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Abstract
Despite representing the majority of bee species, non-eusocial bees (e.g. solitary, subsocial, semisocial, and quasisocial spe-
cies) are comparatively understudied in learning, memory, and cognitive-like behaviour compared to eusocial bees, such as 
honeybees and bumblebees. Ecologically relevant colour discrimination tasks are well-studied in eusocial bees, and research 
has shown that a few non-eusocial bee species are also capable of colour learning and long-term memory retention. Australia 
hosts over 2000 native bee species, most of which are non-eusocial, yet evidence of cognitive-like behaviour and learning 
abilities under controlled testing conditions is lacking. In the current study, I examine the learning ability of a non-eusocial 
Australian bee, Lasioglossum (Chilalictus) lanarium, using aversive differential conditioning during a colour discrimination 
task. L. lanarium learnt to discriminate between salient blue- and yellow-coloured stimuli following training with simulated 
predation events. This study acts as a bridge between cognitive studies on eusocial and non-social bees and introduces a 
framework for testing non-eusocial wild bees on elemental visual learning tasks using aversive conditioning. Non-eusocial 
bee species are far more numerous than eusocial species and contribute to agriculture, economics, and ecosystem services 
in Australia and across the globe. Thus, it is important to study their capacity to learn flower traits allowing for successful 
foraging and pollination events, thereby permitting us a better understanding of their role in plant-pollinator interactions.
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Introduction

A large amount of research has focused on the learning abilities 
of eusocial bees. Honeybees (Apis mellifera) and bumblebees 
(Bombus terrestris) are among the most-studied bee species in 
terms of learning, memory, and cognition. For example, hon-
eybees demonstrate evidence of both elemental (simple) and 
non-elemental (complex/relational) learning. Honeybees can 
discriminate between colours (Dyer and Arikawa 2014; Dyer 
and Neumeyer 2005; Dyer et al. 2008) and patterns (Dyer and 
Griffiths 2012; Efler and Ronacher 2000; Giurfa et al. 1999; 
Horridge 1997; Zhang and Srinivasan 1994), tasks which are 
generally considered elemental learning facilitated by associative 

mechanisms. Honeybees can perform more complex tasks 
including learning relational rules such as above vs. below 
(Avarguès-Weber et al. 2011), same vs. different (Giurfa 
et al. 2001), greater vs. lesser (Bortot et al. 2019a; Howard 
et al. 2018a), and smaller vs. larger (Avarguès-Weber et al. 
2014; Howard et al. 2017a, b). They also demonstrate the 
acquisition of complex concepts such as maze navigation 
(Collett et al. 1993; Zhang et al. 1996, 2000), facial recog-
nition (Avargues-Weber et al. 2018; Avarguès-Weber et al. 
2010b; Chittka and Dyer 2012; Dyer et al. 2005), abstract 
character use (Howard et al. 2019d; Zhang et al. 1999), 
counting (Chittka and Geiger 1995; Dacke and Srinivasan 
2008), arithmetic (Howard et al. 2019a, b), and quantity dis-
crimination (Howard et al. 2018a, 2019c, 2020).

While learning and memory tasks are comparatively 
understudied in non-eusocial bees, previous work shows 
evidence of learning abilities in a number of solitary bee 
species. Osmia lignaria (Amaya-Marquez and Wells 2008), 
Xylocopa virginica (Dukas and Real 1991), Heriades trun-
corum (Chittka et al. 1992), and Osmia rufa (Menzel et al. 
1988) can learn important colour discrimination tasks. 
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Eucera sp. appears to learn an ecologically relevant count-
ing task (Bar-Shai et al. 2011), where flower nectaries are 
counted as bees feed to avoid return visits to empty nectar-
ies. Osmia caerulescens and Osmia leaiana (Loukola et al. 
2020) learn to avoid or visit nests based on abstract charac-
ters representing parasitized or non-parasitised nesting sites. 
Xylocopa micans demonstrates learning of flower colour, 
showing more visits to rewarding flowers (higher in nectar 
concentration or volume) in less than six trials (Perez and 
Waddington 1996). X. micans also demonstrates the use of 
colour and location learning when foraging on vertical inflo-
rescences of three artificial flowers, where just one contained 
nectar. Although they preferred to use colour cues, in the 
absence of colour information, X. micans could use spatial 
information (Orth and Waddington 1997). Colour and spa-
tial information of rewarding flowers were learnt within five 
foraging bouts by X. micans, suggesting rapid visual and 
spatial learning (Orth and Waddington 1997; Somanathan 
et al. 2019). Additionally, other ecologically relevant learn-
ing tasks have been demonstrated in the nocturnal Xylocopa 
tranquebarica which can visually learn coloured landmarks 
for nest recognition (Somanathan et al. 2008).

