
Abstract The physical problems that living organisms
have to contend with in hot deserts are primarily ex-
tremes of temperature, low humidity, shortage or ab-
sence of free water, and the environmental factors that
accentuate these – such as strong winds, sand-storms,
lack of shade, rocky and impenetrable soils. Climatic
factors are particularly important to smaller animals such
as arthropods on account of their relatively enormous
surface to volume ratios. Nevertheless, beetles (especially
Tenebrionidae and, to a lesser extent, Chrysomelidae)
are among the most successful animals of the desert, and
are often the only ones to be seen abroad during the day.
Similar physical problems are experienced by insects in
all terrestrial biomes, but they are much enhanced in the
desert. Although climatic extremes are often avoided by
burrowing habits coupled with circadian and seasonal
activity rhythms, as well as reproductive phenology, sev-
eral species of desert beetle are nevertheless able to
withstand thermal extremes that would rapidly cause the
death of most other arthropods including insects. The re-
actions of desert beetles to heat are largely behavioural
whilst their responses to water shortage are primarily
physiological. The effects of coloration are not dis-
cussed. In addition to markedly low rates of transpira-
tion, desert beetles can also withstand a considerable re-
duction in the water content of their tissues. The study of
desert beetles is important because it illustrates many of
the solutions evolved by arthropods to the problems en-
gendered, in an extreme form, by life in all terrestrial en-
vironments.

Introduction

If, as J.B.S. Haldane once remarked, the work of the
Creator demonstrates ‘an inordinate fondness for bee-
tles’, nowhere is this affection more apparent than in the
hot deserts of the world. Not infrequently, the only ani-
mal to be seen during the day, if any is visible at all, will
be a tenebrionid beetle – for the family Tenebrionidae
contains the most conspicuous and often most abundant-
ly represented species of Coleoptera in arid regions. In
the oases of the Middle East and elsewhere, where ani-
mal dung is plentiful, scarab beetles (Scarabaeidae) are
also numerous while, for those who look more closely,
Carabidae are also not uncommon. Oases, however, pro-
vide not only a source of food, but also shade and pro-
tection from the climatic stresses to be experienced in
the desert beyond their fringes.

Many other beetle families are represented in arid re-
gions (Pierre 1958; Cloudsley-Thompson and Chadwick
1964). Some, less well adapted, penetrate into the desert
only along river banks, wadis and into oases. For in-
stance, the Chrysomelidae are mesophyllic insects which
survive by selecting moist microhabitats and reproducing
only in early spring (Ghilarov 1964; Lopatin 1999). Ap-
terism is common among them and the tarsi are special-
ized for digging. Those species living under stones are
flattened, whereas others that bury themselves in sand
have evolved a fusiform body shape (Chen and Wang
1962). The North American species of Timarcha are en-
tirely nocturnal whereas, with few exceptions, African
species are day-active. The exceptions include species
found in the Atlas Mountains of Morocco, which are cre-
puscular. In North Africa, T. pimelioides is sympatric
with various Pimelia spp. Both genera are toxic and may
show concordance in elytral sculpture (P. Jolivet, person-
al communication, 6 August 2000).

It is often claimed that, of the principal characteristics
responsible for the success of insects, the power of flight
is one of the most important. Yet, paradoxically, a sur-
prisingly large proportion of beetles, including most of
the larger desert species with which this review is mainly
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concerned, have lost their operational metathoracic
wings, and only the elytra (the modified forewings of the
prothorax) remain. However, the subelytral cavity which
lies beneath them and into which the abdominal spiracles
open, plays an important role in desert adaptation (see
below).

Deserts are notoriously dry for most of the year and
have unpredictable rainfall. At least during daytime they
may be extremely hot too, while in the depth of the win-
ter’s night, they can be surprisingly cold. The adapta-
tions of desert beetles have attracted so much research
that it will be possible, in a short review, merely to draw
attention to some of it and to cite a selection of the more
important of the relevant publications.

Avoidance of climatic extremes

The primary response of most desert beetles to excessive
heat and low humidity during the day is to avoid them
and come into the open mainly at night. Behavioural re-
sponses thus consist primarily of taking shelter rhythmi-
cally during the day in burrows, hiding beneath stones
and rocks or tunnelling into loose sand (Cloudsley-
Thompson 1961, 1964a, 1970, 1975, 1990, 1991). Even
day-active species take shelter when their body tempera-
tures (Tb) begin to reach lethal levels – although these
may be surprisingly high (see below).

Morphological and behavioural adaptations

The family Tenebrionidae, as already mentioned, con-
tains the most conspicuous of the ground-living desert
beetles. One of these, Onymacris plana, is a large black
day-active species of the Namib desert. Here adaptive
speciation is particularly well marked (Seely and Griffin
1986). The fastest pedestrian insect known, with an aver-
age speed of 90 cm s–1 , O. plana runs swiftly across the
hot dune sand from the shade of one plant to another
without its body temperature becoming unduly elevated
(Edney 1971a). Another Namib desert species, Stenocara
phalangium (Fig. 1), behaves in a similar way. Day-
active desert beetles, notably among the African
Adesmiini and Zophosini (Tenebrionidae) tend to be
very speedy, often having evolved extremely long legs
(Crowson 1981) and large, almost contiguous hind coxae
(Koch 1955). Ward and Seely (1996b) found little evi-
dence among Onymacris spp. to suggest that the function
of long legs is to improve the efficacy of ‘stilting’ (see
below). Inland species nevertheless, have longer legs
than do those of cooler coastal districts where shorter
legs minimize the cost in energy of breakages.

Other desert beetles avoid the heat of the sun by hid-
ing in vegetation, under stones or, like the nocturnal
Stips stali, bury themselves deeply in the substrate
(Wharton 1983). This takes place when Tb rises and may
result in a significant reduction in temperature (Ward and
Seely 1996a, b). S. stali has a flattened body and short

legs, well adapted for burrowing in sand (Koch 1961;
Cloudsley-Thompson 1991). Nocturnal species comprise
the majority of desert beetles, but why the common
Saharan Adesmia antiqua should be day-active while the
sympatric Trachyderma hispida and Pimelia grandis are
nocturnal (Cloudsley-Thompson 1963) has never been
satisfactorily explained. It may possibly be related to
avoidance of competition.

