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Abstract
Signalling via substrate vibration represents one of the most ubiquitous and ancient modes of insect communication. In 
crickets (Grylloidea) and other taxa of tympanate Ensifera, production and detection of acoustic and vibrational signals are 
closely linked functionally and evolutionarily. Male stridulation produces both acoustic and vibrational signal components, 
the joint perception of which improves song recognition and female orientation towards the signaller. In addition to stridu-
lation, vibrational signalling mainly through body tremulation and/or drumming with body parts on the substrate has long 
been known to be part of crickets' close-range communication, including courtship, mate guarding and aggression. Such 
signalling is typically exhibited by males, independently or in conjunction with stridulation, and occurs literally in all cricket 
lineages and species studied. It is further also part of the aggressive behaviour of females, and in a few cricket groups, females 
respond vibrationally to acoustic and/or vibrational signals from males. The characteristics and function of these signals have 
remained largely unexplored despite their prevalence. Moreover, the communication potential and also ubiquity of cricket 
vibrational signals are underappreciated, limiting our understanding of the function and evolution of the cricket signalling 
systems. By providing a concise review of the existing knowledge of cricket perception of vibrations and vibrational signal-
ling behaviour, we critically comment on these views, discuss the communication value of the emitted signals and give some 
methodological advice respecting their registration and control. The review aims to increase awareness, understanding and 
research interest in this ancient and widespread signalling mode in cricket communication.

Keywords Biotremology · Vibrational communication · Courtship · Multimodal communication · Signalling evolution · 
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Communication by substrate‑borne 
vibrations

Signals and cues generated as mechanical oscillations of a 
medium provide one of the most ubiquitous modes of infor-
mation exchange among animals. Such energy can be trans-
mitted in two ways: as longitudinal (i.e., acoustic or sound) 
waves travelling through air or water, or as various types of 
mechanical waves at the solid or water boundary (i.e., sur-
face- or substrate-borne vibrations; Hill and Wessel 2016). 

Although signalling by sound and substrate vibration are 
functionally closely related (Caldwell 2014), signals from 
these two modalities differ largely in their properties and 
potential information content, and are typically detected by 
different sensory organs (or different functional parts of a 
compound organ). Because of the human perceptual prefer-
ence for hearing, sound has long been considered the pre-
dominant means of mechanosensory communication and has 
been studied extensively in insects and vertebrates (Gerhardt 
and Huber 2002; Narins et al. 2006; Hedwig 2014a; Pol-
lack et al. 2016; Ladich and Winkler 2017). However, recent 
advances in biotremology (i.e., the study of animal interac-
tions via substrate-borne waves, Hill and Wessel 2016) have 
shown that the use of substrate vibrations is of great impor-
tance for animal communication and survival (Cocroft et al. 
2014a; Hill 2009; Hill et al. 2019; in press), and is second 
in phylogenetic presence only to reliance on chemical sig-
nals and cues (Endler 2014). Particularly in insects, which 
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are ubiquitously equipped with sensilla to detect substrate 
surface deflections (while only a subset of insects possess 
hearing organs; Lakes-Harlan and Strauβ 2014; Strauβ and 
Lakes-Harlan 2014), and also as energetically more effi-
cient signallers through the substrate than through the air 
(Bennet-Clark 1998), vibrational signalling largely exceeds 
and evolutionarily predates the use of sound in communica-
tion (Cocroft and Rodríguez 2005). Signals are produced by 
specific movements of the body, or some of its parts, with 
or without striking the substrate (drumming and tremula-
tion, respectively), or by specialised structures for rubbing 
or buckling to produce vibrations (stridulation and tymbal 
mechanisms, respectively; Virant-Doberlet and Čokl 2004; 
Hill 2012). Not only because some of these mechanisms 
excite both airborne and substrate-borne vibrations, insects 
can use both types of signals in communication (Cocroft 
and Rodríguez 2005). In such cases, the two signalling chan-
nels would merit joint experimental attention; however, so 
far bioacoustic and biotremological research in insects and 
other animals have been conducted largely independently 
(Cocroft et al. 2014b).

