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Abstract
Tocoyena formosa has a persistent floral nectary that continues producing nectar throughout flower and fruit development. 
This plant also presents an intriguing non-anthetic nectary derived from early-developing floral buds with premature abscised 
corolla. In this study, we characterize the structure, morphological changes, and functioning of T. formosa floral nectary at 
different developmental stages. We subdivided the nectary into four categories based on the floral and fruit development 
stage at which nectar production started: (i) non-anthetic nectary; (ii) anthetic nectary, which follows the regular floral 
development; (iii) pericarpial nectary, derived from pollinated flowers following fruit development; and (iv) post-anthetic 
nectary that results from non-pollinated flowers after anthesis. The nectary has a uniseriate epidermis with stomata, nectar-
iferous parenchyma, and vascular bundles, with a predominating phloem at the periphery. The non-anthetic nectary presents 
immature tissues that release the exudate. The nectary progressively becomes more rigid as the flower and fruit develop. 
The main nectary changes during flower and fruit development comprised the thickening of the cuticle and epidermal cell 
walls, formation of cuticular epithelium, and an increase in the abundance of calcium oxalate crystals and phenolic cells 
near the vascular bundles. Projections of the outer periclinal walls toward the cuticle in the post-anthetic nectary suggest 
nectar reabsorption. The anatomical changes of the nectary allow it to function for an extended period throughout floral and 
fruit development. Hence, T. formosa nectary is a bivalent secretory structure that plays a crucial role in the reproductive 
and defensive interactions of this plant species.
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Introduction

In Rubiaceae, the gynoecium typically exhibits syncarpy 
and an inferior ovary, with the nectary often presented as 
a nectariferous disk positioned on top of the ovary, encir-
cling the base of the style (Galetto 1998; Bernardello 2007; 
Judkevich et al. 2022). The cushion-like appearance of the 
floral nectary is a consistent trait within the family (Brown 
1938). The position, morphology, and structure of the floral 
nectary in Rubiaceae species have been employed as cru-
cial taxonomic characteristics (Brown 1938; Galetto 1998; 
Bernardello 2007; Florentin et al. 2016) and examined in 
many ecological investigations (Koptur 1992; Santos and 
Del-Claro 2001; Del-Claro et al. 2013; Falcão et al. 2014; 
Sanz-Veiga et al. 2017, 2021; Stefani et al. 2019). Structur-
ally, the floral nectary in Rubiaceae comprises a uniseriate 
epidermis containing stomata and a multilayered paren-
chyma that may or may not have vascularization (Florentin 
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et al. 2016). Vascularized parenchyma may have both xylem 
and phloem bundles, or solely phloem bundles, which might 
penetrate deeply into the nectary base or the lower half of the 
nectary (Galetto 1998). Notably, investigations into nectary 
have been limited to only a few Rubiaceae species (Galetto 
1998; Florentin et al. 2016; Judkevich et al. 2022).

Tocoyena formosa (Cham. & Schltdl.) K.Schum. (Rubi-
aceae) exhibits flowers with long hypocrateriform tubes, 
highlighting their close relation to long-tongued hawkmoths 
for sexual reproduction (Gottsberger and Silberbauer-Gotts-
berger 2006; Sanz-Veiga et al. 2021), and ranks among the 
50 most common and widely distributed woody species in 
the Brazilian Cerrado (Ratter et al. 2003), a savanna vegeta-
tion. The substantial volume of nectar produced by floral 
nectary in the T. formosa attracts a diversity of long-tongued 
hawkmoth species, which exclusively function as pollina-
tors for this specialized sphingophilous species (Silber-
bauer-Gottsberger 1972; Sanz-Veiga et al. 2021; Amorim 
et al. 2022). In T. formosa, the floral nectary is persistent, 
and following pollination and the abscission of the corolla 

tube, the nectary continues to produce nectar throughout 
fruit development (Sanz-Veiga et al. 2017). This post-floral 
secretion entices several ant species that consume the nectar 
but do not contribute to fruit protection against pre-dispersal 
seed predators (Sanz-Veiga et al. 2017, 2021). Intriguingly, 
even the nectary of non-pollinated flowers sustains nectar 
production for approximately 2–3 months after the detach-
ment of the corolla tube (Sanz-Veiga et al. 2017).

A previous study reported the occurrence of floral bud 
abortion in T. formosa, where the base of the calyx contin-
ued to produce nectar (Santos and Del-Claro 2001). Our 
observations across various T. formosa populations in the 
Brazilian Cerrado have similarly indicated the corolla tube 
abscission in early-developing floral buds, followed by sub-
sequent nectar secretion from the remaining non-anthetic 
nectary. These non-anthetic nectaries are attended by ants, 
which consume the small amounts of nectar produced before 
the emergence of the post-floral nectaries in the inflores-
cence (Fig. 1). Despite the recognized ecological signifi-
cance of the floral nectary in T. formosa, which is persistent 

Fig. 1  Diagram of the nectary lifespan and reproductive phenology of 
Tocoyena formosa (Rubiaceae). A Floral bud with loosely arranged 
sepals. A’ Floral bud with detached sepals after the corolla falls. The 
nectary was exposed to the environment (non-anthetic nectary). B 
Floral bud with adpressed sepals and normal development (floral nec-
tary before anthesis). C During the anthesis, the nectary remains cov-
ered by nectar (anthetic nectary during anthesis). D Fertilized flow-
ers after the corolla falls. D’. The nectary in non-fertilized flowers 

(post-anthetic nectary) produces nectar following the fruit maturation. 
E–G Fruit development. Note similar size of nectary in different fruit 
stages. E Pericarpial nectary in initial fruit (0.5–1.0 cm of diameter). 
F Pericarpial nectary in intermediated fruit (1.5–2.0 cm of diameter). 
G Pericarpial nectary in mature fruit (2.5–3.0 cm of diameter). Grey 
images = nectaries in senescence. Nectaries with ants =nectaries 
exposed to the environment
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and functional as the fruit develops (Santos and Del-Claro 
2001; Queiroga and Moura 2017; Sanz-Veiga et al. 2017), 
the anatomical changes of this organ during floral and fruit 
development have not been explored.