At high altitudes, a combination of cold and a stony
substrate leads to the development of small size and a
cylindrical shape (Seely et al. 1988). This allows the
tenebrionids of the Namib and Sonoran deserts to retreat
from the hostile conditions above ground. Studies on
tenebrionid populations frequently emphasize structural
modifications such as the length and form of the legs
(Pierre 1958; Medvedev 1965; Broza et al. 1983) of the
elytra (Cloudsley-Thompson 1964b; Fiori 1977; Nicolson
et al. 1984b; Draney 1993) and body size (Coineau et al.
1982; Thomas 1983; Doyen and Slobodchikoff 1984) as
adaptations to microclimate and edaphic factors.

Burrowing and swimming in sand

The typical morphological adaptations of deserticolous
Tenebrionidae were listed by Marcuzzi (1960) as fol-
lows: (1) increase in the volume of the subelytral cavity;
(2) an unusually dark-coloured integument; (3) fossorial
legs in both larvae and adults; (4) large body size; (5)
shortening and broadening of the bodies of the larvae. In
the Namib desert, which is in many ways unique, there
are seven endemic genera and 17 species of Tenebrion-
idae that inhabit vegetationless dunes, whilst none have
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Fig. 1 Stenocara phalangium (left); Stips stali (right). From
Cloudsley-Thompson (1991) redrawn after Koch (1961)



been recorded in the Sahara, Somalia, Malagasi, Gobi or
Australian deserts according to Seely (1978). This may
be the reason why, as Koch (1961) noted, the ultra-
psammophilous tenebrionid beetles of the Namib differ
from those in Marcuzzi’s (1960) list as follows:

1. Subelytral cavity varies from extremely large (e.g.
Onymacris unguicularis) to practically non-existent
(e.g. Stips stali); all degrees of size occur in both day-
active and nocturnal forms.

2. Coloration varies from black to reddish-brown and
yellow to structurally white with unpigmented elytra.
[Coloration will not be discussed in the present re-
view as its functions have already been debated in
Naturwissenschaften (Cloudsley-Thompson 1999)].

3. Fossorial legs occur in the larvae of nearly all ground-
living Tenebrionidae in steppe and forest as well as in
desert. They are rare among Stizopina, in which they
are a phylogenetic character, and in Zophosini. Here
they are found in Dactylocalcar caecus which lives
permanently under sand.

4. Body size is equally variable in diurnal and nocturnal
Namib desert species.

5. Larvae are usually slender and elongated (Adesmiini,
Zophosini etc) and only rarely shortened and dilated
(e.g. Lepidochora spp.).

Koch (1961) also described a number of adaptive modi-
fications of the legs of dune species. These consist of hy-
pertrophy of the claws as well as of the bristles and
spines in regions of the body which are in continuous
contact with the sand. Furthermore, there are extensions
of the gripping surfaces of the tarsi. In sand-swimming
forms, such as Lepidochora spp., supplementary struc-
tures have been developed in the form of fingerlike ex-
tensions of the normally spiniform calcaria (Fig. 2), and
the hind legs work together instead of alternately.

de los Santos et al. (2000) found two morphological
adaptive trends in populations of the genus Hegeter

(Tenebrionidae) collected from different ecosystems
along an altitudinal gradient on Tenerife. The first is a
general increase in size, especially in abdomen volume
and the length of the legs. This is mainly associated with
soil-surface temperatures, while more silt in the soil has
the opposite effect. The second trend is a general widen-
ing and flattening of the body and shortening of the ap-
pendages. This is related to burrowing habits and is in-
fluenced by rainfall and the ecological factors associated
with it, such as plant cover and biomass, soil carbon and
organic content. The adaptations of the limbs of desert
Tenebrionidae have been reviewed in detail by Dajoz
(1984). In general, the morphological adaptations of de-
sert beetles are related primarily to the structure of the
substrate and, consequently, only secondarily to thermal
extremes and shortage of moisture.

Circadian activity

Changes in the behaviour and physiology of living or-
ganisms usually take place rhythmically. The daily activ-
ity of North American tenebrionid beetles has been de-
scribed as thermally opportunistic because the insects
show variable activity patterns associated with a range of
air temperatures (Kramm and Kramm 1972; Kenagy and
Stevenson 1982; Whicker and Tracy 1987; Cooper
1993). Daily patterns of movement, during which the in-
sects emerge from their burrows, and of rest within, are
an important feature in the lives of desert beetles.
Scholtz and Caveney (1988, 1992) have described how
daily biphasic behaviour in the Kalahari desert Trogidae
Omorgus casperulatus and O. freyi varies in relation to
climate. Feeding predominates in the morning, breeding
behaviour and dispersal in the afternoon. [I noted a re-
versed order of behaviour in Adesmia variolaris on Jebel
Marra, Western Sudan, in November 1964 (Cloudsley-
Thompson 1967).] Emergence may often be a direct re-
sponse to the physical conditions both inside the burrow
and without, in which case the rhythm is said to be exog-
enous. In almost all examples of activity cycles that have
been studied, however, there is also an endogenous com-
ponent – a biological clock – and the rhythm is then said
to be composite. It is obviously advantageous for an ani-
mal not only to be preadapted physiologically, but also to
be ready to emerge from its burrow the moment that en-
vironmental conditions outside are optimal.

In areas of sand dunes, species of beetles tend to re-
place one another throughout the day and night. For ex-
ample, Holm and Edney (1973) found that, during sum-
mer in the Namib desert, Onymacris laeviceps was most
active at 0700–0800 hours and again 1800–2000 hours
while O. plana was active at 0900–1200 hours and
1600–1800 hours. Both species were bimodal, but the
modes occurred at different times. Lepidochora argentogri-
sea, on the other hand, emerges briefly at dusk when the
temperature drops (Kühnelt 1969; Louw and Hamilton
1972). Buxton (1923) commented upon the diurnal and
seasonal appearance of desert beetles and showed that
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Fig. 2 Posterior leg of Lepidochora sp. showing apical portion of
the tibia with extensions of the normally spiniform calcarea and
hypertrophic development of tactile bristles. From Cloudsley-
Thompson (1991) redrawn after Koch (1961)



many large Tenebrionidae, such as Adesmia spp. which
are conspicuous in North Africa and the Middle East at
all times of day in March and April, seek shelter under
stones and in the shade of bushes in May and June.
Bodenheimer (1934) likewise found that the time of
maximum activity of desert beetles varies with season.
Erbeling (1983) showed that Thermophilum (= Anthia)
sexmaculatum (Carabidae) is able to survive in the north-
ern Sahara by modification of its diel activity patterns.
Similar observations have been made by a number of
other authors (reviewed in Cloudsley-Thompson and
Constantinou 1985).