Bees are a model species for testing learning, cogni-
tion, and memory in invertebrates (Avarguès-Weber and 
Giurfa 2013; Chittka 2017; Dyer 2012; Srinivasan 2010). 
Research has shown that the method of conditioning impacts 
the learning ability of bees. The major types of differential 
conditioning, where two or more stimuli are presented to the 
bee simultaneously, are appetitive differential conditioning, 
aversive differential conditioning, and appetitive-aversive 
differential conditioning. Appetitive differential condition-
ing involves rewarding a correct choice of stimulus while 
providing no outcome for an incorrect choice. Aversive con-
ditioning involves a punishment for an incorrect stimulus 
choice and no outcome for a correct choice. Finally, appet-
itive-aversive differential conditioning involves providing a 
reward for a correct choice and a punishment for an incorrect 
choice. Using appetitive-aversive differential conditioning 
is known to improve learning in bees during visually and 
conceptually difficult tasks such as fine colour discrimi-
nation (Avarguès-Weber et al. 2010a; Chittka et al. 2003) 
and quantity discrimination (Howard et al. 2019c). While 
appetitive-aversive and appetitive differential conditioning 
can be used in free-flying bee experiments [for examples, 
see Avarguès-Weber et al. (2014); Avarguès-Weber et al. 
(2015); Avarguès-Weber et al. 2011; Bortot et al. (2019a, 
b); Chittka and Geiger (1995); Dyer and Chittka (2004); 
Dyer et al. (2005); Garcia et al. (2018); Giurfa et al. (2001); 
Howard et al. (2019c, d); Perry and Barron (2013)], aversive 
learning is used in experiments where bees are constrained 
in harnesses or closed arenas (Marchal, 2019; Nouvian and 
Galizia 2019; Vergoz et al. 2007). The type of aversive out-
come/punishment can include mild electric shocks (Marchal 

et al. 2019; Nouvian and Galizia 2019; Vergoz et al. 2007) 
or simulated predation events (Jones and Dornhaus 2011; 
Zhang and Nieh 2015). In the current study, I employ the 
latter. Past work has shown that simulated crab-spider preda-
tion events (Fig. 1a) are successful as an aversive outcome in 
learning tasks related to flower choice and colour discrimi-
nation in eusocial bee species (Ings et al. 2012; Ings and 
Chittka 2008, 2009; Jones and Dornhaus 2011; Wang et al. 
2013; Zhang and Nieh 2015).

In the current study, I tested a widespread Australian 
native bee, Lasioglossum (Chilalictus) lanarium, for its abil-
ity to learn a simple colour discrimination task. I presented 
bees with two colours, known to be easily discriminated by 
honeybee vision in a previous study (Howard et al. 2019b). 
Bees were trained using aversive differential conditioning, 
with a simulated predation event acting as the aversive out-
come to an incorrect choice. The current study aims to aid in 
bridging the gap between learning and cognitive studies on 
eusocial and non-eusocial bees and demonstrates how non-
eusocial bees may learn important plant-pollinator signals 
such as flower colour to find rewarding flowers and avoid 
predators.

Methods

Study species and collection

The native Australian bee, L. lanarium (family Halictidae), 
was used in this study. Halictids are short-tongued bees with 
most species being ground-nesting and a few burrowing into 
rotten branches, logs, or stumps (Houston 2018). Lasioglos-
sum bees are found across Australia (Danforth and Ji 2001). 
Specifically, L. lanarium is a widespread (Atlas of Living 
Australia website), ground-nesting bee species which for-
ages on multiple flowering plant species. L. lanarium nest in 
communal aggregations of females (Houston 2018).

Male and female L. lanarium were collected in south-
east Melbourne, Australia (near the latitudes and longitudes 
of − 37.858, 145.0952 and − 37.871, 145.187 in residential 
gardens) on the days of experiments during November 2020. 
The sex of bees was not determined for all individuals; thus 
these data were not included in the analysis. Bees were 
captured in small transparent plastic vials with air holes, 
transported to a testing arena in a dark bag, and behavioural 
assays were conducted within 24 h of capture during day-
light hours.