Vibrational signalling in cricket 
communication

Crickets (Orthoptera, Grylloidea) have been studied for their 
acoustic communication for over a century and are now 
established as one of the most important invertebrate mod-
els for studying mating systems and communication (Huber 
et al. 1989; Zuk and Simmons 1997; Robinson and Hall 
2002; Hedwig 2014b; Horch et al. 2017; Shöeneich 2020). 
Male crickets produce sound signals by rubbing specialised 
regions of the forewings together (tegminal stridulation), 
which is their principal mode of long-distance signalling, in 
the context of mate attraction and territoriality (Alexander 
1961; Alexander and Otte 1967). In addition to stridulation, 
which involves the release of mechanical energy into both air 
and substrate, crickets exhibit several other types of behav-
iours related to vibration production (Table 1, Fig. 1). These 
behaviours may be considered of particular importance for 
short-range communication, but have received very little 
attention in experimental research. Here, we provide a con-
cise overview of knowledge of cricket vibratory perception 
and vibrational behaviour, highlight its documented distribu-
tion and communication potential, and critically comment 
on the commonly held views regarding its importance and 
evolution. Finally, we provide some methodological advice 
on vibrational signal registration and control. In doing so, 
we hope to increase awareness, understanding and research 
interest in this ancient and widespread signalling mode in 
cricket communication.

Stridulation and neuroethology of signal detection

The properties of stridulatory vibrations, their sensory 
detection, the neuronal (co-)processing of sound and vibra-
tion signals and its behavioural significance were studied 
more widely in crickets (and other Ensifera) in the last 
decades of the previous century, before research focused 
almost exclusively on the airborne channel. In these 
insects, the vibratory sense is functionally and evolution-
arily tightly related to hearing. Ensifera possess complex 
mechanosensory organs for substrate vibration detection, 
situated in all legs (Lakes-Harlan and Strauβ 2014; Strauß 
et al., 2014). In the forelegs, a subset of these sensilla, 
primitively vibrosensory, have in the course of evolution 
specialised for sound detection (Meier and Reichert 1990; 
Rössler 1992; Strauß and Lakes-Harlan, 2009. Conse-
quently, a set of post-synaptic vibratory interneurons of 
Ensifera have been exploited for the newly developed audi-
tion, as well (Stritih and Stumpner 2009). In hearing spe-
cies, the homology of auditory and vibratory senses is evi-
dent by the convergence of both types of information partly 
at the same interneurons of the ventral nerve cord (Kühne 
1982; Kühne et al. 1984), implicitly suggesting a high 
behavioural relevance of combined acoustic and vibrational 
stimuli. In a subset of first-order auditory interneurons of 
crickets, this convergence improves encoding of calling 
and courtship song patterns and reduces habituation, or 
otherwise shapes neuronal responses through combined 
excitatory and inhibitory inputs (Wiese 1981; Kühne et al. 
1984). During phonotaxis, female crickets prefer a simul-
taneously vibrating substrate when approaching the sound 
source (Weidemann and Keuper 1987). Since stridulatory 
vibration as a highly correlated signal occurring simul-
taneously with sound improves encoding of song and 
orientation, it could be interpreted merely as an ‘efficacy 
backup’ (Hebets and Papaj 2005). However, vibratory inhi-
bition of the auditory AN2 neuron (Kühne et al. 1984), 
for example, which mediates avoidance to high-intensity 
ultrasound during flight, may help switch its function to 
intraspecific communication associated with the emission 
of lower-intensity sound and substrate vibration (Kühne 
et al. 1984). Thereby, the function of concurrent vibrational 
signals may also be, among others, to facilitate context 
interpretation for the receiver (see Hebets and Papaj 2005). 
These data highlight the importance of the simultaneously 
available auditory and vibratory components of songs for 
the receiver, and also of other concurrent vibrational sig-
nals (see below) in eliciting natural behavioural responses. 
As discussed in more detail in later parts of this paper, this 
view should also be considered when designing bioacoustic 
experiments.
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Table 1  Distribution of acousto-vibrational signalling mechanisms in crickets