The presence of endogenous clocks has been demon-
strated experimentally in several species of desert bee-
tles. By means of a mechanical aktograph, the North
African Thermophilum venator was found to be noctur-
nal while, of Tenebrionidae, Akis spinosa was mostly
day-active, Trachyderma (= Ocnera) hispida showed a
peak of activity at dusk, Blaps requieni was even more
crepuscular and B. mucronata almost entirely nocturnal
(Cloudsley-Thompson 1956). Similar experiments have
demonstrated that T. hispida and Pimelia grandis are
strictly nocturnal in Sudan whereas Adesmia antiqua is
diurnal. The first two of these were found to be photo-
negative at all temperatures, while the photopositive re-
sponse of A. antiqua was more marked at higher ambient
temperatures. All species responded to near-lethal tem-
peratures by digging into the sand (Cloudsley-Thompson
1963). Using more sophisticated technology, Constanti-
nou (1983) demonstrated circadian rhythmicity in Blaps
wiedemanni from Kuwait, while Constantinou and
Cloudsley-Thompson (1980, 1982) investigated the
physiological basis of the rhythm in Adesmia cancellata
from Kuwait and in Trachyderma hispida from Sudan,
respectively. They also found that Erodius octocostatus
(Tenebrionidae) from Kuwait is crepuscular, although its
rhythm is physiologically more akin to that of a noctur-
nal than that of a day-active animal (Cloudsley-Thompson
and Constantinou 1985).

Thermophilum duodecimguttatum, also from Kuwait,
is primarily nocturnal but, when high temperatures coin-
cide with the light phase of an experimental light–dark
cycle, activity takes place mainly during the second 
half of the light period (Constantinou and Cloudsley-
Thompson 1985). The related T. sexmaculatum has been
described both as nocturnal and as diurnal by various au-
thors cited by Erbeling and Paarmann (1985). Reymond
(1950), Fiori (1968) and others have attempted to corre-
late the pattern of diel activity with temperature or sea-
son. The contradictory data in the literature can, how-
ever, best be explained in terms of a seasonally changing
pattern of daily day-to-day changes in activity patterns,
correlated with responses to short-term variations in tem-
perature, radiant energy and wind velocity. The northern
subspecies, T.s. submaculatum adapts to seasonal climat-
ic changes by becoming either nocturnal or day-active,
while the south Saharan T.s. marginatum remains strictly
nocturnal throughout the year (Erbeling and Paarmann
1985).

In all seasons of the year, Eleodes armata of the
Mojave desert has a higher daily rate of energy than the
sympatric Cryptoglossa verrucosa. E. armata, however,
can exploit a wider range of thermal regimes and is
thought to have evolved in northern regions, whereas C.
verrucosa is considered to be endemic to deserts (Cooper
1993). A field study in the Kara-Kum desert of Turk-
menistan of the circadian rhythm of Trigonoscelis gigas
by Zotov et al. (1996) showed that the rhythm is con-
trolled by a mechanism of ‘gates’: the tenebrionids are
active only from 0600 to 1000 hours and from 1600 to
2000 hours, regardless of weather and season, although
the beetles may skip some gates and remain under the
sand when the weather is exceptionally unfavourable. An
additional complication has been introduced through the
discovery by Costa et al. (1987) that the endemic ten-
ebrionid Pachyphaleria capensis of the southwestern
coast of Africa responds to solar radiation not only by
skototaxis but also by non-chronometrical solar orienta-
tion. On overcast or foggy days, this response tends to
occur in a north–south direction.

Seasonal rhythms and life cycles

Seasonal influences on the circadian activity rhythms of
desert beetles have been outlined in the previous para-
graphs. (Brun 1975) analysed those of Pimelia bipuncta-
ta in the sand dunes of the Carmargue. Other seasonal
cycles by which the more extreme environmental condi-
tions are avoided, include varying behavioural responses.
For instance, as noted above, Buxton (1923) remarked
that some tenebrionid beetles, which are active in bright
sunshine in Israel during the spring, shun the light during
the summer months and become crepuscular in habit.
Not only is their activity cycle changed but also their re-
sponse to light. Comparable results have been obtained
from the Namib desert by Holm and Edney (1973), in
Tunisia by Heatwole and Harrington (1989), by Hinds
and Rickard (1973) in arid south-central Washington,
and in the North American desert by Smith and Whitford
(1976), Thomas (1979), Marshall (1985), Marino (1986)
and Whicker and Tracy (1987) among others. Aldryhim
et al. (1992) noted that in Saudi Arabia the numbers of
tenebrionids trapped in winter and mid-summer were
low, reaching a peak in June; and that earlier rainfall had
a positive effect on their abundance. Seasonal changes in
darkling beetle communities have also been studied in
Israel by Krasnov and Ayal (1995) who found not only
that Erodius edomitus was a temporal specialist but that
most species exhibited 7–10 month cycles of activity
with one or two peaks of abundance. Paarmann (1979)
suggested that a reduced number of larval instars is an
adaptation of Thermophilum sexmaculatum to its arid en-
vironment, while Erbeling and Paarmann (1986) con-
cluded that the essential adaptation of T.s. submaculatum
to the climatic conditions of the northern Sahara is
caused by the development of a seasonal rhythm of go-
nad maturation. Seasonal rhythms of activity and behav-
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iour are generally less important in the ecology of desert
beetles and other insects than are seasonal reproductive
cycles and seasonal quiescence or diapause (Cloudsley-
Thompson 1970; Erbeling and Paarmann 1985).