Considering that the floral nectary in T. formosa is per-
sistent and produces nectar along the floral and fruit devel-
opment, in this study, we subdivided it into four categories: 
(i) non-anthetic nectary, which results from the early-devel-
oping floral buds with abscised corolla (Fig. 1A, A’); (ii) 
anthetic nectary, which follows the regular floral develop-
ment and is active during anthesis producing the nectar con-
sumed by the long-tongued hawkmoth pollinators (Fig. 1B, 
C); (iii) pericarpial nectary, which occurs in developing 
fruits after successful pollination (Fig. 1D–G); and (iv) 
post-anthetic nectary that results from non-pollinated flow-
ers after anthesis (Fig. 1D’). From a developmental perspec-
tive, we studied the anatomy and histochemistry of the floral 
nectary of T. formosa, aiming to characterize the structure, 
morphological changes, and functioning of this nectary at 
different developmental stages. This approach allows us to 
understand the link between the structural and histochemi-
cal features and the secretion of the long-term nectaries in 
T. formosa.

Material and methods

Study site

The study was conducted in a population of T. formosa in 
a private reserve of cerrado sensu stricto (22° 48′ 50″ S 
and 48° 44′ 40″ W) located in Pratânia municipality, São 
Paulo State, Brazil. The reserve is located at an elevation 
of approximately 720 m a.s.l. and encompasses a total area 
of 224 ha. The climate is warm temperate (Cwa, according 
to Koeppen 1948) and markedly seasonal, characterized by 
rainfall primarily in the spring and summer and drought in 
the fall and winter. The mean temperature during the warm-
est month is 22.8 °C, while the annual precipitation averages 
around 1450 mm (Cunha and Martins 2009).

Species characterization, field observation, 
and sampling

Tocoyena formosa, a deciduous shrub measuring 0.5–3.0 m 
in the study area, enters its reproductive season in Septem-
ber/October, coinciding with new leaf growth, and finishes 
in April/May as the fruits mature (Sanz-Veiga et al. 2017; 
2021). The long and slender corolla tube spans 6 to 15 cm 
long, and flowers are arranged in dichasial cyme inflores-
cences at the terminal position (Oliveira et al. 2004). The 
species presents protandrous flowers that remain viable for 
up to 4 days (Oliveira et al. 2004). During the first night 

(male phase), pollen is released onto the closed stigmatic 
lobes, a mechanism commonly observed in Gardenieae 
species, the tribe in which T. formosa is included, known 
as secondary pollen presentation. From the second night 
(female phase), the stigmatic lobes become wide open and 
receptive (Oliveira et al. 2004). Following the abscission of 
the corolla tube, the nectary remains active, continuously 
producing nectar (Fig. 1; Sanz-Veiga et al. 2021).

From October 2015 to February 2016, 10 individuals 
were selected for comprehensive observations on floral 
morphology, anthesis, fruit development, and morphology 
during the reproductive season. The focus was on under-
standing the diverse roles of the floral nectary, encompass-
ing their overall morphology, nectar secretion, flower and 
nectary longevity, and fruit development. Notably, during 
our field observations, we found two morphotypes of early-
developing floral buds based on calyx appearance (Fig. 1). 
Consequently, both morphotypes were collected for subse-
quent anatomical analyses.

For the anatomical analysis of the floral nectary, samples 
of 10 individuals were taken between October 2015 and Feb-
ruary 2016, as well as between October 2016 and February 
2017. These samples covered eight distinct stages of flower 
and fruit development (Table 1).

Structural and histochemical analyses

Samples were fixed in formaldehyde 4% and glutaraldehyde 
1% in sodium phosphate-buffered 0.2 M, pH 7.2 (McDowell 
and Trump 1976), or  FAA50 (Johansen 1940) for 48 h, dehy-
drated in an ethanol series and embedded in 2-hydroxyethyl-
methacrylate (Leica Microsystems, Heidelberg, Germany). 
Serial transverse and longitudinal sections (5 μm thick) were 
cut using a rotary microtome (Leica RM2255), and they 
were stained in 0.05% toluidine blue, pH 4.7 (O’Brien et al. 
1964). The slides were mounted in synthetic resin (Entellan, 
Merck KGaA, Darmstadt, Germany).

We investigated the main classes of compounds present 
in the protoplast and the cell walls of the nectariferous tis-
sues (epidermis and parenchyma). For this purpose, the fresh 
material sections and the fixed and embedded in resin sam-
ples were used for histochemical analysis: a 0.02% aqueous 
solution of ruthenium red for pectin detection, Lugol reagent 
to detect starch grains, Sudan IV to detect total lipids, 10% 
aqueous solution of ferric chloride for phenolic compounds 
(Johansen 1940), NADI reagent for essential oils and oleo-
resin (David and Carde 1964), and bromophenol blue to 
detect the total proteins (Mazia et al. 1953).

Furthermore, to identify the content of the cell layers 
associated with vascular bundles surrounding the nectar-
iferous parenchyma, we employed Dragendorff’s reagent 
for alkaloids (Baerheim-Svendsen and Verpoorte 1983) 
and vanillin hydrochloride for tannins (Mace and Howell 
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1974). The comprehensive examination and documentation 
of all samples were undertaken using a light microscope 
(Olympus BX41) and a digital camera (Olympus C7070). 
We used a polarized light filter to observe the crystals within 
the nectary tissues.

