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Abstract
Reconstructing the living environment of extinct vertebrates is often challenging due to the lack of proxies. We propose a new
proxy to the living environment based on the combined oxygen and sulphur stable isotope analysis of vertebrate hydroxyapatite.
We tested this isotopic proxy to 64 biogenic apatite (bones) samples that represent a wide spectrum of the extant vertebrate
phylogenetic diversity including crocodiles, snakes, turtles, mammals, birds, lizards, fish and amphibians. We show that the
combination of these two isotopic systems allows the living environment of all these vertebrates to be unambiguously distin-
guished between freshwater (aquatic vs semi-aquatic), seawater (aquatic vs semi-aquatic) and terrestrial. The main goal of this
study is to provide a present-day isotopic reference frame and to discuss methodological issues that will serve to interpret future
oxygen and sulphur isotope results obtained either from fossil or modern skeletal material. This new isotopic approach of
combined oxygen and sulphur isotope analysis will be particularly useful to document major aquatic-terrestrial transitions in
the fossil record but also to better constrain the living environment of some present-day species.
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Introduction

Background information

Vertebrate evolution has been many times punctuated by ecolog-
ical transitions between terrestrial and aquatic (freshwater and
seawater) environments resulting in major radiation events: dur-
ing the Late Devonian-Early Carboniferous, early tetrapods left

aquatic environments and colonised terrestrial ones (Ahlberg and
Milner 1994); during the Jurassic-Cretaceous, various
crocodylomorphs belonging to the thalattosuchians, the
pholidosaurids, the dyrosaurids and the eusuchians, radiated in
the marine environments (Martin et al. 2014); One hundred mil-
lion years later, during the Cenozoic (Eocene), early cetaceans
also experienced a secondary adaptation to aquatic environments
(Gingerich et al. 2001). Reconstruction of a thorough picture of
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these ecological transitions requires detailed knowledge of the
living environment of the extinct taxa involved.

Terrestrial, freshwater andmarine environments have different
physical and chemical properties such as density, viscosity and
salinity, resulting in specific morphological and physiological
adaptations of living species. Consequently, the morpho-
functional analysis of skeletal remains of fossil taxa has often
been used to elucidate their living environment (Coates and
Clack 1990; Fernández and Gasparini 2000; Pierce et al. 2012;
Spoor et al. 2002). However, skeletal remains sometimes may be
incomplete or may have lost their original shape during post-
depositional events such as burial and tectonic deformation or
compaction. Such processes preclude a reliable interpretation of
anatomical features in terms of morpho-functionality.
Furthermore, soft tissues indicative of specific environments
such as salt glands are easily degraded, and delicate ossified
structures such as the semicircular canal system of the inner ear
are rarely preserved in the fossil record. Finally, morphological
features can predate functional adaptation (exaptation process) so
that it can be misinterpreted in terms of living environment.

The sediments in which vertebrate fossils are embedded also
constitute an important source of information. The detailed study
of the lithology, petrology and geochemistry, along with sedi-
mentary structures, allows precise reconstruction of the environ-
mental conditions that prevailed during the deposition of the
sediments. However, the living environment of vertebrates does
not necessarily represent the depositional environment in which
they were embedded (e.g. anoxic bottom waters). This is partic-
ularly true for vertebrates that travel long distances or migrate
(e.g. anadromous and catadromous fish). Furthermore, carcasses
can be transported over long distances after death resulting in a
mismatch between the environment deduced from the sediment
of the taphocoenosis and the genuine living environment.

Those problems have raised the need for other methods to
reconstruct living environments independently of vertebratemor-
phology and depositional environments. For instance, stable car-
bon, oxygen or strontium isotope compositions of bones and
teeth have been used as direct tracers of the living environment
and applied to fossilised remains, such as those of early tetrapods
(Goedert et al. 2018), early cetaceans (Roe et al. 1998; Clementz
et al. 2006) or crocodilian taxa (Martin et al. 2016), to get a better
picture of these major ecological transitions. Here, we propose a
newmethod to determine past living environments of vertebrates
based on the combined analysis of oxygen and sulphur isotope
compositions of their biogenic apatite.

Oxygen isotope composition of vertebrate apatite

Oxygen isotope composition of surface waters (δ18Ow) is mainly
controlled by evaporation and condensation processes during
which isotopic fractionation takes place (Craig and Gordon
1965; Dansgaard 1964). Marine environments have relatively
uniform δ18Ow values of 0 ± 1‰ except at high latitudes, where

δ18Ow values are lower, ranging from − 3 to − 1‰ due to mixing
with ice melt, and at tropical latitudes where high evaporation
rates result in positive δ18Ow values ranging from + 1 to + 2‰,
especially in closed tropical and subtropical seas like the Red
Sea, the Dead Sea, Mediterranean Sea or Caribbean Sea (Craig
and Gordon 1965; Gat 1984; Gat et al. 1996). Hypersaline la-
goons or sabkhas (but also inland lakes, such asf in East Africa)
can also reach δ18Ow values higher than + 2‰ (e.g., Gat and
Levy 1978).

