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Abstract We made an update of the intervarietal molec-
ular marker linkage map of the wheat genome developed
using a doubled-haploid (DH) population derived from
the cross between the cultivars ‘Courtot’ and ‘Chinese
Spring’. This map was constructed using 187 DH lines
and 659 markers. The genome was well covered (more
than 95%) except for chromosomes from homoeologous
group 4 and chromosomes 5D and 7D, which had gaps
slightly larger than 50 cM. A core-map based on a set of
200 anchor loci (one marker each 18.4 cM) was devel-
oped. The total length of this map was 3,685 cM which
is similar to the size of the international reference map of
the ITMI population (3,551 cM). Map coverage was
identical for the three genomes (A, B and D) and for the
number of anchor loci, as well as for the size of the map.
Using this map, QTLs for several agronomic traits were
detected on phenotypic data from the population grown
in Clermont-Ferrand (France) under natural field condi-
tions over 6 years, and in Norwich (UK) in controlled
conditions and under natural field conditions in 1 year.
Almost all of the 21 chromosomes were involved in at
least one trait. However, several regions seemed to con-
tain gene clusters either for grain traits (and thus bread-
making quality) or plant development traits.

Keywords Microsatellites · Genetic map · QTL analysis ·
Intervarietal cross · Molecular markers

Introduction

In hexaploid bread wheat (Triticum aestivum L. em.
Thell, 2n = 6x = 42), molecular marker linkage maps
have been published either in the form of separate ho-
moeologous groups such as groups 1 (Van Deynze et al.
1995), 2 (Devos et al. 1993; Nelson et al. 1995a), 3
(Devos et al. 1992; Nelson et al. 1995b), 4, 5 (Xie et al.
1993; Devos et al. 1995; Nelson et al. 1995c), 6 (Jia et
al. 1996; Marino et al. 1996) and 7 (Chao et al. 1989;
Nelson et al. 1995c), or as complete maps (Liu and
Tsunewaki 1991; Gale et al. 1995; Cadalen et al. 1997;
Messmer et al. 1999). However, owing to the poor levels
of polymorphism often encountered in wheat (Chao et al.
1989; Cadalen et al. 1997), mapping strategies were
most often directed toward the use of wide crosses, in-
volving either a synthetic wheat and a variety such as
‘Chinese Spring’ (Gale et al. 1995) or ‘Opata’ (Nelson et
al. 1995a, b, c) as parents, or crosses between ‘Chinese
Spring’ and Triticum spelta (Liu and Tsunewaki 1991;
Messmer et al. 1999).

One of the aims of developing such maps is the elabo-
ration of strategies to access genes of interest underlying
quantitative trait loci (QTLs). An elegant model for es-
tablishing genetic/physical map relationships was pro-
posed by Gill and Gill (1993) from a set of deleted wheat
lines (cv Chinese Spring). More than 400 deletion lines
were isolated for the 21 chromosomes after introducing a
gametocidal chromosome from Aegilops cylindrica that
produced chromosomal breakages on the wheat chromo-
somes (Endo 1988; Endo and Gill 1996). This unique
material was used to physically map RFLP probes onto
sub-arm chromosomal regions for homoeologous groups
1 (Kota et al. 1993; Gill et al. 1996a; Tsujimoto et al.
1999; Ma et al. 2001), 2 (Delaney et al. 1995a), 3 
(Delaney et al. 1995b; Ma et al. 2001), 4 (Mickelson-
Young et al. 1995), 5 (Gill et al. 1996b), 6 (Gill et al.
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1993a; Weng et al. 2000) and 7 (Werner et al. 1992;
Hohmann et al. 1995a, 1995b). Röder et al. (1998b) also
physically mapped a restricted set of microsatellites on
chromosomes of homoeologous group 2. Zhang et al.
(2000) saturated the1BS satellite region with AFLP
markers. Deletion mapping strategy has allowed the de-
lineation of chromosomal regions for some important
genes like Ph1 on 5BL (Gill et al. 1993b), Vrn1 on 5AL
(Sarma et al. 1998), Ha on 5DS (Sarma et al. 2000) and
Q on 5AL with the isolation of ‘candidate clones’, by
combining a fingerprinting cDNA approach, Northern
analysis and deletion mapping (Kojima et al. 2000).