Results

Nectary morphological variation during floral 
development

Tocoyena formosa inflorescences presented two morpho-
types of early-developing floral buds, discernible by the vari-
ation in calyx morphology (Fig. 1). The first morphotype 
exhibited loosely arranged sepals and a premature corolla 
tube abscission, giving rise to the non-anthetic nectary 
(Fig. 1A). The second morphotype featured sepals closely 
adpressed to the corolla tube, which follows the regular flo-
ral development (Fig. 1B). The floral buds that originate 
the non-anthetic nectary secreted minute quantities of nectar 
(less than 1 µL) that attract ants (Fig. 1A’) before the emer-
gence of the first post-anthetic nectaries following flower 
anthesis.

Typically, the oldest terminal floral buds proceeded 
with regular development, giving origin to the flowers 
(Fig. 1B). While the younger early-developing floral buds 

exhibited premature corolla abscission (Fig. 1A’), accom-
panied by subsequent nectar production. We removed the 
early-developing corolla to assess the nectar production 
in the anthetic floral buds, yet no nectar was observed 
(Table 1).

After the regular development of these floral buds and 
subsequent flower anthesis, the corolla tube, whether from 
pollinated or non-pollinated flowers, abscised, unveiling 
the post-anthetic nectary to the environment (Fig. 1B–D’). 
Then, the nectary became swollen, yellowish, and covered 
with nectar (Table 1). Anthesis spanned 4 days, within which 
the nectary enlarged, becoming pale yellow, and produced 
abundant nectar with volume reaching up to 80 µL (Fig. 1C, 
D and Table 1). In this stage, the nectary was denominated 
as anthetic nectary. After pollination, the corolla abscised, 
and the fruits started development (Fig. 1E–G). Throughout 
the fruit development period (approximately 105 days), the 
post-floral pericarpial nectary persisted in producing nec-
tar. During the fruit development, this nectary changed its 
appearance (from swollen to dry with necrosis in the bor-
ders) and coloration (from pale yellow to greenish yellow). 
At the final stages of fruit development, the nectar produc-
tion became noticeably diminished (hindering volume meas-
urement) until production ceased (Fig. 1F, G and Table 1).

In non-pollinated flowers, the nectary also continued pro-
ducing nectar after the corolla had abscised, extending for 
approximately 90 days and accompanying the initial stages 

Table 1  Morphology of the floral nectary in flower and fruit development of Tocoyena formosa (Rubiaceae). The number of signals indicates the 
amount of the nectar ( +) little, (+ +) moderate, and (+ + +) abundant or ( −) absent

Stages of development of the flowers and fruit Nectar presence Aspect and color of the 
nectary

Named

Floral buds Calyx detached of the 
corolla (abortive buds)

Before the corolla falls 
(0.5–1.5 cm of length)

 − Greenish Non-anthetic nectary 
before the corolla 
abscission

After the corolla falls 
(1 cm of length)

Nectary exposed

 +  + Swollen and yellow Non-anthetic nectary 
in floral bud after 
the corolla abscis-
sion

Calyx adpressed of the corolla (0.5–1.5 cm of 
length)

 − – Pre-anthetic nectary

Flower in anthesis  +  +  + Swollen and light yel-
low

Anthetic nectary

Non-fertilized flowers After the corolla falls; ovary does not develop in 
fruit (its diameter is similar to ovary in flower)

Nectary exposed

 +  +  + Swollen and yellow in 
center and green in 
border

Post-anthetic nectary

Fruits 0.5–1.0 cm of diameter
Nectary exposed

 +  + Swollen and greenish 
yellow

Pericarpial nectary in 
initial fruit

1.5–2.0 cm of diameter
Nectary exposed

 +  + Dried with necroses in 
border and greenish 
yellow

Pericarpial nectary in 
intermediate fruit

2.5–3.0 cm of diameter
Nectary exposed

 + Dried with necroses in 
border and greenish 
yellow

Pericarpial nectary in 
mature fruit
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Fig. 2  Structure of the nectary (non-anthetic) in the floral bud with 
detached sepals to the corolla of Tocoyena formosa. A–H, J Longi-
tudinal sections. I Transverse section. N–D. Non-anthetic nectary in 
floral buds with corolla. A Nectary (ne) localized in the top of the 
ovary. Note vascular bundles (arrows) near to the nectariferous paren-
chyma. B Nectary with a uniseriate epidermis (ep) and parenchyma 
(pa) with compactly arranged cells. Note epidermis recovered by a 
thin continuous cuticle and asymmetric anticlinal divisions (marker) 
in the epidermal cells. C Parenchyma cells with dense cytoplasm 
and central volume nucleus. Note some cells contain small calcium 
oxalate crystals. D Periphery of the nectariferous parenchyma with 
vascular bundles (arrow) containing predominantly phloem. E–J 

Non-anthetic nectary in the buds after the corolla falls. E Epidermal 
(ep) and parenchyma cells (pa) of the nectary had large vacuoles and 
prominent nucleus. Note vascular bundles (arrow). F–G Nectarifer-
ous epidermis and secretion (asterisk). Note thin cuticle, stomata 
(F) and cells with tortuous contour, disrupted walls and failures in 
the cuticle (G). H Secretion in the subcuticle space (arrowhead) and 
periclinal divisions occurred in subjacent epidermal cells. Note secre-
tion (asterisk). I Parenchyma cells with large vacuoles and prominent 
nucleus. Note calcium oxalate crystals. J Periphery of the nectarifer-
ous parenchyma (pa) containing vascular bundle (arrow). ep, nectarif-
erous epidermis; ne, nectary; pa, nectariferous parenchyma
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of fruit development of pollinated flowers. This stage was 
designated the post-anthetic nectary (Fig. 1D’ and Table 1).

Nectary anatomy in different flower and fruit stages

Throughout all the analyzed flower and fruit stages, the floral 
nectary consisted of a uniseriate epidermis with stomata and 
multiple layers of specialized nectar-secreting parenchyma. 
This parenchyma was vascularized mostly by phloem origi-
nating from vascular bundles located peripherally around 
the nectary.