In hot, dry deserts the developmental stages of beetles
and other arthropods usually appear at the time of the
rains, when the weather is cooler and there is abundant
food. For example, adult Adesmia bicarinata begin to
appear in small numbers in Egypt during late October.
Throughout the hot season, the life cycle is continued by
the larval and pupal instars (Hafez and Makky 1959). At
other times they are frequently dormant – either in a
state of facultative quiescence, parapause (obligatory
dormancy) or in eudiapause. In the case of the latter,
which again is facultative, induction is engendered by
one factor and terminated by another, whereas in paradi-
apause both induction and termination are genetically
determined and triggered by drastic alterations in the
level of a single environmental factor (Thiele 1977).
This probably applies not only to Carabidae but to all
families of desert beetles. For instance Timarcha, a
steppe and savanna chrysomelid genus, has also adapted
progressively to zones of high temperature, thanks to
complicated diapauses (Jolivet 1967). According to
Tombes (1965), aestivation has been recorded in 37 in-
sect species, representing five major orders, most of
which occur in arid or semi-arid regions. Indeed, dia-
pause is primarily an adaptation to drought, rather than
to high temperature. According to de Wilde (1962), ex-
periments show that high temperatures tend to avert dia-
pause in ‘long-day’ insects although they may promote it
in ‘short-day’ insects. The adaptive significance of the
biochronosystem is obvious, especially in desert regions,
but its physiological basis is less clearly understood.
That subject is not strictly relevant to the present article
and, moreover, has been reviewed by Cloudsley-
Thompson (1969), Applin et al. (1987), and others.

Thermal relations

Heat may be gained or lost by conduction, convection
and radiation. In the case of surface-living desert beetles,
heat exchange by conduction can largely be ignored be-
cause only very small areas of the tarsi are normally in
contact with the substratum. Not surprisingly, however,
as already mentioned, the claws, bristles and spines that
are in continuous contact with the sand tend to be hyper-
trophied (Koch 1961). In contrast, heat exchange by con-
vection is very important (Clarke 1967; Turner and
Lombard 1990). Radiant heat, too, can increase body
temperature far above that of the surroundings and may
affect different parts of the body to varying extents. Most
studies of tenebrionid populations have focused on the
adaptive and behavioural characters associated with ther-
moregulation (Holm and Edney 1973; Henwood 1975;
McClain et al. 1985; Røskaft et al. 1986; de los Santos et
al. 2000). For instance, Parmenter et al. (1989) found
that different species of Eleodes in Wyoming show ther-

mal preferences and tolerance of high temperatures that
are related to the thermal regimes in the microclimates
they inhabit. Doubtless thermal adaptations involve
stress responses as well as the evolution of heat-resistant
proteins.

Thermoregulation by shuttling

The maintenance of an optimum Tb by day-active ecto-
therms is often achieved by shuttling between open areas
exposed to sunshine and shaded places. Dreisig (1985)
has presented a time budget mathematical model of
thermoregulatory sun-basking, based upon physical laws
of heating and cooling, and on the assumption that upper
and lower limits for Tb exist. In general, one basking epi-
sode is sufficient to restore Tb if the lower equilibrium or
operative environmental temperature of an animal in-
creases to the optimum in the same or a shorter time than
the Tb decreases from the upper limit of activity to the
lower equilibrium temperature. This is most probable
when the change of equilibrium temperature is quicker,
the animal larger, and the equilibrium temperature higher
at the onset of foraging after basking. The model re-
quires that the animals react not only to specific temper-
ature levels, but also possess receptors that are sensitive
to rates of change. This is only possible in the case of
small animals whose Tb alters rapidly. The model is sup-
ported by observations of basking and shuttling between
sunshine and shade by the tiger beetle, Cicindela hybrida
(Dreisig 1980). Shuttling is also frequently resorted to by
Tenebrionidae: in the Namib desert, for example species
of Onymacris, Sternocara, Physostena and so on (Edney
1971a; Hamilton 1973; Roer 1975; Cloudsley-Thompson
1991) – while Eleodes spp. do the same in the North
American deserts (Kramm and Kramm 1972). The
microclimatic conditions under which beetles are active
have been measured by Cloudsley-Thompson (1956,
1962a), Hadley (1970), Ahearn (1971), Hamilton (1971),
Kramm and Kramm (1972), Holm and Edney (1973),
Henwood (1975) and others (reviewed in Cloudsley-
Thompson 1991).

Positional reactions to heat

Not only do desert beetles avoid excessive heat and cold
by seasonal and circadian rhythms and by shuttling, but
they also respond by immediate behavioural actions as
well as by various physiological adaptations. For exam-
ple, many day-active desert Tenebrionidae have been
shown to respond to heat by ‘stilting’ – that is, elevating
the body as high as possible above the hot substrate.
Hamilton (1971, 1975) described this in Cardiosis hy-
brida, which is active in the Namib desert at ambient
temperatures above 40°C, Henwood (1975) in Onyma-
cris plana and Stenocara phalangium, Broza et al.
(1983) considered it to be significant in the evolution of
longer legs among Trachyderma spp. Stilting may permit
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an extension of the period of activity by preventing the
Tb from rising too quickly. When conditions become in-
tolerable, however, tenebrionid and other beetles fre-
quently burrow in the sand (Holm and Edney 1973).
Ward and Seely (1996a) considered shifts in microhabi-
tats to be far more important than postural adjustments
for controlling Tb. Stilting does not occur in O. ruga-
tipennis (Ward and Seely 1996b), which selects the
warmest habitats (Roberts et al. 1991), but is found in 
O. bicolor, a short-legged coastal species. Dreisig (1980)
observed stilting in the tiger beetle, Cicindela hybrida,
over a number of years in Danish sand dunes during
May. In addition, Namib desert tenebrionids move from
directly insolated dune faces into shade, or to faces on
which the angle of insolation is lower (Hamilton 1971;
Henwood 1975). Insect thermoregulation has been re-
viewed by various authors cited in Heinrich (1981).