Taxon Context Reference

Male Female

Family subfamily Species Call Court Guard Aggr Call/accept Aggr/reject

Mogoplistidae Cycloptiloides canar-
iensis

S S S T Dambach and Beck (1990)

Ornebius aperta S S, T Andrade and Mason (2000)
Trigonidiidae Balamara (Trigonidium) 

gydia
-, aD S, aD, pD T, aD aD aD, pD aD Evans (1988)

Laupala cesarina S S, T Shaw and Khine (2004)
Trigoniduim ‘lineage 

A’ (6 sp.)
S* S,T T T de Carvalho and Shaw 

(2010); de Carvalho and 
Otte (2006)*Trigoniduim ‘lineage 

B’ (2 sp.)
S* S, T

Laupala (3 sp.) S* S,T
Prolaupala (2 sp.) S* S,T
Anele ulia S* S, T
Phyllopalpus pulchellus S S, T,pD S,T Funk (2016)
Cranistus colliurides S S, T S,T Centeno and Zefa (2019)

Phalangospsidae Vanzoliniella sambophila - S, lD de Mello and dos Reis 
(1994)Izecksohniella aimore Mute lD, wF

Phaeophyllacris spectrum Mute T, wF Heidelbach and Dambach 
(1997)

Eidmanacris corumbatai Mute T, lD, aV Prado (2006)
Adelosgryllus rubri-

cephalus
S, T, aV Zefa et al. (2008)

Phaeophilacris bredoides Mute T, wF T T Lunichkin et al. (2016)
Endecous (Endecous) 

chape
S* S, T Fianco et al. (2018); Souza-

Dias et al. (2017)*
Gryllidae Oecanthus nigricornis S S, T, aT, wV Bell (1980)

  Oecanthinae Oecanthus latipennis S S,T, aD Funk (1989)
Neoxabea bipunctata S S,T, aD T
Leptogryllus elongatus Mute T, aV T Brown (2016)

  Nemobiinae Nemobius sylvestris S S, T T Gabutt (1954)
Hygronemobius alleni S S,T Mays (1971)
Pteronemobius-Allone-

mobius (4 sp.)
S S, T

Pteronemobius-Neonemo-
bius (2 sp.)

S S, T

Pteronemobius-Eunemo-
bius (2 sp.)

S S, T

Bobilla victoriae S S, aV T Evans (1988)
Bobilla gullanae S S, T T Su and Rentz (2000)
Allonemobius socius S S, T Sadowski et al. (2002)

  Eneopterinae Nisitrus sp. S S, lW, aV, wV Preston-Mafham (2000)
Lebinthus santoensis S S, T Narvaez and Robillard 

(2012)
Lebinthus luae S ? T ter Hofstede et al. (2015)
Cardiodactylus muria S ? T
Agnotecous obscurus S ? T
Ponca hebardi S ? T Benavidez-Lopez et al. 

(2020)
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Tremulation, drumming and other 
vibration‑producing behaviours

Crickets also produce vibrational signals by mechanisms 
other than stridulation, which produces substrate vibration 
along with sound as an inevitable part of their song (Fig. 1). 
In their pioneering behavioural studies of crickets, Alexan-
der (1961) and Alexander and Otte (1967) described body 
tremulation (termed ‘rocking’, ‘shaking’, ‘jerking’, ‘sway-
ing’ or ‘vibrating’ by the authors) as a ubiquitous display 
during short-range courtship and aggressive behaviour of 
males. This has been confirmed to date by a large number 
of behavioural reports from species of all major cricket line-
ages (Table 1). These studies showed that, especially dur-
ing courtship, tremulation is often combined with (and in 
some cases apparently replaced by) drumming or ‘tapping’ 
of various body parts on the substrate, and/or additional 
vibration-producing behaviours such as antennal, wing or 
leg waving or vibration (Table 1, Fig. 1). Such signals are 
mostly, although not exclusively, exhibited by males, inde-
pendently or in combination with stridulation, and occur 
largely in the same form and context in singing and non-
singing species, as well as in ground- and plant-dwelling 
species of crickets (Table 1). However, examples of the 
most diverse or extensive use of vibrational signalling are 
found in non-singers and in crickets inhabiting vegetation 