Non‑anthetic nectary before and after corolla abscission

In the floral bud with detached sepals to the corolla, the nec-
tary exhibited an epidermis recovered by a thin continuous 
cuticle (Fig. 2A, B). The epidermis comprised rectangular 
cells with thin walls, dense cytoplasm, and the voluminous 
central nucleus (Fig. 2A, B). Asymmetrical anticlinal divi-
sions were evident in the epidermal cells (Fig. 2B), likely 
precursor stages for stomata formation. The nectariferous 
parenchyma consisted of isodiametric cells arranged com-
pactly, characterized by dense cytoplasm and voluminous 
central nucleus (Fig. 2B). Sparse parenchyma cells had 
tiny calcium oxalate crystals (Fig. 2C). Vascular bundles, 
predominantly containing phloem, were situated along the 
periphery of the nectariferous parenchyma (Fig. 2A, D).

After the corolla abscission, the nectary was exposed to 
the external environment and became covered with exudate 
(Figs. 1A’ and 2E). The epidermal cells were covered by a 
thin cuticle (Fig. 2E–H). Stomata (Fig. 2F) and epidermal 
cells with irregular contours, disrupted walls, and cuticle 
irregularities (Fig. 2G) were observed. The accumulation 
of secretion was evident in the subcuticular space (Fig. 2H), 
on the surface near stomata (Fig. 2F), and in regions with 
disrupted epidermal cells (Fig. 2G). Periclinal divisions 
occurred underneath epidermal cells (Fig. 2H). Epidermal 
and parenchyma cells were voluminous and had large vacu-
oles and prominent nuclei (Fig. 2H, I). Parenchyma cells 
exhibited larger and more abundant calcium oxalate crystals 
(Fig. 2I). Vascular bundles, mainly composed of phloem, 
occurred in the periphery of the nectariferous parenchyma 
(Fig. 2E, J).

Pre‑anthetic and anthetic nectary

In floral buds with adpressed sepals (Fig. 1B), the nectary 
structure (Fig. 3A) resembled the non-anthetic nectary. A 
continuous thin cuticle covered the epidermis, where the 
stomata were observed (Fig. 3B). Both epidermal and paren-
chyma cells had thin walls, dense cytoplasm, and central 
voluminous nuclei (Fig. 3B). Cell divisions in different 
planes were observed in nectariferous parenchyma (Fig. 3B). 

Clusters of cells with dense cytoplasm, voluminous nuclei, 
and dense contents greenish stained with toluidine blue, 
indicating the presence of phenolic compounds, were located 
near vascular bundles at the nectariferous parenchyma 
periphery (Fig. 3C).

Throughout the 4-day anthesis, the nectary produced 
copious nectar (Fig. 1C). A continuous thick cuticle covered 
the epidermis surfaces, extending as rib-like projections into 
the anticlinal walls (Fig. 3E, F). Epidermal cells had thick 
walls, and their external periclinal walls bore outgrowths 
toward the cuticle (Fig. 3G). Extension of the cuticle into 
substomatal chambers and subepidermal cell walls formed 
a cuticular epithelium (Fig. 3E). Accumulations of secretion 
were observed in substomatal chambers and on the surface 
of the epidermal cells (Fig. 3F). Subepidermal cells were 
loosely arranged (Fig. 3E–G). Parenchyma cells exhibit 
thin walls and cell divisions in various planes (Fig. 3H). 
Numerous idioblasts with druse occurred in the nectarifer-
ous parenchyma, primarily associated with vascular bundles 
surrounding the nectary (Fig. 3I).

Post‑anthetic nectary

After the corolla abscission in non-pollinated flowers, the 
exposed floral nectary continued producing nectar (Fig. 1D’) 
and exhibited similar features to anthetic nectary (Fig. 4A). 
Certain features, however, were accentuated at this stage 
(Fig. 4A), such as the presence of the two layers of the cutic-
ular epithelium (Fig. 4B), thick epidermal cell walls with 
outgrowths of the outer periclinal walls toward the cuticle 
(Fig. 4C, D), accumulations of secretions in substomatal 
chambers (Fig. 4C), and an increase in the occurrence of idi-
oblasts with druse (Fig. 4C, D). Layers of voluminous cells 
filled with dense content, greenish stained with toluidine 
blue (indicating phenolic compounds), accompanied the 
vascular bundles surrounding the nectariferous parenchyma 
(Fig. 4A, E), which appear to derive from the cell clusters 
previously described in the nectary of the floral buds.

Pericarpial nectary in initial, intermediate, and mature 
fruits

We selected three stages of fruit development for anatomical 
analyses based on the fruit diameter, the aspect of the nec-
tary, and nectar abundance: initial, intermediate, and mature 
stages (Table 1). The nectary remained intact, producing 
nectar along the fruit development (Fig. 1D–G). The nectary 
was structured (Fig. 4F) similarly to the post-anthetic stage 
in all the examined stages. In the nectary of initial fruits, epi-
dermal cells with thick walls displayed prominent extensions 
of the outer periclinal walls toward the cuticle (Fig. 4G). The 
parenchyma cell walls thickened progressively, accompa-
nied by an enhancement in intercellular spaces (Fig. 4G–I). 
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Within the parenchyma cell protoplast, Sudan IV reagent 
confirmed translucent inclusions as lipid drops (Fig. 4I). 
Cells enriched with dense content, strongly greenish stained 
by toluidine blue, exhibited numerous vacuoles accompany-
ing the vascular bundles (Fig. 4J).