Thermal preferences

Although it is generally agreed that the Tb of desert ten-
ebrionid beetles is controlled behaviourally, compara-
tively few recordings have been made of actual Tb in the
field. Edney (1971a), however, measured them with in-
dwelling thermocouples in both dead and tethered speci-
mens, and Hadley (1970) in beetles inside enclosures.
Seely et al. (1988) passed the thermocouple extensions
through the eye of a fishing rod so that the beetles could
move unhindered. Other workers have obtained single
measurements from free-ranging individuals captured in
the field (El Rayah 1970a; Edney 1971a; Kramm and
Kramm 1972; Hamilton 1973, 1975; Henwood 1975;
Hamilton Slobodchikoff 1983; Nicolson et al. 1984a;
Abushama and Al-Salameen 1989; Cloudsley-Thompson
1990). The results of these various studies indicate a
range of maximum tolerated temperatures between 43°C
and 53°C for beetles from a variety of deserts and over
varying periods of time. Not all Tenebrionidae of arid re-
gions show high temperature preferences, however.
Kenagy and Stevenson (1982) found that in the Artemi-
sia steppe of eastern Washington, eight species of day-
active tenebrionids showed preferences 10–15°C lower
than those of most other terrestrial insects. They suggest-
ed that a low range of preferred Tb had evolved that ex-
tends activity into earlier and later times of the year
when food supplies are better.

Tolerance of thermal extremes

Behavioural responses frequently result in desert beetles
maintaining body temperatures close to the optimum for
long periods. For instance Hadley (1970) found that dur-
ing the course of one day in the Sonoran desert of Arizo-
na, Eleodes beetles maintained a Tb of 42°C while that of
the air was 32°C and the substrate was 42°C. Assuming
a value of 63% for surface reflectivity, he calculated the
following heat balance in cal cm–2 min –1: radiation

0.141 + metabolism 0.003 + conduction (?) = convection
0.134 + evaporation 0.008.

Despite avoidance behaviour, however, desert beetles
may also experience wider extremes of temperature than
do comparable species in temperate regions or in the hu-
mid tropics, and have been found to be able to withstand
them (Pierre 1958; Cloudsley-Thompson 1962b, 1970,
1975, 1991; Délye 1969; Edney 1971a, 1974). Hafez and
Makky (1959) found Adesmia bicarinata to be capable
of withstanding slowly rising soil temperatures up to
53°C, while Punzo and Muchmore (1978) noted that, in
Tenebrio molitor, there is a progressive increase in the
mean survival time of older larvae exposed to 42°C at
different relative humidities. Preconditioning also leads
to enhanced resistance to heat in desert species
(Cloudsley-Thompson 1970).

Voluntarily high Tb have often been recorded in sum-
mer-active diurnal species (Edney 1971a; Zachariassen
1977; Seely and Mitchell 1987). Seely et al. (1988)
found that the Tb of diurnal Namib dune tenebrionids,
which are active on sandy substrates throughout the year,
range between 30°C and 39°C. They concluded that two
factors have led to high Tb: the lack of seasons in the
Namib and the presence of a readily available thermal
refuge. In general, such beetles maintain a higher Tb than
those recorded for other insects (Roberts et al. 1991).

The upper lethal temperatures of desert beetles have
been measured by a number of authors. For instance, le-
thal temperatures (LT50) for exposures of 24 h below
10% relative humidity (RH) have been found to be as
high as 45°C in Pimelia grandis (Cloudsley-Thompson
1962b) and, at 5% RH, 46°C in Adesmia antiqua (El
Rayah 1970a). [A. antiqua is day-active while T. hispida
and P. grandis are nocturnal (Cloudsley-Thompson
1963).] The figure for Eleodes spp. from Albuquerque
was 39.5–40°C, and from Las Cruces it was 41°C
(Cloudsley-Thompson and Crawford 1970).

Tolerance of cold

In many deserts cold is a limiting factor, and both freez-
ing resistance and supercooling have been demonstrated
in some desert insects (Cloudsley-Thompson 1975,
Hadley 1979a). A mean supercooling point of –11.8°C
has been obtained for the North American Eleodes spp.
(Cloudsley-Thompson and Crawford 1970), of –10.4°C
in Trachyderma hispida and of –7.4°C in Adesmia anti-
qua (Cloudsley-Thompson 1973). For some desert ani-
mals the ability to supercool may provide protection
against freezing but, for others, the capacity to do so is
greater than that necessary for survival in a particular re-
gion, and may therefore be a taxonomic rather than an
adaptive feature (Cloudsley-Thompson 1973).

The mechanism of heat death

Although a considerable amount of research has been
carried out on the lethal temperature of arthropods the
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physiological causes of heat death often remain obscure.
In some cases death may be due to lack of oxygen at
high Tb; in others, the coagulation of cell proteins. In
Trachyderma hispida, exposure to near-lethal tempera-
ture for 24 h results in a marked decrease in the pH of
the haemolymph (Cloudsley-Thompson 1962b). Similar
results were obtained by Ahearn (1970a) with the North
American tenebrionid Centrioptera muricata in which
both uric and lactic acid increased in the blood of beetles
exposed to lethal temperatures, while the osmotic pres-
sure also increased. In addition, there was a decrease in
sodium and an increase in potassium. The similarity be-
tween the ionic ratio curve and the LD100 curve suggests
a correlation between the two factors. More recently
Abushama and Al-Salameen (1991) compared the effects
of thermal stress on pH, sodium and potassium concen-
trations of Adesmia cancellata and T. hispida. Haemo-
lymph osmotic pressures were consistently lower in the
day-active A. cancellata than in the nocturnal T. hispida,
while blood pH decreased, especially in he former, at
temperatures above 50°C. At the same time, concentra-
tions of Na+ and K+ ions increased at higher tempera-
tures. These observations support the initial hypothesis
that the ultimate cause of heat death in desert Tenebrion-
idae is failure of the excretory system to remove meta-
bolic wastes that are produced at accelerated rates when
Tb rises (Cloudsley-Thompson 1962b; Ahearn 1970a).

Water relations

The water relations of terrestrial arthropods have attract-
ed the interest of entomologists since the pioneer experi-
ments of Gunn (1933), Wigglesworth (1933), Ramsay
(1935) and Pryor (1940) drew attention to the cuticle as
a major avenue for water loss in insects, and opened up a
field of investigation which has been active ever since.
This important subject was reviewed by Edney (1977) in
his classic text Water balance in land arthropods. Publi-
cation of that work engendered an explosive growth in
the literature of arthropod water relations, summarized in
the equally important but quite dissimilar volume by
Hadley (1994) Water relations of terrestrial arthropods.