(e.g., Bell 1980; Prado 2006; Brown 2016; Table 1), both 
aspects presumably facilitating vibrational communication. 
Whether the specific functions of vibrational signals might 
differ among crickets inhabiting different substrates (due to 
their known constraints on vibrational communication, e.g., 
Cocroft and Rodríguez, 2005; Elias and Mason 2014) would 
be an interesting aspect to investigate in the future.

Evolution of vibrational signalling

The prevalence of tremulation behaviour across different 
cricket lineages strongly suggests that this signalling mode 
must have been present in the early crickets ancestors, most 
likely before the evolution of their acoustic communication 
(see also Stumpner and von Helversen 2001; Stritih and 
Stumpner 2009; Stritih and Čokl 2012; Desutter-Grandcolas 
et al. 2017). However, this view does not seem to be gener-
ally appreciated. Recently, the evolutionary transition of a 
startle response into an intraspecific communication signal 
has been hypothesised for Eneopterinae crickets (Lebin-
thini: ter Hofstede et al. 2015; Benavidez-Lopez et al. 2020). 
Males of this group emit calling songs at unusually high 
frequencies (for crickets), and stationary females respond 
to these signals with tremulation that prompts the male to 
find the mate on a plant. Because high-frequency acous-
tic signals at high intensity normally elicit a reflex startle 

Table 1  (continued)

Taxon Context Reference

Male Female

Family subfamily Species Call Court Guard Aggr Call/accept Aggr/reject

  Gryllinae Acheta domesticus S S, T, lD* S,T S, T T* Alexander and Otte (1967); 
Hack (1997); Khalifa 
(1950); own unpub-
lished data*

Gryllus campestris S S, T S,T, aV S,T T Alexander (1961), Alex-
ander and Otte (1967), 
Rillich et al. (2009)

Gryllus bimaculatus S S, T S,T, aV S,T T Adamo and Hoy (1994, 
1995), Simmons (1986)

Teleogryllus commodus S S S,T, aV S,T, aV T Loher and Rentz (1978), 
Evans (1983)

Teleogryllus oceanicus S S, lD S, T T, wV Fuentes and Shaw (1986), 
Broder et al. (2021)

The major taxonomic groups are listed from basal to terminal, following the phylogeny of Chintauan-Marquier et al. (2016). Abbreviations: Call, 
calling; Court, courtship; Guard, guarding; Aggr, aggression; Call/accept, calling/acceptance; Aggr/reject, aggression/rejection; S, stridulation; 
T, body tremulation; aT, abdominal tremulation; aD, abdominal drumming; lD, leg (foreleg) drumming; pD, palpal drumming; aV, antennal 
vibration/waving; lW, leg waving; wV, wing vibration; wF, wing flicking; -, lacks calling song; mute, lacks stridulation apparatus; ?, no refer-
ence on courtship behaviour. In P. breoides (Lunichkin et al. 2016), female tremulation was reported in undefined context; we included it in 
the category of ‘Aggr/Reject’ for convenience of table organization and as the most likely context. The list shows examples with species-spe-
cific descriptions available at least for pre-mating behaviour. Data on species described for mate guarding or aggressive behaviour only are not 
included. For details on individual signalling mechanisms, see Fig. 1