However, the genetic dissection of complex agronom-
ic traits through QTL analyses requires the development
of molecular-marker linkage maps in an intervarietal
context. Such a population of doubled-haploid lines was
developed using the French cultivar ‘Courtot’ and the
well known line ‘Chinese Spring’ as parents (Cadalen et
al. 1997). The original ‘Courtot’ × ‘Chinese Spring’
(CtCS) map, constructed using 293 RFLP markers, cov-
ered only 60% of the whole genome, mainly because of
the scarcity of markers on the D-genome chromosomes.

Recently, however, we developed a set of D genome-
specific microsatellites using Triticum tauschii as a ge-
nomic DNA donor for the production of a microsatellite-
enriched library (Guyomarc’h et al. 2002). A large pro-
portion of these microsatellites mapped on the D genome
of the CtCS map. Thus, the objective of the present
study was to establish a new version of the ‘Courtot’ ×
‘Chinese Spring’ linkage map, and to use this to reana-
lyse all previous data for the QTLs that were detected
using this cross for bread-making quality traits as well as
for development traits (plant height, wheat/rye crossabil-
ity, ear compactness, photoperiod response).

Materials and methods

Plant material and trait evaluation

The population consisted of 217 doubled-haploid (DH) lines and
was produced through anther culture from Courtot (Ct) × Chinese
Spring (CS) F1-hybrids (Félix et al. 1996; Cadalen et al. 1997).

One hundred and six lines were genotyped for all the markers and
an additional set of 81 DH lines were genotyped only for anchor
loci. Depending on the trait to be studied, various sets among
these 187 entries were sown together with the parents (autumn
sowing) at Clermont-Ferrand over several years (1993–1998; see
Table 1). Three-row plots (1.5 m) were grown in a nursery with
two replications under normal field conditions with fungicide ap-
plication to control rusts and powdery mildew. 

The traits were evaluated according to the different procedures
described in the publications (for references see Table 1).

Chromosomal assignment of anchor loci was realised using a set
of 19 nulli-tetrasomic (NT) and 35 di-telosomic (DT) lines, kindly
provided by Dr. Steve Reader (John Innes Centre, UK). This was
completed by a set of 85 characterized wheat deletion lines kindly
provided by Dr. Bikram Gill (Kansas State University, USA).

Molecular analysis

The probes used in this study, as well as the techniques for DNA
extraction, digestion, electrophoresis, blotting and hybridization,
were described by Cadalen et al. (1997). The protocol using non-
radioactive probes was detailed in Lu et al. (1994) and Sourdille et
al. (1996). Several microsatellites (Devos et al. 1995; Plaschke et
al. 1995, 1996; Röder et al. 1995, 1998b; Bryan et al. 1997; 
Guyomarc’h et al. 2002) were also mapped on this population.
Protocols for PCR reactions were as described in Tixier et al.
(1998), and the detection of microsatellites using a non-radioac-
tive silver-nitrate staining method was described by Tixier et al.
(1997). Some AFLP markers obtained following the procedure de-
scribed in Bert et al. (1999) were also added to the map.

Construction of the map

Segregation distortion for all the loci was tested using a chi-square
test. Mapmaker/exp version 3.06 (Lander et al. 1987) was used to
construct the maps for biased or unbiased markers separately.
Linkage groups were established using LOD and θ thresholds of 5
and 0.25 respectively. The genetic distances were calculated using
the Kosambi (1944) mapping function. Anchor loci were chosen
according to the following criteria: absence of segregation distor-
tion (except for chromosomes 2B and 6B), minimum of missing
data and optimal spacing along the chromosomes.

QTL analysis

The associations between markers and the various traits were eval-
uated by a one-way ANOVA with α = 0.001 to keep the overall
type-I error risk below 5%, in order to determine the markers hav-

Table 1 Different traits observed on the Courtot × Chinese Spring population which were submitted to QTL analysis

Trait Abbreviations No. of Plants Years Reference

Plant height H 106 93, 94, 95 Sourdille et al. 1998
Pentosan viscosity Visc. 91 94,95 Martinant et al. 1998
Crossability K 187 97 Tixier et al. 1998
Powdery mildew R 138 98 Sourdille et al. 1999
Bread makinga W, Hard., Prot. 169 94, 95, 96 Perretant et al. 2000
Heading timea,b HT, LD, DLS 172, 189, 140 94, 95, 97, 98 Sourdille et al. 2000a
Ear compactnessa Cp, Ns, Sl 172, 189, 144 94, 95, 98 Sourdille et al. 2000b
Awning Awn 144 98 Sourdille et al. 2002