The transport of the bees to the experimental area while 
in the vial in a dark opaque bag appeared to prevent escape 
behaviour enough so that when released from the vial, they 
did not exhibit an escape response but still moved around 
the arena with motivation to approach the stimuli (Online 
Resource 1). Different individuals exhibited different levels 
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of activity and escape behaviour following capture but did 
not try to escape at the beginning of the experiments.

Apparatus

The circular arena was constructed of white plastic 16 cm 
in diameter and 4.5 cm in height (Fig. 1b). The bee was 
released at one edge of the arena when presented with two 
stimuli at the other edge. Bees were individually tested. 
Experiments were conducted under natural diffuse daylight 
conditions.

Stimuli

Salient blue and yellow circles on a background of neutral 
grey were used as the stimuli (Fig. 1b, c). Stimuli were 
6 × 6 cm (36 cm2) laminated cards presenting the coloured 
circle of 10 cm2 in surface area. The colours are easily dis-
criminable by bees, which is demonstrated in a previous 
study on honeybees (Howard et al. 2019b) and based on 
current knowledge of bee colour vision (Briscoe and Chittka 
2001; Chittka 1992; Dyer and Arikawa 2014). The reflec-
tance spectrum of each colour (grey background and target 
colours) was measured with a spectrophotometer fitted with 
quartz optics and a PX-2 pulsed xenon UV–visible radiation 

source (USB 2000 + , Ocean Optics, Dunedin, FL, USA) that 
closely matches the spectral profile of typical daylight illu-
mination. The spectrophotometer was attached to a computer 
running SpectraSuite software 2011. The results of these 
measurements are plotted in Fig. 1c.

Training and testing procedure

Individual bees were placed 13 cm away from the two stim-
uli presented. Bees were transported in and out of the arena 
and manipulated around the experimental area on a tooth-
pick. Once bees were placed into the arena for the first time, 
a choice was recorded for either the yellow or blue stimulus. 
This first choice acted as preference test or ‘pre-test’; bees 
would then be trained on the opposite colour to what they 
had first chosen. For example, if a bee preferred blue on the 
first choice, they would then be trained to avoid the blue 
stimulus, similar to previous work with honeybees (Buatois 
et al. 2018). During the preference test, n = 21 bees chose the 
yellow stimulus and thus were trained to avoid the yellow 
stimulus, and n = 19 bees chose the blue stimulus and thus 
were trained to avoid the blue stimulus. The pre-test was nec-
essary as recent evidence has shown L. lanarium bees have 
colour preferences (Howard et al. 2021). To demonstrate the 

Fig. 1   a Crab-spider preying on 
a L. lanarium bee. b Arena with 
representations of stimuli and 
bee position. c The percentage 
of reflected radiation plotted 
against wavelength for the grey 
stimulus background (grey), the 
yellow stimulus (yellow), and 
the blue stimulus (navy)

16 cm
13 cm

a b

c
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motivation of bees and the attraction to stimuli, a video of a 
pre-test is included in Online Resource 1.

Bees underwent ten aversive training trials. Then ten 
unreinforced test choices (no outcomes for a correct or 
incorrect choice) were conducted to determine whether 
they had learnt to avoid the incorrect stimulus, similar to 
unreinforced tests in other bee behaviour studies (Howard 
et al. 2019b, c, d; Howard et al. 2020, 2021). During aversive 
differential conditioning, bees were placed at the starting 
point and then walked towards a stimulus and made a choice 
(usually within 1 min of being placed into the arena). If bees 
chose incorrectly, they would receive an aversive outcome 
— a simulated predation event. If bees chose correctly, there 
was no outcome.

The simulated predation event involved gently squeezing 
the bee’s abdomen with forceps when it climbed onto the 
incorrect stimulus. This procedure simulates the attack of a 
crab spider, a predator of L. lanarium (personal observation; 
Fig. 1a). This method or similar has been successfully used 
previously with forceps (Jones and Dornhaus 2011; Zhang 
and Nieh 2015) and robotic crab spiders (Ings et al. 2012; 
Ings and Chittka 2008, 2009; Wang et al. 2013). Bees were 
provided breaks of 10–30 s between trials.