Histochemical characterization

Throughout different flower and fruit developmental stages, 
the cuticle that covered the floral nectary displayed a posi-
tive response to Sudan IV, indicating the presence of lipid 

Fig. 3  Structure of the pre-anthetic and anthetic nectaries of Tocoy-
ena formosa. A–H Longitudinal sections.I Transverse section. A–C 
Pre-anthetic nectary in floral buds with adpressed sepals. A Nectary 
with a uniseriate epidermis (ep) and parenchyma (pa). Vascular bun-
dles (arrows) occurred in the periphery of the nectariferous paren-
chyma. B Epidermis (ep) covered by a thin cuticle and containing 
stomata. Parenchyma (pa) with compactly arranged cells and cell 
divisions in distinct planes (markers). Note small calcium oxalate 
crystals in some parenchyma cells. C Periphery of the nectariferous 
parenchyma (pa) showing clusters of cells with dense cytoplasm, 
voluminous nucleus, and greenish content stained with toluidine 
blue near to the vascular bundles (arrows). D–I Anthetic nectary in 

flowers in anthesis. D General aspect of the nectary. E Thick cuticle 
with riblike projections in the anticlinal walls and extension of the 
cuticle to the substomatal chambers and the subepidermal cell walls 
(arrowheads). Note subepidermal cells loosely arranged and intercel-
lular spaces. F Accumulations of secretion (asterisk) in substomatal 
chambers and on the surface of the epidermal cells. G Thick walls 
and outer periclinal walls with outgrowths toward to the cuticle (ct) 
of the epidermal cells. H Cell divisions (markers) in the nectarifer-
ous parenchyma. J Vascular bundles on the nectariferous parenchyma 
periphery associated with numerous drusiferous idioblasts. ep, nectar-
iferous epidermis; pa, nectariferous parenchyma; ct, cuticle
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substances (Fig. 5A–D), which facilitated the assessment 
of the thickness and integrity of the cuticle. The cuticular 
epithelium in the nectary of the flowers in anthesis (Fig. 5B), 
non-pollinated flowers after corolla abscission, and fruit 
development (Figs. 4B and 5D, I) was evidenced by the 
positive reactions of both Sudan IV and NADI reagent, 
indicating the presence of lipids and terpenes, respectively. 

The nectariferous epidermis and parenchyma cells exhibited 
pectocellulosic primary cell walls across different floral and 
fruit stages, evidenced by the positive reaction to ruthenium 
red test and toluidine blue staining.

Sudan IV staining revealed the presence of total lipids 
in the protoplast of both epidermal and parenchyma cells 
within the nectary of flowers and fruits (Fig. 5A–D; Table 2). 

Fig. 4  Structure of the nectary non-pollinated flowers (post-anthetic) 
and in fruits (pericarpial) in different developmental stages of Tocoy-
ena formosa.A–I Longitudinal sections. J Transverse section. A–E 
Post-anthetic nectary in non-fertilized flowers after the corolla falls. 
A Nectariferous epidermis (ep) and parenchyma (pa). Note vascular 
bundle (arrow).B NADI-stained section showing cuticular epithelium 
(arrowheads). C Accumulations of secretion in substomatal chambers 
(asterisk) and drusiferous idioblasts in the parenchyma. D Epidermal 
cells with thick walls and outgrowths of the outer periclinal walls 
toward the cuticle (ct). Note drusiferous idioblasts in the parenchyma. 
E Vascular bundles associated with cells filled by greenish content 
localized in the periphery of the nectariferous parenchyma. F–J Peri-

carpial nectary in the initial, intermediated and mature fruit stages. 
F Nectariferous epidermis (ep) and parenchyma (pa). Note vascular 
bundle (arrow).G Nectary in the initial fruits containing epidermal 
cells with thick walls and developed outgrowths of the outer pericli-
nal walls toward the cuticle. Note cuticular epithelium (arrowheads). 
H Parenchyma cells with thick walls loosely arranged and calcium 
oxalate crystal. I Wide intercellular spaces and translucent inclusions 
(markers) in the protoplast of the parenchyma cells. J Numerous vac-
uoles filled by greenish content (staining with toluidine blue) in the 
cells surrounding nectariferous parenchyma associated with vascular 
bundles. ep, nectariferous epidermis; pa, nectariferous parenchyma
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Tiny and sparse lipid droplets were detected in the non-
anthetic nectary in floral buds before corolla abscission. In 
contrast, after the corolla abscission, these droplets enlarged 
notably (Fig. 5A), particularly within the epidermal cells. In 
the floral nectary before anthesis, sparse lipid droplets were 
present in the protoplast of both epidermal and parenchyma 
cells. In the floral nectary in anthesis, drops in the epidermal 
and subepidermal cells were weakly labeled (Fig. 5B). In 
the post-anthetic nectary, the lipid droplets were larger and 
more abundant (Fig. 5C). Lipid droplets were larger, but 
less numerous in the nectary during the fruit development 
(Fig. 5D). This positive reaction was consistent in terms of 
size and distribution of the translucent droplets in toluidine 
blue stained (Fig. 4G, I).

Using NADI reagent, essential oils (blue staining) were 
apparent (Fig. 5F), as well as a mixture of essential oils 
and oleoresin (purple staining, see Fig. 5E, H and I), within 
the protoplast of both epidermal and subepidermal cells 

across various flower and fruit stages. However, no such 
substances were detected in the non-anthetic nectary before 
corolla abscission, nor in the floral nectary before anthesis 
(Fig. 5G; Table 2). After corolla abscission, sparse droplets 
of a mixture of essential oils and oleoresin were detected in 
the non-anthetic nectary (Fig. 5E). Droplets of essential oils 
were observed in the floral nectary before anthesis (Fig. 5F). 
Within the post-anthetic nectary, drops of the essential oil 
and oleoresin mixture were more abundant (Fig. 5H). During 
fruit development, essential oils and oleoresin were larger 
and appeared less frequently in the protoplast of the nectary 
cells. Deposits of these substances were evident in the peri-
plasmic spaces of the epidermal cells (Fig. 5I).