a Several related traits were studied in these cases: Bread-making
quality: W = strength of the dough; Hard. = grain hardness; Prot. =
% protein content. Heading time: HT = heading time; LD = long
day conditions; DLS = difference between long- and short-day
conditions. Ear compactness: Cp = ear compactness; Ns = number
of spikelets; Sl = spike length

b Photoperiod response and heading time were evaluated in Nor-
wich in 1997 and 1998 respectively, on 140 entries. Heading time
only was evaluated in Clermont-Ferrand in 1994 and 1995 on 172
and 189 entries respectively
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ing the main effects. Then, estimates of the locations of the QTLs,
origins of the positive alleles and additive values of the QTLs
were assessed for each linkage group using the marker regression
method according to Kearsey and Hyne (1994), the most signifi-
cant markers from the other groups being used as covariates as
proposed by Jansen and Stam (1994). The 95% confidence inter-
vals of the QTL locations and effects were established by boot-
strapping (Visscher et al. 1996) using 500 replicates.

Results

The first version of the CtCS map obtained from the DH
population was constructed using 293 markers and was
detailed by Cadalen et al. (1997). The map covered near-
ly 1,800 cM (60% of the genome) with an average of one
marker each 7.6 cM. However, the D genome was poorly
represented and no markers were assigned to chromo-
somes 2D, 4D and 5D. The development of microsatel-
lites (Röder et al. 1998b; Guyomarc’h et al. 2002) has al-
lowed a new map to be obtained. This second version of
the map (Fig. 1) was constructed using a set of 200 an-
chor loci delimiting 178 linkage blocks (‘bins’). This
map now covers 3,685 cM which is slightly larger than
the observed size for the ITMI map (3,551 cM) derived
from the cross between a synthetic wheat [reconstructed
by hybridization between Triticum dicoccum (AABB)
and T. tauschii (DD)] and the variety Opata (Nelson et
al. 1995a, b, c; Van Deynze et al. 1995; Marino et al.
1996). The whole genome was covered except for chro-
mosomes from homoeologous group 4 and chromosomes
5D and 7D which showed residual gaps slighty larger
than 50 cM. A similar percentage of anchor markers cov-
ered a similar length of map for the three genomes: 35%
of the loci representing 34% of the size were assigned to
the A genome, 34% of the loci representing 32.5% of the
size were assigned to the B genome, 31% of the loci rep-
resenting 33.5% of the size were assigned to the D ge-
nome. However, among the 659 mapped loci, the D ge-
nome was under-represented with only 171 loci (26%),
while 37% and 34% of the loci were assigned to the A
and B genomes, respectively. A small number of loci
(only 3%) remained unlinked to any of the 21 linkage
groups. The largest chromosome maps were those from
chromosomes 2D (265.6 cM) and 7A (270.0 cM) while
the shortests were observed for chromosomes 4A
(99.5 cM) and 4D (105.5 cM). 

Such a well-satured linkage map constitutes a power-
ful tool for QTL mapping. We previously used the CtCS

population for the study of several agronomic traits 
(Table 1): plant height (H), wheat/rye crossability (K),
powdery mildew resistance (R), bread-making quality
through the study of the strength of the dough (W),
grain hardness (Hard.), total protein content (Prot.), ear-
liness through heading time (HT) and photoperiod re-
sponse under long-day conditions (LD) or the difference
between long- and short-day conditions (DLS), ear com-
pactness (Cp) together with two related traits, spike
length (Sl) and the number of spikelets (Ns) and awning
(Awn). Using the new version of our map, we made an
update of the QTLs detected for each trait (Table 2).
Only three new QTLs were detected using this new ver-
sion of the map. All of them were located on chromo-
somes from the D genome: one on chromosome 2D for
awning, and two on chromosomes 5D and 6D for ear
compactness. All these three QTLs were linked to mi-
crosatellite loci newly added to the map. We were also
able to precisely locate these QTLs within confidence
intervals. The shortest was observed for grain hardness
for which a 5-cM confidence interval was detected on
the short arm of chromosome 5D carrying the hardness
locus (ha). The largest was computed for awning for
which a confidence interval of 163.3-cM was located on
chromosome 2D. 