Behavioural regulation of water loss

As already mentioned, the water relations of insects are
almost entirely under physiological control and, apart
from avoidance of climatic extremes (discussed above),
there are few ways in which water loss can be reduced
by behavioural means. Their surface to volume ratio is
so great that water cannot be expended for thermoregula-
tion except from the thoraxes of highly active flying in-
sects such as grasshoppers and honeybees. Although
Adesmia antiqua is diurnal (Cloudsley-Thompson 1963)
and shows a preference for a higher body temperature
than the nocturnal Pimelia grandis (El Rayah 1970a),
both species are hygro-negative unless desiccated, when

they become hygro-positive (El Rayah 1970b). It is highly
probable that similar responses are present in other spe-
cies of desert beetles, but they do not appear to have
been investigated in great detail. Rates of water loss
from different species of Eleodes in Wyoming, however,
are not correlated with the microclimates inhabited as
their thermal preferences are. Presumably microhabitat
use is independent of the physiological capabilities of
water conservation (Parmenter et al. 1989). Slobodchikoff
(1983) tested the temperature preferences of nine ten-
ebrionid species in laboratory gradient experiments, and
measured water loss in eight of these. At their mean pre-
ferred temperatures, water loss was the same in all spe-
cies, whether they came from the Lower Sonoran desert
of Arizona, from pinon pine woodland or ponderosa pine
forest. In times of drought, the Kalahari tenebrionid
Parastizops armaticeps inhabits especially deep burrows
in which both temperature and evaporative water loss are
reduced (Rasa 1995).

The subelytral cavity

Fusion of the elytra to form an air space above the abdo-
men is found especially in desert Tenebrionidae (Dizer
1955; Cloudsley-Thompson 1964b, 1975; Fiori 1972/73;
Lawrence and Newton 1982; Dajoz 1984; Draney 1993),
Chrysomelidae and some other families (Corset 1931;
Fiori 1972/73; Jolivet 1994, 1997). Although the sugges-
tion that, regardless of its size, the primary function of a
subelytral cavity is to reduce respiratory water loss
(Cloudsley-Thompson 1964b; Ahearn and Hadley 1969;
Ahearn 1970b; Edney 1971a), Hadley (1972) pointed out
that if the cavity is filled with air it must inevitably re-
tard heat flow from the elytra to the abdomen. Earlier,
Bolwig (1957) had found somewhat higher temperatures
in the subelytral space of black Onymacris multistriata
than in the white O. bicolor.

Tanner and Packham (1965) noted that Tenebrionidae
in southwestern USA are most plentiful at the beginning
of the rainy reason, which supports the hypothesis that
the subelytral cavity may allow the abdomen to expand
for the storage of water, food and eggs (Fiori 1977) and,
according to Slobodchikoff and Wiseman (1981) who
appear to have overlooked Fiori’s paper, enables advan-
tage to be taken of ephemeral sources of water such as
rain drops, fog and dew. The latter author showed a cor-
relation between the depth of the cavity and the amount
of water loss endured. Ahearn (1970b) presented evi-
dence that the airflow within a beetle’s tracheal system is
unidirectional. The thoracic spiracles only take in air,
which is exhausted within the body and slows evapora-
tion even more. The functions of the subelytral cavity
have been discussed at length by Fiori (1977), Draney
(1993) and Jolivet (1997) and will therefore not be con-
sidered further here.
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Cuticular transpiration

The main avenues of water loss from insects are through
transpiration and excretion (Ahearn 1969, 1970b)
(Fig. 3). Transpiration through the cuticles of desert bee-
tles is generally much reduced by the highly efficient
epicuticular wax layer with its high critical point. Vari-
ous species of desert beetles can be arranged according
to their rates of water loss in dry air in a series that to
some extent corresponds to their distribution and times
of activity in the field (Cloudsley-Thompson 1956, 1975;
Edney 1971b, 1974, 1977; Hadley 1978, 1994). Evapo-
rative water loss has usually been measured gravimetri-
cally. During slow dehydration, however, the loss in
weight of dry matter may be considered from Onymacris
plana in relation to that of water (Nicolson 1980).
Nicolson et al. (1984b) therefore developed an alterna-
tive technique, using tritiated water, and applied it to the
same species. Water loss through the elytra was 0.75 µg
cm–2 mm Hg–1. This is almost the lowest cuticular per-
meability ever reported for an insect (Nicolson 1990).
Although most of the data in the literature are expressed
in these units, the method has not been without its critics
(Hadley 1994). It does, however, permit comparisons be-
tween genera and species if the test conditions are clear-
ly stated, as shown by the often cited tables published by
Edney (1977) and Hadley (1994).

In the deserts of the southwestern USA, the relatively
large and conspicuous tenebrionids Eleodes armata and
Cryptoglossa verrucosa occur sympatrically (Ahearn
1971; Thomas 1979), but several differences have been
recorded in their morphological and physiological adap-
tations to the arid environment. E. armata is heavier and
loses water at a higher rate than does C. verrucosa
(Ahearn 1970b; Cooper 1983, 1985). C. verrucosa, how-
ever, mainly consumes arthropod material whereas 
E. armata feeds on plants (Cooper 1985). The mass spe-
cific oxygen consumption rate of E. armata at 35°C is
higher than that of C. verrucosa, and it has been suggest-
ed that the latter species may therefore be better able to
withstand conditions of drought (Cooper 1993).

Several groups of beetles from arid environments
have reduced their cuticular transpiration to such an ex-
tent that respiratory water loss (see below) has become
the major component (Zachariassen 1996). Thus

Zachariassen et al. (1987a) found that the rates of evapo-
rative water loss were a function of the metabolic rate in
carabid and tenebrionid beetles from dry habitats. Al-
though the values of equally large species differed con-
siderably, when plotted as a function of oxygen con-
sumption in a double logarithmic plot, the rates of water
loss of all species fell on the same straight line. The
slope of this was close to 1.0, implying that rates of wa-
ter loss and oxygen consumption were proportional, as
would be expected if water loss is predominantly respira-
tory. Further evidence of this was obtained by Zachariassen
and Maloiy (1989), who found very little change in
water loss when dry habitat tenebrionids and carabids
were covered with impermeable vaseline. These authors
concluded that in dry habitat beetles of the families Ca-
rabidae, Curculionidae and Tenebrionidae, spiracular
water loss constitutes the major component of transpira-
tion. Zachariassen et al. (1987a) found dry habitat tene-
brionids and curculionids to lose water at lower rates
than dry habitat carabids, elaterids and cerambycids in
East Africa. Zachariassen (1991) found that independent
variation of atmospheric humidity around different parts
of the body had a strong effect on water loss only where
the spiracles open on the pronotum and subelytral space.