Lugol’s reagent revealed numerous starch grains (gran-
ules of dark brown or purple color) within both the epider-
mal and parenchyma cells of the non-anthetic nectary before 
corolla abscission (Fig. 6A). After corolla abscission, starch 
grains were less abundant in epidermal and subepidermal 

Fig. 5  Lipid substances in the floral nectary of Tocoyena formosa in 
flower and fruit different developmental stages. Longitudinal sections. 
A–D Detection of lipids with Sudan IV. A Lipid droplets in protoplast 
of the epidermal and subepidermal cells in the non-anthetic nectary 
before corolla abscission. Note thin cuticle. B Thick cuticle with rib-
like projections in the anticlinal walls and extension of the cuticle to 
the substomatal chambers (arrowhead) in the floral nectary during 
anthesis. Note drops in the protoplast of the epidermal and paren-
chyma cells weakly labeled for lipids. C Lipid drops in epidermal 
and subepidermal cells in post-anthetic nectary. Note thick cuticle. D 
Larger lipid drops in the protoplast of the epidermal and parenchyma 
cells in the pericarpial nectary in mature fruit. Note thick cuticle with 
riblike projections in the anticlinal walls and cuticular epithelium 

(arrowhead). E–I Detection of terpenoids with NADI’s reagent. E 
Drops of a mixture of essential oils and oleoresin in the protoplast of 
the epidermal and parenchyma cells in non-anthetic nectary after the 
corolla falls. F Anthetic nectary in floral buds; essential droplets were 
observed mainly in the protoplast of the epidermal cells. F Weak 
labeling for terpenoids in drops of the epidermal and subepidermal 
cells in the floral nectary during anthesis. H Numerous drops of a 
mixture of essential oils and oleoresin in the protoplast of the epider-
mal and subepidermal cells in post-anthetic nectary. I Large drops of 
a mixture of essential oils and oleoresin in the protoplast and in the 
subcuticular space (marker) in the pericarpial nectary in mature fruit. 
Note cuticular epithelium (arrowhead)
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Table 2  Histochemical characterization of the nectariferous epider-
mis (Ep) and parenchyma (Pa) in flower and fruit development of 
Tocoyena formosa. Key to cell layers: Ct cuticle, CE cuticular epithe-

lium, SS subcuticular space, Ep epidermal cells, CW cell wall, Pt pro-
toplast, Pa parenchyma cells; 1essential oils; 2mixture of essential oils 
and oleoresin; − absence of reaction

Reagent Substance Non-anthetic 
nectary 
before the 
corolla 
abscission

Non-anthetic 
nectary after 
the corolla 
abscission

Pre-anthetic 
nectary

Anthetic 
nectary

Post-
anthetic 
nectary

Pericarpial 
nectary in 
initial fruit

Pericarpial 
nectary in 
intermediate 
fruit

Pericarpial 
nectary in 
mature fruit

Ruthenium 
red

Pectin CW (Ep, Pa) CW (Ep, Pa) CW (Ep, Pa) CW (Ep, 
Pa)

CW (Ep, Pa) CW (Ep, 
Pa)

CW (Ep, Pa) CW (Ep, Pa)

Lugol Starch Pt (Ep, Pa) Pt (Ep) Pt (Ep)  − Pt (Ep) Pt (Ep, Pa) Pt (Ep)  − 
Sudan IV Total lipids Ct Ct

Pt (Ep, Pa)
Ct Ct; CE

Pt (Ep, Pa)
Ct; CE
Pt (Ep, Pa)

Ct; CE
Pt (Ep, Pa)

Ct; CE
Pt (Ep, Pa)

Ct; CE
Pt (Ep, Pa)

NADI rea-
gent

1Essential 
oils

2Mixture of 
essential 
oils and 
oleoresin

 − 2Pt (Ep, Pa) 1Pt (Ep, Pa)  − SS
2Pt (Ep, Pa)

2Pt (Ep, Pa) SS
2Pt (Ep, Pa)

SS
2Pt (Ep, Pa)

Ferric chlo-
ride

Phenolic 
com-
pounds

 −  −  −  −  −  −  − Pt (Ep, Pa)

Bromophe-
nol blue

Total protein  −  −  −  −  −  −  −  − 

Fig. 6  Detection of the starch 
grains (black points) with 
Lugol’s reagent in the floral 
nectary Tocoyena formosa 
in flower and fruit different 
developmental stages. A, B 
Non-anthetic nectary before (A) 
and after (B) the corolla falls. 
C Anthetic nectary in the floral 
bud. D Pericarpial nectary in 
intermediary fruit

cells (Fig. 6B; Table 2). In the pre-anthetic nectary, starch 
grains occurred on the periphery of the nectariferous 
parenchyma, gradually diminishing toward the epidermis 

(Fig. 6C). In the anthetic post-anthetic and the pericarpial 
nectaries, starch grains were either scarce or absent within 
the nectariferous tissues (Fig. 6D; Table 2).
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Phenolic compounds (green or dark brown color) were 
sporadically detected within the protoplast of the epider-
mal and parenchyma cells in the nectary of the mature fruit 
(Table 2). Interestingly, the greenish content densely stained 
by toluidine blue (an indication of phenols) within the cell 
layers adjacent to vascular bundles in the post-anthetic and 
pericarpial nectaries did not react to ferric chloride (indica-
tive of phenolic compounds), Dragendorff’s reagent (indica-
tive of alkaloids), or vanillin hydrochloride (indicative of 
tannins).