The Science of Nature          (2021) 108:41  

1 3

Page 5 of 12    41 

response (expressed as a jerky contraction of the body in 
a sedentary animal), it has been proposed that female star-
tle response to male calls evolved into a signal by sensory 
exploitation (ter Hofstede et al. 2015; Benavidez-Lopez et al. 
2020). The recently documented tremulatory responses of 
males to male calls in the context of rivalry are also pro-
posed to have evolved via the same mechanism (Benavi-
dez-Lopez et al. 2020). While this hypothesis is appealing 
and the authors provided some neuroethological support 
for it (but also presented some disconfirming behavioural 
data in the study; ter Hofstede et al. 2015), it seems highly 
unlikely that tremulatory signalling, as found in literally 

every cricket species, would evolve de novo in Lebinthini 
via the exploitation of a startle reflex. This is especially of 
concern since similar communication between males and 
females is also known from primitive cricket lineages, sug-
gesting that females were capable of producing vibrational 
responses to male calls early in cricket evolution. Females 
that respond to male calling and/or courtship signals within a 
regular male–female vibrational or acousto-vibrational duet 
are known from species of the Trigonidiinae and Mogoplis-
tinae (Evans 1988; Dambach and Beck 1990; de Carvalho 
and Shaw 2010; Table 1). As in Lebinthini (ter Hofstede 
et al. 2015), these females do not perform phonotaxis but are 

Fig. 1  Schematic representation of acousto-vibrational signalling 
mechanisms in crickets. Gray coloration indicates body parts primar-
ily involved in signal production. Arrows indicate the described direc-
tions of movement. a Stridulation (tegminal stridulum), b wing vibra-
tion (lateral vibration without friction, or antero-posterior ‘flicking’ 
of tegmina), c body tremulation (antero-posterior, lateral or dorso-
ventral vibration of the entire body, without a percussive impact of 
the substrate), d abdominal tremulation (dorso-ventral or lateral 
vibration of the abdomen), e antennal vibration (dorso-ventral or lat-
eral vibration, or larger-scale antero-posterior ‘waving’ of antennae), 

f abdominal drumming, g foreleg drumming and h palpal drumming, 
which include impacts of respective body parts against the substrate 
(schematized by a horizontal line). Note that tremulation/vibration 
mechanisms are soundless, and typically emit low-frequency signals 
into the substrate. Drumming typically induces broadband substrate 
vibration and at least a weak acoustic signal component. Stridula-
tion produces intense sound and high-frequency/broadband substrate 
vibrations. In crickets, these signalling mechanisms are often com-
bined, simultaneously or subsequently, in a complex mechanosensory 
display
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stationary while the male calls and searches for them, condi-
tions that apparently facilitate the evolution of bidirectional 
signalling in crickets. Moreover, female crickets have also 
been found tremulating in the context of aggression, at least 
whenever this has been explicitly studied (mostly in field 
crickets: Fuentes and Shaw 1986; Adamo and Hoy 1995; 
Rillich et al. 2009; see also Table 1), which suggests their 
common ability to emit vibrational signals.

Vibrational signalling in courtship

Evaluation of the function of cricket vibrational signal-
ling has been limited so far to aggressive tremulation con-
stituting agonistic and guarding behaviour, and has been 
based exclusively on the assessment of behavioural context 
(e.g., Adamo and Hoy 1995; Hofmann and Schildberger 
2001; Parker and Vahed 2009; Bertram et al. 2010; but 
see Vedenina and Shestakov 2018, for correlation between 
aggressive tremulation and expression of courtship behav-
iour). However, understanding the function of vibrational 
signals would be particularly relevant in cricket courtship, a 
multimodal communication process that influences female 
choice. In field crickets, this process has been studied exten-
sively for the quality of the exchanged information and the 
associated female preferences in the acoustic, and recently 
also the contact chemical channel, but is still not completely 
understood (see also below). The importance in courtship 
initiation and its success has also been studied for tactile 
mechanosensory and for visual signals and cues (Loher and 
Rence 1978; Adamo and Hoy 1994; Balakrishnan and Pol-
lack 1997), while the role of vibrational signals in this aspect 
has never been studied experimentally. This is surprising 
given the well-documented cricket vibratory sense and 
behaviour, as even the elevated body temperature of males 
resulting from singing has recently been studied (though 
not confirmed) as a putative short-range signal to influence 
female choice (Erreger et al. 2018). The lack of experimental 
focus on vibration in cricket communication may in part be 
related to the challenge of isolating vibrational signals or 
removing them from the behavioural context, which may be 
more difficult to achieve than with other sensory modalities. 
However, this lack also seems to be a sign that the impor-
tance of vibrational signals in communication is generally 
underappreciated.