If bees exhibited escape behaviour following the aver-
sive outcome for an incorrect choice, polyethylene film was 
placed over the arena which prevented escape but allowed 
both visible light and UV light to pass through. The cover 
still allowed the aversive outcome to be applied due to the 
plastic film’s flexibility.

Statistical analysis

To determine if bees demonstrated significant learning dur-
ing training, data from the ten aversive differential condi-
tioning trials were analysed with a generalized linear mixed-
effects model (GLMM) with a binomial distribution using 
the ‘glmer’ package within the R environment for statistical 
analysis. I first fitted a full model with choice as the catego-
rial response variable with two levels (correct; incorrect), 
individual trial number as a continuous predictor (1–10), 
colour as a categorical predictor with two levels (yellow; 
blue), and an interaction between trial and colour as a pre-
dictor. Subject (bee ID) was included as a random factor to 
account for repeated choices of individual bees.

To determine whether bees learnt to discriminate between 
yellow vs. blue stimuli, I analysed the test data by employing 
a GLMM with a binomial distribution including categorial 
response variable with two levels (correct; incorrect), indi-
vidual test choice number as a continuous predictor (1–10), 
colour as a categorical predictor with two levels (yellow; 
blue), and an interaction between trial and colour as a pre-
dictor. Subject was included as a random factor to account 
for repeated choices of individual bees. The proportion of 

choices for the correct colour (MPCC) recorded from the 
tests was used as the response variable in the model. The 
Wald statistic (z) tested if the mean proportion of correct 
choices recorded from the test, represented by the coefficient 
of the intercept term, was significantly different from chance 
expectation, i.e. H0: MPCC = 0.5.

The models were estimated using the routine ‘glmer’ 
available as part of the ‘lme4’ package written for the R 
statistical language, run in R version 4.0.3 (Bates et al. 2014; 
R Core Team 2020).

Results

Training

The analysis from the full model including trial (continu-
ous), colour (categorical with two levels: blue; yellow), and 
an interaction between the two predictors showed no effect 
of the interaction (z =  − 0.846, P = 0.398); thus the inter-
action term was removed. The subsequent reduced model 
showed no effect of colour (z = 1.744, P = 0.0812), but an 
effect of trial (z = 3.277, P = 0.001). The simplified model 
excluding colour showed a significant effect of trial on bee 
performance (z = 3.265; P = 0.001). See Fig. 2a.

As the P value for the effect of colour was < 0.100 
but > 0.050, I compared the AIC values of the model includ-
ing and excluding colour (both models excluding the interac-
tion effect). The model including colour had an AIC value of 
543.700. The simplified model excluding the effect of colour 
had an AIC value of 544.700; thus the model of best fit 
included colour and showed that bees learnt the task over the 
ten aversive conditioning trials with an overdispersion (OV) 
value of 1.349 showing that the training data was slightly 
overdispersed but within a reasonable range to conduct the 
analysis.

Testing

Each bee underwent ten unreinforced choices during a learn-
ing test to determine if they had learnt the task of yellow vs. 
blue (Fig. 2b). There was no significant difference between 
bees trained to avoid the yellow or blue stimulus (z = 0.988; 
P = 0.323); therefore the data were pooled for analysis.

Bees discriminated between blue and yellow stimuli dur-
ing the learning test following the ten training choices at a 
level of 62.75% (confidence intervals [CIs] = 0.557, 0.690; 
z = 5.043; P < 0.001; n = 40; Fig. 2b). The data collected was 
slightly overdispersed (OV = 1.32) but still within a reason-
able range to conduct the analysis.

When examining only the first choice of bees during the 
test (thus without a subject as a random term as there were 
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no repeated measures in the model), bees chose the correct 
stimulus at a level of 75.00% (CIs = 0.595, 0.860; z = 3.009; 
P < 0.003; n = 40), which is consistent with what was found 
when bees underwent all ten unreinforced choices in the test.