Discussion

This study presents the first comprehensive comparative 
analysis of the morphology and functioning of the floral 
nectary throughout the reproductive development and the 
anatomical characterization of the non-anthetic nectary in 
a Rubiaceae species. The floral nectary of T. formosa was 
observed in two distinct morphotypes of floral buds, each 
having different functions. The abscission of the corolla 
in the younger early-developing floral buds of the dicha-
sial cymose inflorescence leads to the initiation of nectar 
secretion. In contrast, the terminal floral buds follow their 
regular developmental course, originating new flowers. 
Consequently, the developing floral buds of the latter mor-
photype lack nectar secretion. However, nectar secretion 
begins immediately after corolla abscission in the younger 
early-developing floral buds. The presence of the floral 
nectary is a widely observed feature in numerous species 
within the Rubiaceae (e.g., Amorim and Oliveira 2006; 
Del-Claro et al. 2013; Falcão et al. 2014; Chomicki et al. 
2016). Our observations, which include the identification 
of the non-anthetic nectary in other Rubiaceae species like 
the hummingbird-pollinated Palicourea rigida, suggest that 
this classification can be extended to other species within the 
diverse Rubiaceae.

Tocoyena formosa is a deciduous shrub (Silberbauer-
Gottsberger 1972) that exhibits a synchronization between 
the activity of its non-anthetic nectary and the sprouting 
of new leaves during early spring. This is a critical period 
for plants because the soft tissues are more susceptible 
to herbivore attacks (Korth et al. 2006). In this sense, 
the synchronization between nectar secretion of the non-
anthetic nectary and leaf expansion further highlights the 
potential protective function of this nectary. Nectar pro-
duction in post-anthetic nectary linked to defense mecha-
nisms against herbivores has been previously observed in 
other Rubiaceae species (Del-Claro et al. 2013; Chom-
icki et al. 2016). However, the intriguing role of the floral 
nectaries observed in T. formosa adds further complexity 
to understanding plant defensive strategies against herbi-
vores. The non-anthetic nectary attracts ants and may act 

as a preemptive defense mechanism during the period of 
high plant susceptibility to herbivore attacks. This nectary 
precedes the beginning of nectar production by nectaries 
derived from both non-pollinated (post-anthetic nectary) 
and pollinated flowers (pericarpial nectary).

Morphologically, the non-anthetic nectary exhibits 
characteristics of immature tissues, including a thin cuti-
cle and soft cell walls. The epidermal and parenchyma 
cells show dense cytoplasm, voluminous nuclei, and con-
tinuous cell divisions. All these features are typical of the 
pre-secretory stage (Fahn 1979; Machado et al. 2022). 
Therefore, we suppose that the exudate covering the nec-
tary after corolla abscission might not constitute nectar 
but rather a pre-nectar released due to the exposure of the 
nectary of early-developing floral bud to a drier environ-
ment following premature corolla abscission. While flow-
ers retain more moisture than the stem, water movement 
via the xylem is thermodynamically challenging (De la 
Barrera and Nobel 2004). Consequently, the water sup-
ply and photosynthates to flowers primarily occur through 
the phloem solution (De la Barrera and Nobel 2004). In 
this context, secretions observed in the non-anthetic nec-
tary might have originated as leakage of phloem solution, 
resulting from structural weakness of developing tissues 
when subjected to elevated pressures within the phloem 
(De la Barrera and Nobel 2004). Apart from sugars and 
other nectar constituents, the water in the nectar can also 
serve as a valuable resource for ants associated with the 
plant (Galetto and Bernardello 1992).

Exudate release onto the surface of the non-anthetic nec-
tary after corolla abscission seems to occur in two ways: dis-
rupted epidermal cells and stomatal openings. The relatively 
young tissues of the nectary within floral buds are less resist-
ant to mechanical damage, with their rigidity increasing pro-
gressively with age. The morphological changes in the floral 
nectary during T. formosa reproductive development, like 
cuticle thickening, lipid deposition in substomatal chambers, 
and cuticular epithelium formation, can act as mechanical 
protection and an effective strategy against continuous water 
loss. Additionally, rib-like projections in the epidermal cells 
of the floral nectary during anthesis provide a support func-
tion. In flowers, periclinal and anticlinal divisions enhance 
nectary volume, while epidermal cell anticlinal divisions 
ensure their coverage on the surface. Cell divisions, growth, 
and formation of new specialized cell walls (Calvin 1970), 
such as that occurring in tissues of the nectary during flower 
development, have been reported in different species (Nepi 
2007), and it reveals the regenerative potential of secretory 
cells (Guimarães et al. 2018).

Our findings, particularly those concerning the char-
acteristics of epidermal cell walls, suggest the participa-
tion of common epidermal cells in nectar release in addi-
tion to the stomata. Modified stomata are recognized as a 
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significant apoplasmic pathway for nectar release (Galetto 
1995; Thomas and Dave 1992; Bernardello 2007; Guima-
rães et al. 2018; Judkevich et al. 2022). During initial fruit 
development, morphological changes are more pronounced 
in the post-anthetic and the pericarpial nectaries. In this 
last stage, the outer periclinal wall substantially thickens 
and projects toward the outer periclinal walls of the cuticle, 
potentially promoting solute transfer over short distances. 
Similar wall projections have been observed in the perigo-
nal nectaries of Fritillaria meleagris (Liliaceae), where 
they played a role in nectar exportation and resorption 
(Stpiczyńska et al. 2012). In bracteal and circumbracteal 
nectaries of Gossypium hirsutum (Malvaceae), trichome 
head cell walls exhibit ingrowths toward the plasma mem-
brane during the secretory stage, expanding the area of 
nectar secretion until fruit maturation (Chatt et al. 2021). 
The presence of epidermal cell projections in T. formosa 
might suggest nectar resorption during post-anthetic and 
pericarpial stages. However, detailed studies integrating 
nectar secretion dynamics and ultrastructural analyses are 
necessary to fully understand the role of these cell wall 
projections in nectar transport.