The δ18Ow values of freshwaters mainly derive from those of
meteoric waters (groundwater contributions being possible)
whose ultimate source is seawater. Evaporation of seawater at
low latitudes, distillation and cooling of the humid air mass dur-
ing its transport towards high latitudes are responsible for the
negative δ18O values of meteoric waters (Dansgaard 1964). At
the global scale, the higher the latitude and altitude, the lower the
δ18O values of rainfall and snow. These values are comprised
between − 6 and − 2‰ at low latitudes and decrease down to
about − 15‰ at high latitudes, polar caps excluded. Oxygen
isotope compositions of vertebrate biogenic apatite phosphate
(δ18Op) are linearly correlated with the oxygen isotope composi-
tion of their environmental waters (Longinelli 1984; Luz et al.
1984). Consequently, vertebrates living or ingesting different en-
vironmental waters will record in their bones distinct oxygen
isotope compositions. Nonetheless, it is worth to note that phys-
iological factors such as evaporative transcutaneous water loss
and thermo-metabolism, which are species-specific, also impact
the oxygen isotope compositions recorded in bioapatites (e.g.
Kohn 1996; Levin et al. 2006).

Sulphur isotope composition of vertebrate apatite

Sulphur isotope composition of sulphates (δ34S) is highly vari-
able inmodern aquatic environments.Marine environments have
high and relatively uniform sulphate δ34S values close to +
21.0‰ (Böttcher et al. 2007). Most freshwater environments
(e.g. rivers, lakes, ponds, precipitations) have comparatively low-
er sulphate δ34S values, ranging from − 20.0 to + 20.0‰ (Krouse
1980; Kaplan 1983; Nehlich 2015). It has been shown that the
sulphur isotope composition of food is recorded in vertebrate
organic tissues (e.g. muscles, hairs) or molecules (e.g. bone col-
lagen) with low isotopic fractionation (+ 0.5‰ ± 2.4‰, Nehlich
2015), especially when compared to the oxygen isotopic system.
A recent study also measured very low sulphur isotope fraction-
ation values between the collagen of sub-fossil red fox and that of
its preys (ranging from − 0.54 to + 0.03‰, with a mean analyt-
ical error of ± 0.4; Krajcarz et al. 2019). Notably, this study
further allows such low sulphur isotope fractionation to apply
for carnivores.

Sulphur isotope analysis of vertebrate organic tissues is, there-
fore, particularly relevant to differentiate between freshwater and
seawater environments. In particular, this method has been suc-
cessfully used to determine the living environment exploited by
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fish at the species and population levels (Fry 2002; Fry and
Chumchal 2011; Hesslein et al. 1991; Nehlich et al. 2013;
Trembaczowski 2011) or in archaeological studies to know if
ancient human populations relied on freshwater or marine food
resources (e.g. Bocherens et al. 2016). More generally, terrestrial
environments (including freshwater ones) and animals living
there have generally relatively low δ34S values compared to ma-
rine environments. Nonetheless, it is worth to note that coastal or
island environments may be substantially influenced by sulphate
from marine environments, which can be redeposited as rain or
aerosols (the so-called ‘sea spray’ effect) with sulphate δ34S
values close to those of marine environment (+ 20.3‰; Nielsen
1974; Norman et al. 2006). Consequently, the δ34S values of
vertebrates living in those terrestrial environments submitted to
sea spray effect can be relatively high and may complicate inter-
pretation concerning the living environment.

Due to technical difficulties, sulphur isotope analyses have
been only applied to organic tissues that easily degrade after
animal death and are rarely preserved in the fossil record. A
new method has been recently developed to measure the sul-
phur isotope ratios (34S/32S) of sulphate compound in calcium
phosphate minerals (analytical precision equals 0.5‰ (1σ))
with a low-S concentration (0.14% to 1.19%) such as verte-
brate bioapatites (Fourel et al. 2015; Goedert et al. 2016).
Previous results indicated that sulphur isotope compositions
of environmental waters are recorded in vertebrate inorganic
tissues (bone apatite) with low isotopic fractionation (0.8‰ ±
0.8‰, n = 5; Goedert et al. 2018). Therefore, sulphur isotope
analysis of bioapatite from extinct vertebrates can provide
estimates of the salinity of their aqueous environments
(Goedert et al. 2018).

Material and methods

Sixty-four vertebrate bone apatite samples have been col-
lected and analysed in this study (Online Information 1).
Samples were selected to encompass a broad ecological
and taxonomic spectrum of vertebrates (crocodiles, snakes,
turtles, mammals, birds, lizards, fish and amphibians). For
each taxonomic group, vertebrates of distinct ecology such
as aquatic (freshwater vs marine), semi-aquatic and terres-
trial were selected (Online Information 2). Oxygen and
sulphur isotope analyses have been performed on each
bone sample of the 64 vertebrates.