The position on the CtCS map of the 46 QTLs which
were detected are summarized in Fig. 2. Nearly all the
chromosomes contained at least one QTL. Only chromo-
somes 1D, 3A, and 3D exhibited none. On the other
hand, some chromosomes were involved in the expres-
sion of several traits. For example, chromosome 1A was
involved in bread-making quality [strength (W) and ker-
nel hardness] with a QTL close to the storage-protein lo-
cus (Glu-1), but also in resistance to powdery mildew at
the top of the short arm, in plant height with a strong in-
teraction between chromosome arms 1AS and 1BL, and
in spike morphology at the bottom of the long arm (com-
pactness and spike length). In addition, QTLs frequently
co-segregated not only when traits were related to each
other (for example, a QTL for compactness co-segregat-
ed with those for spike length and the number of spike-
lets on chromosome arm 2BS), but also when the traits
were unrelated, like a QTL for awning which co-segre-
gated with those for compactness and spike length on
chromosome arm 4AS. 

Moreover, numerous genes associated with simply in-
herited traits have already been mapped, or at least as-
signed, using aneuploid stocks (Sears 1954) or substitu-
tion lines (Kuspira and Unrau 1957). In most of the
cases, genes known to affect a particular trait were locat-
ed in the close vicinity of QTLs associated to genetic
variation for the same trait. This was clearly the case for
plant height where two QTLs were located on chromo-
some arms 4BS and 4DS close to Rht-B1 and Rht-D1 re-
spectively, two genes reducing plant height in wheat.

Fig. 1 Molecular marker linkage map developed for the ‘Courtot’
× ‘Chinese Spring’ population. Recombination fractions are
in Kosambi cM (1944). Positions of the deletions are indicated
on the left of the chromosomes. Dotted chromosomal segments re-
present recombination values > 50 cM. Markers with dashed lines
and/or underlined are in homoeologous positions or present ho-
moeologous loci. Markers in italic characters were assigned
to chromosomes using aneuploid stocks or deletion lines. Markers
that significantly deviated from the 1:1 ratio at the 5%, 1%
and 0.1% levels are indicated with *, **, *** respectively. The ap-
proximate position of the centromere is indicated with a circle

▲
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Discussion

Molecular mapping in an intervarietal context in wheat is
not a simple task, but is a need in molecular based breed-
ing strategies. Breeders will frequently be confronted by
the lack of polymorphism often mentioned in the litera-
ture for bread wheat (Chao et al. 1989; Cadalen et al.
1997). For example, using a population of 194 recombi-
nant inbred lines from the cross between the two culti-
vars Renan and Récital, Groos et al. (2002) built a map
comprising 436 loci but with a total length of 2,260 cM
representing only 62% genome coverage. In order to im-

Table 2 QTLs detected using the new version of the map. New
QTLs compared to previous analyses (Table 1) are indicated
with *. Pos.: location of the QTL from the top of the chromosome
(cM). CI: confidence interval. Power: % of significant models us-

ing bootstrap re-sampling. Add.: additive value of the QTL.
The sign indicates the favourable allele (+ for ‘Courtot’ and –
for ‘Chinese Spring’)

Trait Loci Chr. Loc. (CI) r2 Power Pr(F) Add.

H Xglk556 4BS 6.1 (0–47.2) 19.1 0.978 1.14 × 10–4 9.61
Xfba211 4DL 36.8 (2.9–64.8) 16.7 0.668 8.50 × 10–5 8.72
XksuA5 7AL 168.5 (100.9–196.1) 11.9 0.926 3.89 × 10–5 8.67
XksuD2 7BL 98.0 (40.3–148.7) 12.5 0.722 7.63 × 10–4 7.37

K Xfba367 5BS 11.2 (0–32.6) 16.8 0.738 1.00 × 10–5 13.6
Xwg583 5BL 76.7 (49.7–96.7) 3.3 0.501 3.46 × 10–4 6.1
Xtam51 7AL 219.5 (145.3–262.1) 5.9 0.817 1.00 × 10–3 8.1

Prot. Xcdo1188 1BL 65.0 (39.0–103.0) 6.5 0.738 8.70 × 10–5 –0.31
E38M60200 6AS 59.0 (36.0–86.0) 17.1 0.915 6.64 × 10–5 –0.50

Hard. Xfba92 1AL 83.0 (56.0–103.0) 3.1 0.502 7.46 × 10–4 4.0
Xmta10 5DS 1.0 (0–5.0) 66.9 1 0.10 × 10–7 17.0
Xgwm55 6AL 53.0 (34.0–70.0) 5.5 0.666 3.53 × 10–4 –4.8

W Xfba92 1AL 84.0 (64.0–97.0) 10.9 0.883 4.73 × 10–5 17.0
XksuE3 3BL 54.0 (12.0–120.0) 9.4 0.915 2.47 10–4 15.0
Xmta10 5DS 4.0 (0–13.0) 19.5 0.966 9.50 × 10–5 21.0