Discussion

The current study presents evidence that a wild non-eusocial 
bee can learn the elemental task of colour discrimination 
using aversive differential conditioning when colours are 
saliently different. Colour discrimination is a potentially use-
ful capacity in L. lanarium’s natural environment. Bees are 
known to use different signals or cues from flowers to choose 
which flowers to visit. These signals and cues include scent 
(Raguso 2008), colour (Giurfa et al. 1995), shape (Howard 
et al. 2018b; Lehrer et al. 1995), size (Martin 2004), quantity 
of flowers (Howard et al. 2020), and/or symmetry (Giurfa 
et al. 1996); thus bees must learn which flowers to visit 
based on these traits. Colour signalling by flowers appears 
to be the main plant-pollinator communication channel in 
studies from around the world (Barth 1985; Mitchell et al. 
2009; Sargent and Ackerly 2008), and so colour discrimi-
nation learning is an important behaviour to examine in 
understudied non-eusocial bees. The ability of L. lanarium 
to discriminate between two colours suggests that in a natu-
ral foraging situation, this species may learn to visit reward-
ing flower colours, avoid non-rewarding flower colours, or 
even learn to avoid flower colours which host crab-spiders 

(Fig. 1a), similar to findings in past studies (for example, 
Jones and Dornhaus 2011).

A few studies have directly compared the learning abili-
ties of eusocial and solitary bees. These studies suggest that 
while there are differences between learning in eusocial 
and non-eusocial bees, fundamental aspects of learning are 
shared between the two groups. In a colour discrimination 
experiment, A. mellifera (eusocial) learnt more quickly than 
O. lignaria (solitary) in the case of discriminating between 
flower colour morphs (Amaya-Marquez and Wells 2008). 
The eusocial bumblebee, B. bimaculatus, and the solitary 
carpenter bee, X. virginica, were compared for learning of 
flower colours. While B. bimaculatus demonstrated higher 
rates of learning, both species had similar levels of overnight 
memory retention (Dukas and Real 1991). In the field, it 
appears that B. terrestris (eusocial) may have a more exact 
counting strategy for flower nectaries than Eucera sp. (soli-
tary) (Bar-Shai et al. 2011). Thus, in these few comparisons, 
eusocial bees appear to learn more quickly (Amaya-Marquez 
and Wells 2008) or demonstrate higher rates of learning then 
non-eusocial solitary bees (Dukas and Real 1991), but more 
research is needed to determine whether this trend is wide-
spread or restricted to a few species comparisons.

Non-eusocial wild bees are important pollinators in 
terms of agriculture, economics, and ecosystem services 
in Australia and across the globe (Bell et al. 2006; Bray 
1973; Heard 1999; Hogendoorn et al. 2010, 2007, 2006, 
2000; Hogendoorn and Keller 2012; Kleijn 2015); how-
ever they are threatened by a number of anthropogenic 

Fig. 2   Results of the training and testing phases. Left panel (a) shows 
the performance of bees during the learning phase. The solid black 
line represents a function describing the learning phase of n = 40 bees 
as modelled by a generalized linear mixed-effect model (GLMM). 
Shaded area indicates the ± 95% confidence intervals (CIs) of correct 
choices for the bees (turquoise). The increase in learning performance 
was significant. Dashed line at 0.5 indicates chance level perfor-

mance. Black circles show the mean performance of all bees (n = 40) 
for each trial. Right panel (b) shows the mean proportion of correct 
choices [mean ± 95% confidence intervals (CIs)] by L. lanarium dur-
ing all ten choices during the unreinforced test. Broken black line 
shows chance expectation at 0.5. Blue circles indicate the raw data 
from each individual bee (n = 40) as a bee-swarm plot. Significance 
from chance level performance is indicated by *** ≥ 0.001
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activities such as land-clearing, habitat loss and fragmen-
tation, urbanisation, pesticide and insecticide use, climate 
change, disease, fire, and invasive species introductions 
(Batley and Hogendoorn 2009; Brown and Paxton 2009; 
Goulson et al. 2015; Herrera 2020; Mallinger et al. 2017; 
Owens et al. 2020; Potts et al. 2010; Santos et al. 2020). 
The biggest threat to Australian native bees remains a 
lack of information, knowledge, and expertise (Batley and 
Hogendoorn 2009; Sands 2018; Taylor et al. 2018). Thus, 
the current study and further research should work towards 
filling this gap in knowledge and developing robust frame-
works to study non-eusocial wild bees. Future work should 
aim to determine effective ways to test learning and mem-
ory in non-eusocial bees using both aversive and appetitive 
conditioning and develop testing of more complex learning 
tasks for comparison with eusocial bees. As non-eusocial 
bees are important but comparatively understudied pol-
linators, efforts to examine their behaviour and foraging 
decisions are imperative.
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tary material available at https://​doi.​org/​10.​1007/​s00114-​021-​01739-9.
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