Cuticular impermeability is conferred by lipids
(Hadley 1981, 1985). Hadley and Louw (1980) attempt-
ed to relate the quantity and chemistry of the epicuticular
lipids of Onymacris plana and Lepidochora discoidalis,
whilst Lockley (1982) examined the interrelationships
between lipid chemistry and taxonomic diversity among
Tenebrionidae. Hadley (1978, 1982) provided a compre-
hensive summary of the lipid–hydrocarbon body weight
ratios, hydrocarbon composition and the cuticular per-
meability of North American tenebrionid beetles

Wax blooms

Surface wax deposits occur in many desert arthropods,
and multicoloured wax blooms are found in certain de-
sert Tenebrionidae. For example the Sonoran desert
Cryptoglossa verrucosa exhibits colour phases that range
from light blue to jet black when exposed to low and
high humidities, respectively (Hadley 1979b). The same
effect has been described in other desert species and has
been reviewed by Hadley (1985). McClain et al. (1984)
found that rates of water loss from Cauricara phalangi-
um in the Namib desert were significantly lower from in-
dividuals collected in May, when a full bloom was pres-
ent, than from others taken in August when little or no
wax bloom was present. They concluded that wax
blooms contribute to the protection of these day-active
beetles against high temperatures and radiant heat loads.
Wax blooms occur in more than 50% of Adesmiini and
Zophosini in the Namib. The percentage increases from
the coastal fog region to the hot dry desert inland 
(McClain et al. 1985). McClain et al. (1991) also pointed
out that the reflective wax blooms increase day-time
activity in black beetles. This subject is discussed in de-
tail by Hadley (1994).
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Fig. 3 Avenues of water gain and loss in a tenebrionid. Silhouette
showing the subelytral cavity. After Ahearn (1970b)



Respiratory water loss

Respiratory water loss is reduced in the majority of de-
sert Tenebrionidae and Chrysomelidae because the ab-
dominal spiracles open into the subelytral cavity. Fur-
thermore, as in other animals, water loss is reduced by
cyclical breathing or discontinuous ventilation (DV)
(Bartholomew et al. 1985; Louw et al. 1986; Hadley
1994). In insects, the spiracles are kept closed for most
of the time but, as oxygen is consumed, carbon dioxide
accumulates in the haemolymph where it is held in solu-
tion mainly in the form of bicarbonate. Eventually the
spiracles open slightly, allowing some oxygen to enter
but little carbon dioxide to escape. Finally the spiracles
open widely and carbon dioxide is released in a burst.
DV has been measured in ten species of Namib beetles –
these were motionless adults. A scaling effect was evi-
dent but discrepancies were common. It was assumed
that the phenomenon is an adaptation to the scarce and
patchy availability of energy and water (Lighton 1991)
but, of course, it may cost energy (Lighton 1988).

Whereas Ahearn (1970b) reported that thoracic spir-
acular water loss from the North American Eleodes
armata represents 15.3% of total respiratory water loss,
Cooper (1993) obtained a figure of 47%. Water loss data
on this species are, however, complicated by the fact that
50% of the total loss occurs through the discharge of de-
fensive secretions. Very different results were obtained
by Zachariassen (1991) with Phrynocolus petrosus, a
tenebrionid from dry savanna in East Africa. This author
estimated that 70% of total transpiration takes place
through the prenotal spiracles. His estimates for subely-
tral water loss were approximately one third of the val-
ues recorded from Onymacris plana by Nicolson et al.
(1984b) and from E. armata by Ahearn (1970b) and
Cooper (1983) (see discussion in Hadley 1994).

Excretory water loss

An important adaptation of desert beetles is their excep-
tional capacity to eliminate nitrogenous end-products
and excess electrolytes with minimal water loss (Hadley
1994). This is partly due to the cryptonephric complex
through which moisture is extracted by the malpighian
tubules from the faeces of the beetles that possess it. In
the case of Onymacris unguicularis and O. plana, only
11–14% of total water loss occurs with the faeces
(Nicolson 1980; Cooper 1982). It is therefore surprising
to find that the malpighian tubules of O. plana are stimu-
lated dramatically by a diuretic hormone. The only con-
ceivable occasion on which this might be required is
after drinking excess fog moisture (see below) (Nicolson
and Hanrahan 1986). This topic has been subjected to
detailed discussion by Nicolson (1990).

Tolerance of desiccation

Insects that live in deserts may spend long periods with-
out access to free water. At the end of the dry season or
between widely separated thunderstorms they may be-
come increasingly dehydrated (Zachariassen 1996). Tol-
erance of water loss among insects may vary between
17% and 89% (Arlian and Veselica 1979). For instance,
Trachyderma philistina can lose up to 35% or more of its
body weight without ill effects (Broza et al. 1976). As
Hadley (1994) has pointed out, beetles tend to exhibit
some of the highest tolerance levels of all insects, and
the water content of their bodies varies between about
47% and 81% body weight. There is an inverse correla-
tion between the percentage of water and of body fat.

Water uptake

In most desert regions, free-standing water is seldom
available and moisture can only be obtained with the
food or from dry vegetation that has absorbed it hygro-
scopically. Chrysomelidae ingest preformed water from
the juices of the plants on which they feed and Carabidae
from the blood of their prey. Tenebrionidae, however, are
mainly scavengers and extract hygroscopic moisture
from dry vegetable matter (see below). Trogidae feed af-
ter rain (Scholtz and Caveney 1988). When the humidity
is high, there may also be some passive absorption
through the cuticle (Fig. 3).