LD Xglk407 5AL 84.0 (58.9–158.7) 6.9 0.970 1.00 × 10–6 2.12
Xgwm174 5DL 150.6 (112.5–178.1) 9.4 0.500 4.19 × 10–4 2.50
XksuD18 7BS 25.3 (3.8–44.6) 7.3 0.890 2.11 × 10–3 –2.20

DLS Xfbb121 2BS 51.1 (30.6–87.5) 25.9 0.954 7.60 × 10–5 –5.98
Xglk556 4BS 37.5 (0–74.2) 6.3 0.506 1.73 × 10–4 –2.89

HT Xfbb121 2BS 43.5 (24.0–75.7) 44.4 0.999 2.20 × 10–5 –3.15
Xtam75 5AL 134.8 (69.0–185.8) 8.2 0.768 3.41 × 10–4 1.13
Xfbb53 7BS 52.1 (22.9–121.9) 9.4 0.679 3.23 × 10–6 1.44
XksuD2 7BL 237.8 (190.9–282.3) 5.3 0.664 1.43 × 10–3 –1.64
Xfbb366 7DL 123.8 (49.6–166.4) 5.8 0.966 8.10 × 10–4 –0.92

Sl XksuG34 1AL 126.9 (59.3–154.5) 11.6 0.926 3.89 × 10–5 0.45
Xfbb121 2BS 39.3 (11.9–73.9) 9.8 0.774 5.29 × 10–4 0.49
Xgwm261 2DS 15.3 (12.1–41.8) 7.7 0.810 6.16 × 10–4 –0.36
Xfba78 4AS 10.8 (0–41.3) 6.9 0.658 9.09 × 10–4 0.40
XksuE2 5AL 183.5 (124.9–212.5) 9.3 0.900 4.42 × 10–4 –0.44

Ns Xfba106 2AS 43.2 (6.7–73.3) 9.5 0.907 2.47 × 10–4 –0.76
Xfbb121 2BS 25.6 (11.2–43.8) 15.6 0.851 1.87 × 10–5 0.97
Xfba43 5AL 87.2 (46.9–118.9) 8.8 0.896 5.66 × 10–4 –0.82

Cp XksuG34 1AL 122.5 (51.5–140.2) 9.3 0.923 2.47 × 10–4 –0.10
Xwmc170 2AL 87.8 (42.3–108.9) 10.6 0.840 5.57 × 10–5 –0.10
Xfbb121 2BS 19.4 (5.7–36.4) 9.3 0.648 2.32 × 10–4 0.10
Xgwm261* 2DS 12.9 (0–48.1) 9.9 0.966 1.27 × 10–4 0.10
Xwmc173 4AS 8.7 (2.4–50.1) 10.1 0.874 1.13 × 10–4 –0.10
Xfba177 5AL 220.8 (136.5–220.8) 7.9 0.734 6.99 × 10–4 0.09
Xcfd26* 5DL 149.2 (88.0–174.8) 13.6 0.624 6.95 × 10–4 0.12
Xcfd38 6DL 68.0 (25.7–134.2) 12.2 0.700 6.75 × 10–4 0.13

Awn Xgwm249* 2DS 32.6 (21.9–185.2) 8.5 0.760 4.80 × 10–5 0.262
Xwmc173 4AS 29.1 (0–48.4) 8.4 0.756 7.40 × 10–5 –0.379
XksuG12 6BL 97.0 (50.1–141.5) 5.7 0.668 3.73 × 10–4 –0.188

Fig. 2 Position of QTLs on the genetic wheat maps for plant
height (H), wheat/rye crossability (Cross), powdery mildew resis-
tance (R), strength of the dough (W), grain hardness (Hard.), total
protein content (Prot.), heading time (HT), photoperiod response
under long-day conditions (LD) or difference between long-
and short-day conditions (DLS), ear compactness (Cp), spike
length (Sl), number of spikelets (Ns) and awning (Awn). Approxi-
mate positions of the centromeres are indicated with a circle. Dot-
ted chromosomes indicate that the linkage between the different
groups was >50 cM. Approximate locations of known genes are
indicated on the left of the chromosomes according to McIntosh et
al. (1998)

▲



prove the saturation of such maps, microsatellites proba-
bly constitute the best tool because of their locus-speci-
ficity, their high level of polymorphism and their possi-
bility for automation. Several groups have already de-
rived microsatellites from Triticeae species (Bryan et al.
1997; Röder et al. 1998a; Guyomarc’h et al. 2002) but
the effort is being continued in order to produce saturat-
ed microsatellite linkage maps as is the case for maize
(1,735 public SSRs in the Maize Data Base). In our case,
the previous map (Cadalen et al. 1997) was greatly im-
proved by the addition of microsatellites, especially for
the D genome where three different chromosomes had
almost no RFLP loci mapped (chromosomes 2D, 4D and
5D).

