 cM, 
respectively, from the Fas locus (Fig. 3). The order 
between the three SSR markers was consistent with that
proposed by the University of Utah (Cregan et al. 1999)
and also reported on the latest map from Cregan (person-
al communication), but differed from the map developed
by the University of Nebraska. The observation that all
SSR markers located south of Satt070 generated no poly-
morphisms between the parents (data not shown) did not
allow more precise mapping. Nevertheless, it is known
that sample size and the number of available markers per
linkage group may influence genetic distances and order.
Further investigations using other marker types such as
RFLP, AFLP or SNPs, for example, may be required to

determine a higher density map of the Fas locus. These
markers would be useful for recognizing high stearic 
acid lines before flowering and therefore be valuable for
determining desirable parents in a molecular-assisted
breeding program. 

The information in this study establishes a foundation
whereby map-based markers can be used to assist selec-
tion for stearic acid concentration in soybean. Further 
research using different populations from more geneti-
cally distant parents may provide a more-precise location
for the Fas locus and other genes involved in soybean
fatty acid modification.
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