Even those studies explicitly addressing the role of non-
acoustic modalities in complementing sound during court-
ship largely focused on chemical cues (Rebar et al., 2009; 
Leonard and Hedrick 2010; Stoffer and Walker 2012; Sim-
mons et al. 2013; but see Wegerhaupt and Wagner 2017, 
suggesting the role of vibration, as well). Chemical signals 
were also investigated as an alternative to compensate for the 
evolutionary loss of sound among the Pacific field cricket T. 
oceanicus (without providing evidence for this; Gray et al. 

2014), although both vibrational and chemical signals have 
previously been recognised as pre-existing modalities under-
lying the still high mating success of the silent males (Bailey 
et al. 2008). Nevertheless, the first insight into substrate-
borne information in courtship has just been provided for 
the intermediate, ‘purring’ morph of this species, which 
emits quieter but still functional songs (Broder et al. 2021). 
This study documented leg drumming signals for the first 
time in field crickets, and showed that vibrations emitted 
by purring individuals are similar in amplitude to that of 
typical ones and may influence mating decisions (Broder 
et al. 2021). Facilitated by the present review, we hope that 
research interest in cricket vibrational signals will gradu-
ally increase, especially after a better understanding of their 
communication potential in courtship, which is discussed in 
more detail below.

In field crickets, it has been shown that despite strong 
directional preferences of females for certain courtship song 
parameters, acoustic information alone is not a reliable indi-
cator of male quality. The song lacks condition dependence 
(Wagner and Reiser 2000; Gray and Eckardt, 2001; Harrison 
et al. 2013) and also weakly reflects the male's immunocom-
petence tested as an alternative quality index (Rantala and 
Kortet 2003; Tregenza et al. 2006; Simmons et al. 2010). 
This suggests that females would benefit from simultaneous 
assessment of song with other available signals. We would 
like to highlight the particularly high potential of vibratory 
information to functionally complement sound in this regard. 
This is not only because these two signalling channels are 
closely linked at the behavioural and sensory levels of crick-
ets but also because signals of both modalities are costly and 
are produced dynamically in time (see below). As a result, 
vibrational signals may increase the reliability of auditory 
information differently than the more static chemical sig-
nals (which inform females about male identity, sex, status, 
genetic compatibility, etc., e.g., Tregenza and Wedell 1997; 
Thomas and Simmons 2009; 2011; Tyler et al. 2015).

Cricket tremulation provides an example of an ener-
getically highly costly signalling behaviour. In agonistic 
interactions of house crickets, the oxygen consumption 
of tremulation exceeds that of stridulation by more than 
fivefold (Hack 1997; similar findings were obtained when 
comparing long-range acoustic signalling and tremula-
tion in a neotropical katydid; Römer et al. 2010). Such 
energetic demands offer the emitted vibrational signals, 
and even more so the combined mechanosensory dis-
play of the courting male, the potential to convey much 
more relevant or ‘honest’ information to the female than 
acoustic signals alone (see Møller and Pomiankowski 
1993). However, given the lack of condition dependence 
of courtship song, this is only true if the rates of vibra-
tional and acoustic signals are not highly correlated, and 
may be particularly relevant for crickets that do not emit 
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both types of signals simultaneously. Indeed, in the scaly 
cricket Ornebius aperta (Mogoplistinae), which tremulate 
mostly upon the female retreat from courtship, high-con-
dition males were more likely to produce tremulation sig-
nals that increased female receptivity to repeated mating 
attempts (Andrade and Mason 2000). To our knowledge, 
this is the only cricket study that discusses the function 
of courtship vibrational signals in more detail and also 
indicates them as reliable for female choice.