Fog basking and hygroscopic plant debris

In cool, coastal deserts, where fog appears at irregular
intervals throughout the year, there is seldom appreciable
rainfall. Fog and mist, however, are an extremely impor-
tant alternative source of moisture for animals of various
kinds (Louw 1972; Seely 1978). Opportunist drinking of
droplets of moisture from fog that has condensed on the
body is an important source of water uptake for desert
beetles. Fog basking was first observed in Onymacris
unguicularis in the Namib by Hamilton and Seely
(1976). Normally day-active beetles of this species re-
main buried in the sand of dune slip faces at night. When
fog comes, they emerge, climb to the crest and adopt a
characteristic head-down stance (Fig. 4) facing into the
mist-laden wind while water trickles down the body into
the mouth.

Seely (1979) pointed out that Adesmiini, Eurychorini
and Zophosini have all evolved specific behaviour pat-
terns for drinking water condensed on vegetation, the
dorsum of the body, or in sand. Onymacris laeviceps
provides an example of the first pattern, O. unguicularis
of the second and Lepidochora discoidalis of the third.
Lepidochora spp. dig trenches into which water, which
they drink, flows from the sand above (Seely and
Hamilton 1976). Zophosis moralisi drinks directly from
the sand, as does Physadesmia globosa. The posture that
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the latter species adopts is similar to the fog basking
stance of O. unguicularis and may provide an explana-
tion of the evolution of the adaptive behaviour of the lat-
ter (Cloudsley-Thompson 1990). The responses of vari-
ous species not only differ from one another, but are cor-
related with the water balances of individual beetles, the
characteristics of the fogs, and the weather that occurred
between them (Seely et al. 1983).

Utilization of fog has also been observed in Israel by
Broza (1979). Here Carabus impressus harvests dew
drops from the leaves of Atriplex leucoclada bushes as
does Coccinella septempunctata, whilst the nocturnal
tenebrionids Blaps sulcata, Pimelia derasa and Trachy-
derma philistina have frequently been recorded taking
water from damp hygroscopic plant material. The utiliza-
tion of hygroscopic plant detritus as a source of moisture
by desert arthropods has frequently been recorded, and
was first recognized by Buxton (1922, 1923). In addi-
tion, the active absorption of atmospheric water vapour
through the rectum has long been known to occur in
Tenebrio molitor larvae and has also been demonstrated
to a lesser extent in larval but not in adult Onymacris
marginipennis (Coutchié and Machin 1984) (see discus-
sion in Hadley 1994). Metabolic water is also produced
(Bartholomew et al. 1985), although the increased respi-
ration necessary to form this not only prevents a net gain
from resulting (Edney 1977) but, as the work of
Zachariassen and his colleagues cited above shows, may
actually enhance total water loss. In Phrynocolus petro-
sus, metabolism of fat produces less than 15% of the wa-
ter lost in dry air at about 20°C, and cannot compensate
for transpiration unless the atmosphere is nearly saturat-
ed (Zachariassen et al. 1987b).

Water balance and osmoregulation

Although the blood in the haemocoel and the fluids in
the gut or malpighian tubules may often be isoosmotic,

the concentrations of ions and other solutes vary consid-
erably (Crawford 1981). Thus, as the haemolymph vol-
ume changes with the degree of desiccation in the larvae
of Onymacris marginipennis, concentrations of various
ions, free amino acids and trehalose remain relatively
constant (Coutchié and Crowe 1979). As we have seen,
this balance is upset at lethal temperatures although the
insects are not necessarily desiccated. Even species such
as Stips stali (Naidu and Hattingh 1988a) and Phys-
adesmia globosa, whose haemolymph osmoregularity in-
creases over 200 mosmol kg–1 during the initial stages of
dehydration, closely regulate their osmotic pressure
thereafter (Naidu and Hattingh 1988b).

As explained above, reduced metabolism results in
lower respiratory water loss (Zachariassen 1996), al-
though it may also result in unusual extracellular ionic
composition. It appears that the reduced respiration of de-
sert tenebrionids has developed at the expense of the abil-
ity of the beetles to maintain high extracellular sodium
concentrations and thus probably high-energy gradients of
sodium (Zachariassen et al. 1987a). No osmoregulation
takes place in Phrynocolus petrosus if less than 10% body
water has been lost. Beyond this, the concentration of free
amino acids in the haemolymph is regulated, but not that
of sodium and potassium ions (Zachariassen et al. 1987b).
The efficient reabsorption of water from the urine facili-
tates the reabsorption of solutes by passive diffusion back
to the haemolymph across the epithelium. This allows de-
sert Tenebrionidae to withdraw all free amino acids from
the urine despite the high concentrations present in the
fluid of the malpighian tubules (see discussion in
Zachariassen 1996). Hadley (1994) outlined the physio-
logical and biochemical mechanisms responsible for the
conversion of potassium carbonate to potassium urate and
thence to insoluble uric acid. He also explained how the
secretion rates of malpighian tubules vary regionally and
with the state of hydration of the insect. Edney (1977) re-
viewed earlier work on the physiology of insect excretion.

456

Fig. 4 Fog basking by Onyma-
cris unguicularis (Tenebrion-
idae). From Cloudsley-
Thompson (1991)



Like tenebrionids, desert Carabidae show low cuticu-
lar permeability, but they do not display reduced meta-
bolic rates, low extracellular sodium concentrations or
high extracellular concentrations of free amino acids.
Moreover, they may produce less concentrated urine and
lose more water through respiration, but they obtain
much more moisture with their food; their prey contains
60–70% water (Zachariassen et al. 1987a; Zachariassen
and Maloiy 1989).

Discussion and summary

The key to the survival of Tenebrionidae and other bee-
tles in hot, dry environments consists in avoiding climat-
ic extremes as far as possible, by a combination of seek-
ing refuge from the most adverse conditions, morpholog-
ical adaptations, behaviour and specialized physiology
(Cloudsley-Thompson 1988). Whereas thermal reactions
are primarily behavioural, adaptational responses to arid-
ity are mostly physiological. Exploitation of desert habi-
tats involves a vast complex of adaptive compromises
between one set of factors and another. Desert beetles
avoid desiccating environments in various ways, tolerate
transient fluctuations in the ionic composition of their
haemolymph, restrict water loss through a combination
of physical adaptations and physiological processes, and
utilize moisture obtained opportunistically from a variety
of sources.
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