In our map, the size of the individual chromosome
maps and especially those from the D genome, were lon-
ger than those observed using the ITMI population 
(Nelson et al. 1995a, b, c; Van Deynze et al. 1995; 
Marino et al. 1996). This may be explained by the fact
that recombination occurred more easily in an intervarie-
tal F1 rather than in an interspecific one, which was the
case for the D genome of the ITMI population, from a
cross between a synthetic wheat and a cultivar. This is of
great interest since breeders often look at wild related
species to recover resistance genes and thus have a lot of
difficulty in getting rid of deleterious traits. Furthermore,
the size of our map was slightly higher than that ob-
tained with the ITMI population (3,685 vs 3,551 cM). In
addition several markers remained unlinked, suggesting
that the final size of the genetic map of the wheat ge-
nome will be around 4,000 cM.

A significant number of markers (103) gave multiple
loci. Even if the duplicated loci were frequently mapped
at homoeologous positions (42%), they were also
mapped at orthologous positions, either on the same ge-
nome (20%) or even on the same chromosome (24%).
This suggests that the duplication of these loci probably
occurred before polyploidisation rather than after it.
Since the number of linked duplicated orthologous loci
was not very high, it was not possible to define linkage
blocks for duplication as this was done for the syntenic
regions between rice and wheat (Moore et al. 1995).
However, such blocks could probably be defined using a
larger number of markers.

Concerning the QTL analyses, the present update re-
vealed three new QTLs compared to previous analyses.
They were all located on D-genome chromosomes that
were not covered in the previous map (chromosomes 2D
and 5D). This shows the importance of a good genome
coverage for a powerful QTL detection. All the QTLs
that were previously detected were confirmed and confi-
dence intervals were computed. The mean size of these
confidence intervals was 68.9 cM indicating that the pre-
cision of the location of the QTLs was not very good and
that the linkage information between markers and traits
of interest could not easily be used in breeding pro-
grams.

It is noteworthy that several QTLs co-segregated, and
not only those involved in related traits. For example,

three QTLs for the number of spikelets, spike length,
compactness and heading time were located in the same
region on the short arm of chromosome 2B. This type of
result always gives rise to the problem of whether there
is only one gene having a pleiotropic effect or there are
several genes clustered in the same region and acting for
different (even related) traits. More and more studies
tend to indicate that genes are often grouped in clusters.
This seems particularily true for resistance genes (Chantret
et al. 2000; C. Feuillet, personal communication). How-
ever, this is also probably the same for other types of
genes. For example, Tranquilli et al. (1999), showed that
at least three different genes coding for puroindolines (a
and b) or puroindoline-like proteins (grain-softness pro-
tein: GSP) were located on the unique Triticum mono-
coccum BAC clone of 105 kb. This suggests that genes
are not evenly dispersed thoughout the genome but are
rather clustered in numerous regions separated by repeat-
ed or non-coding sequences. This suggests also that it
would be possible to identify BAC clones containing
genes among an entire library simply by total cDNA
probing.

While some QTLs frequently co-segregated with
genes known to influence a trait, in some cases, they also
appeared located at different regions. For example, on
chromosome arm 5BS, a QTL was detected for wheat/
rye crossability (K) while the major genes (Kr) are
known to be located on the long arm of this homoeolog-
ous group. This suggests that other genes are involved in
the expression of this trait than those observed and
mapped using aneuploid stocks or mutant phenotypes
and having the strongest effect. It was also oberved that
QTLs were detected close to genes known to be involved
in the trait, although alleles at these loci were supposed
to be identical between the parents of our segregating
population. This indicates that a range of allelic variation
exists at these loci.

This work showed that the ‘Courtot’ × ‘Chinese
Spring’ segregating population was well adapted for
QTL detection. We are currently developing a larger
population in order to fine map the regions bearing
QTLs of interest, which will be the first step toward the
molecular cloning of the genes underlying these QTLs.
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