The information content of vibrational signals in rela-
tion to male quality and the related female preferences 
have rarely been studied in courtship rituals of insects 
in general. During precopulatory courtship of the red 
mason bee Osmia rufa, thoracic vibration bursts were 
significantly longer in males accepted for copulation, 
potentially informing the female about male health and 
vigour (Conrad et al. 2010). Courtship tremulations of the 
male katydid Conocephalus nigropleurum had a shorter 
inter-pulse interval in larger males, and such signals 
were preferentially selected by females in the two-choice 
stimulation paradigm (de Luca and Morris, 1998). The 
advertisement signals studied in treehoppers, heelwalk-
ers and psyllids were also shown to contain information 
on male condition and/or age, but their primary function 
was confirmed in mate recognition and localisation, not 
in mate choice (de Luca and Cocroft 2009; Lubanga et al. 
2016; Eberhard et al. 2019). This lack of data would make 
any future functional insights into the cricket vibratory 
courtship highly relevant also in the broader context of 
insect biotremology.

In the complex acousto-vibratory courtship of crickets, 
important messages about the signaller may be encoded 
not only in the vigour of motor performance (i.e., signal-
ling rate, intensity or duration) but also in the signaller’s 
ability to link a series of motor patterns in a precisely 
coordinated manner (Byers et  al. 2010). Such motor 
skills are considered particularly reliable indicators of 
male health, genetic quality and developmental stability 
(Byers et al. 2010). In crickets, such information could be 
encoded, for example, in the degree of synchronisation of 
acoustic and/or vibrational signal components produced 
by various mechanisms (e.g., stridulation, tremulation 
and/or drumming), which may be difficult to achieve and 
maintain during a sustained, repetitive display typical of 
their courtship. This is suggested by examples of males 
from several animal groups, such as birds, frogs and spi-
ders, known to perform courtship displays in a highly syn-
chronised manner across modalities, and the high degree 
of synchronisation of signals is preferred by females (Tay-
lor et al. 2011; LaRue et al. 2015; Kozak and Uetz 2016; 
reviewed in Mitoyen et al. 2019). The complex courtship 
display of crickets may provide another promising topic 

to study from the view of multimodal communication and 
signal integration.

Recording and controlling vibrational signals

Several studies have analysed temporal parameters such as 
repetition rates of visually distinct tremulation by crickets 
(e.g., Heidelbach and Dambach 1997; Bertram et al. 2010; 
Narvaez and Robillard 2012; Brown 2016; Vedenina and 
Shestakov 2018), while descriptions of physical properties 
of the actual signals emitted into the substrate are scarce. 
Besides of a few sample oscillograms shown for female 
tremulation in Lebinthini (ter Hofstede et al. 2015) and leg 
drumming in a phalangopsid (i.e., the auditory component 
of the display; de Mello and dos Reis 1994), a quantita-
tive insight into the frequency and amplitude characteris-
tics of vibrations have only been given for two species of 
field crickets (by calling: Weidemann and Keuper 1987; and 
courtship signalling: Broder et al. 2021). Thus, for most spe-
cies, contexts, mechanisms of signal production, as well as 
relevant (natural) substrates of crickets, a comprehensive 
analysis of temporal, spectral and intensity characteristics of 
vibrational signals is still lacking. Thus we may lack not only 
the basis to study the role of these signals in communication, 
but possibly also the presence of signals that are less obvious 
to our visual inspection. For example, combined substrate 
vibration and video recording has only recently revealed 
leg drumming as a mechanism of vibration production in 
field cricket courtship (Broder et al. 2021, for T. oceanicus; 
own unpublished data for A. domesticus), despite decades 
of behavioural study of these species.