Progressive depletion of starch grains accumulated in 
the anthetic nectary of regular floral buds in T. formosa 
implies that these starch grains likely served as the primary 
sugar source for the pre-nectar, a phenomenon commonly 
observed in the floral nectaries of various species (Nepi 
et al. 1996; Durkee et al. 1981; Ren et al. 2007; Paiva 2012; 
Guimarães et al. 2018; Chatt et al. 2021; Paiva et al. 2021). 
Notably, the floral nectary remains consistently covered by 
nectar over an extended period (about 105 days), spanning 
flower anthesis and fruit development (Sanz-Veiga et al. 
2017). The prevalence of phloem bundles in the periphery 
of the nectary observed in T. formosa strongly suggests that 
the phloem solution serves as a crucial source of nectar sug-
ars during different phases of nectar production (Bernardello 
2007; Nepi 2007; Vassilyev 2010).

The visual increase in both the quantity and size of cal-
cium oxalate crystals within the parenchyma of the nectary, 
particularly in association with vascular bundles at the 
periphery of the nectary during the flowering and fruit-
ing stages of T. formosa, may be linked to various factors. 
These include the regulation of cytosolic calcium levels, the 
maintenance of cell homeostasis, solute translocation in the 
phloem (Paiva and Machado 2005; Paiva 2019; Mesquita-
Neto et al. 2020), and even the transport of sucrose from the 
symplast to the apoplast (as discussed in Paiva et al. 2021). 
This observed increase in calcium crystals may further indi-
cate the participation of phloem solution in the origin of 
nectar.

The presence of clusters of cells exhibiting phenolic con-
tent near vascular bundles at the periphery of the nectar-
iferous parenchyma, as observed in the nectary of regular 

floral buds, results in the formation of a contiguous layer of 
densely filled cells surrounding the post-anthetic and peri-
carpial nectaries of T. formosa. While our histochemical 
tests for directly detecting phenolic compounds were incon-
clusive, we posit that these cells contain such compounds 
based on the green staining with toluidine blue (Ramalingam 
and Ravindranath 1970). We hypothesize that these continu-
ous cell layers may function as barriers, preventing the efflux 
of pre-nectar into adjacent nectary tissues. Vacuoles filled 
with phenolic would increase cell turgor and reduce intercel-
lular spaces. Although the primary cell walls in these regions 
are permeable, the potential efflux of pre-nectar or nectar via 
the apoplast could be obstructed, aligning with Vassilyev’s 
(2010) hypothesis regarding the mechanism of floral nectar 
transport. Although comparable features, such as a tannin-
rich tissue layer beneath the secretory tissue in the nectaries 
of Hiptage sericea (Malpighiaceae) and tannin-containing 
idioblasts in the parenchyma of the elaiophores of Krameria 
triandra (Krameriaceae), have been reported (Subramanian 
et al. 1990; Vogel 1974), the specific functions of these spe-
cialized cell layers remain relatively unexplored.

The histochemical analysis, revealing the presence of 
neutral lipids and terpenes (essential oils and oil-resin) in 
epidermal and parenchyma cells during the functioning of 
the floral nectary in T. formosa, suggests other substances in 
nectar composition beyond sugars, as reported to different 
species (Fahn 1979, 2000; Baker and Baker 1973; Vesprini 
et al. 1999; Stpiczyńska et al. 2012; Tölke et al. 2015; Chatt 
et al. 2021). This multifaceted composition may play cru-
cial roles in plant-animal interactions, encompassing both 
attraction and defense (Pacini et al. 2003; Koptur 2005; Heil 
2011). A notable feature observed in the post-anthetic nec-
tary of T. formosa was the predominance of lipophilic secre-
tions in the epidermal and subepidermal cells. This indicates 
that the nectary has the potential to generate floral scents in 
the form of volatile compounds. Nectary acting as a scent 
gland, for instance, has been documented in the flower of the 
Bignoniaceae, Jacaranda oxyphylla (Guimarães et al. 2018). 
Furthermore, lipophilic substances within the periplasmic 
space of the epidermal cells in pericarpial nectaries in T. 
formosa may be associated with cuticle restoration (Paiva 
2017).

A noteworthy aspect of T. formosa is the presence 
of early-developing floral buds that give origin to the 
non-anthetic nectaries, easily distinguished by the loose 
arrangement of sepals before premature corolla abscission. 
Tocoyena formosa blooming season begins at the end of 
the dry season, and the inflorescences are multiflowered, 
bearing large flowers. Furthermore, the relatively high 
water required for producing large flowers might contrib-
ute to the plant selection of floral buds. The impact of 
such water-related costs on flower morphology, including 
reductions in size and quantity, has been documented by 
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De la Barrera and Nobel (2004). This alteration in mor-
phology is especially significant for species inhabiting 
water-limited environments (Galen et al. 1999), where 
many species flower during the dry season, reducing tran-
spirational water loss in arid regions (Larcher 1980). To 
investigate these hypotheses, future research should con-
centrate on the vascularization patterns of terminal and 
lateral younger early-developing floral buds within the 
inflorescence and their connections to flower water rela-
tions, focusing on the timing of different maturation stages 
of floral structures.

The floral nectary of T. formosa was divided into four 
categories based on the stage of reproductive develop-
ment at which nectar production was seen: non-anthetic 
nectary, anthetic nectary, post-anthetic nectary, and peri-
carpial nectary. This subdivision facilitated the correlation 
between the structural and histochemical changes of the 
nectary with the phases of reproductive phenology. The 
non-anthetic and post-anthetic nectaries share a common 
ontogenetic origin and potentially serve a similar defensive 
function within the plant. Nonetheless, they exhibit varia-
tions in tissue maturation and histochemical composition. 
The prolonged ability of the floral nectary in T. formosa 
to secrete nectar continuously for more than 105 days 
throughout various reproductive stages is facilitated by 
anatomical changes and vascular involvement in pre-nectar 
production, complemented by possible nectar reabsorption 
during post-anthetic stages. The floral nectary of T. for-
mosa plays a crucial role in the reproductive and defensive 
interactions of this plant species with mutualist partners. 
Hence, it is a bivalent secretory structure and is an intrigu-
ing model for in-depth exploration spanning ultrastructural, 
chemical, and ecological aspects.
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