For recording vibrational signals, we suggest preferen-
tial use of a species’ natural substrate, or a non-resonant 
reference substrate such as a loudspeaker membrane, which 
would also facilitate interspecific comparison. Considering 
the high communication potential of vibrational signals to 
functionally backup or complement sound, we further argue 
that recording and control of vibrational signals available 
to the receiver should also be conducted in bioacoustic 
experiments. Control can be achieved primarily by choos-
ing an experimental substrate that enables or prevents effi-
cient vibration transmission, depending on the purpose of 
the experiment. So far, a variety of artificial substrates have 
been used (for example in mate choice experiments testing 
auditory courtship signals), from plastic or screen-bottomed 
arenas, wire mesh cages, Petri dishes covered with paper 
towels, to mineral wool chambers (e.g., Adamo and Hoy 
1994; Libersat et al. 1994; Balakrishnan and Pollack 1996; 
Nelson and Nolen 1997; Vedenina and Pollack 2012). It is 
to be expected that these substrates differ greatly in both 
their sensitivity and frequency filtering to induced vibrations 
(Elias and Mason 2014). Although such experiments are 
typically conducted using signal isolation, i.e., with muted 
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males offered to females along with auditory playback, it 
should be noted that males with removed wings typically 
still perform all motor actions associated with courtship 
behaviour (the stridulatory movements of wing bases and 
other vibrational displays). This may affect female behaviour 
differently on different substrates, thus confounding study 
results. The apparent effectiveness of vibrational signal-
ling by muted males has been highlighted, for example, by 
Balakrishnan and Pollack (1996) and Vedenina and Pollack 
(2012), who reported unexpected responses of females to 
partial songs with missing elements in the playbacks. Also, 
noteworthy is the rather high variability in courtship suc-
cess of negative controls (i.e., muted males without audi-
tory playback) between these experiments and especially 
when the same species was used (see Libersat et al. 1994; 
Balakrishnan and Pollack 1996; Bailey et al. 2008). This 
variability may reflect, at least in part, differential efficacy 
of male signalling through the substrate.

Concluding remarks

Because of human perceptual bias, we tend to think of 
auditory signals as a highly prevalent mode of communi-
cation via mechanical signals in animals. Crickets are not 
the only example where such a bias may have favoured the 
study of signals that we detect and intuitively understand 
much better than their substrate-borne counterparts. After 
decades of focusing only on the combination of visual and 
acoustic signals, substrate vibrations have been shown to 
be an additional and highly important means of informa-
tion transfer in the multimodal courtship of fruit flies (Fabre 
et al. 2012; Mazzoni et al. 2013). Even in songbirds, such as 
finches, traditionally considered to be specialised acoustic 
and visual signallers, there is growing evidence for the use 
of substrate-borne signals as an additional means of infor-
mation exchange important in short-distance courtship (Ota 
et al. 2015; Ota 2020).

While it is undisputed that acoustic signals represent 
the crucial means of long-distance communication in 
crickets, it is time to consider their so well-documented 
vibrational behaviour as important for short-distance com-
munication and to consider these data in evolutionary sce-
narios, as well. In the review on cricket vibratory sense 
published three decades ago, Dambach (1989) pointed out 
that questions about cricket vibratory perception needed 
to be addressed primarily at the behavioural level, and this 
has not changed since then. We have learned since then, 
however, that the vibrational modality is much more com-
plex than other sensory modalities due to the strong and 
variable effects of substrates as signalling media (Elias and 
Mason 2014; Mortimer 2017), which also relates to the 
challenges in signal recording, and especially playback, 

that are not relevant in bioacoustics (Cocroft et al. 2014c; 
Nieri et al. in press). Since at the same time, many issues 
from bioacoustics are unknown to biotremologists, we 
propose that in the future, researchers from these two dis-
tinct but closely related sensory modalities combine their 
knowledge and expertise to jointly investigate the role of 
acoustic and vibrational displays, not only, but also, in 
cricket communication.
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