Forty vertebrate bone apatite samples were collected in the
osteological collections of the ‘Musée des Confluences’ of
Lyon, France. Samples were further selected in historical col-
lections to ensure a wild provenance. Specimens with a la-
belled precise localisation were prioritised when possible. In
addition, 24 vertebrate bone apatite samples for which sulphur
isotope composition have been previously published (Goedert
et al. 2016, 2018; cf. Online Information 1) have been added

to the dataset and their oxygen isotope composition measured
in this study. For each specimen, about 100 mg of bone pow-
der was sampled using a spherical diamond-tipped drill bit.
The surface of the bone, which may have been chemically
treated for curatorial purpose (samples coming from the
‘Musée des Confluences’), was removed prior to sampling.

All statistical tests were performed using Past 3.22 soft-
ware. We used Mann-Whitney U test to compare the different
median values and give the associated P value (P). Data of
Figs. 1 and 2 were plotted using KaleidaGraph 4.5.3 software.
Figures were drawn using Inkscape 0.92.3.

Oxygen isotope analysis

Bone apatite samples were treated following the wet chem-
istry protocol described by Crowson et al. (1991) and
slightly modified by Lécuyer et al. (1993). This protocol
consists in the isolation of phosphate (PO4

3−) from apatite
using acid dissolution and anion-exchange resin. For each
sample, 30 mg of enamel powder was dissolved in 2 mL of
2 M HF overnight. The CaF2 residue was separated by
centrifugation, and the solution was neutralised by adding
2.2 mL of 2 M KOH. 2.5 mL of Amberlite™ anion-
exchange resin was added to the solution to separate the
PO4

3− ions. After 24 h, the solution was removed and the
resin was eluted with 27.5 mL of 0.5 M NH4NO3. After
4 h, 0.5 mL of NH4OH and 15 mL of an ammoniacal
solution of AgNO3 were added, and the samples were
placed in a thermostated bath at 70 °C during 7 h, allowing
the precipitation of silver phosphate (Ag3PO4) crystals.
When only a few mg of apatite powders could be collected,
the wet chemistry procedure was adapted following
Bernard et al. (2009) for small sample weights (about
3 mg).

Oxygen isotope compositions were measured using a
high-temperature pyrolysis (Py) technique involving a
VarioPYROcube™ elemental analyser (EA) interfaced in
continuous flow (CF) mode to an Isoprime™ isotopic ratio
mass spectrometer (IRMS) (EA-Py-CF-IRMS technique
(Fourel et al . 2011; Lécuyer et al . 2007) at the
Laboratoire de Géologie de Lyon (UMR 5276, Université
Claude Bernard Lyon 1). For each sample, 5 aliquots of
300 μg of Ag3PO4 were mixed with 300 μg of pure graph-
ite powder and loaded in silver foil capsules. Pyrolysis was
performed at 1450 °C. Measurements were calibrated
against the NBS120c (natural Miocene phosphorite from
Florida: δ18O = 21.7‰ (V-SMOW); Lécuyer et al. 1993)
and the NBS127 (barium sulphate, BaSO4: δ

18O = 9.3‰
(V-SMOW); Hut 1987). Silver phosphate samples precipi-
tated from standard NBS120c were repeatedly analysed
(δ18Op = 21.6‰; 1σ = 0.4; n = 16) along with the silver
phosphate samples derived from vertebrate bioapatites to
ensure that no isotopic fractionation took place during the
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wet chemistry. The NBS120c average standard deviation
equals 0.29 ± 0.14‰. Data are reported as δ18Op in ‰
values vs V-SMOW.

Sulphur isotope analysis

Sulphur isotope compositions were measured using a
VarioPYROcube™ elemental analyser in NCS combustion
mode interfaced in continuous-flow mode with an Isoprime
100™ isotope ratio mass spectrometer hosted by the plat-
form ‘Ecologie Isotopique’ of the ‘Laboratoire d’Ecologie
des Hydrosystèmes Naturels et Anthropisés’ (LEHNA,

UMR 5023, Villeurbanne, France). For each bone apatite
sample, 3 aliquots of 7 mg of bioapatite powder were
mixed with 20 mg of pure tungsten oxide (WO3) powder
and loaded in tin foil capsules. Tungsten oxide is a power-
ful oxidant ensuring the full thermal decomposition of ap-
atite sulphate into sulphur dioxide (SO2) gas (Goedert et al.
2016). Measurements have been calibrated against the
NBS127 (barium sulphate, BaSO4 δ34S = + 20.3‰
(V-CDT); Halas and Szaran 2001) and S1 (silver sulphide,
Ag2S δ34S = − 0.3‰ (V-CDT); Robinson 1995) interna-
tional standards. For each analytical run of bone
samples, we have also analysed BCR32 samples as a
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Fig. 1 δ18Op and δ
34Sapatite values of modern vertebrates including (from

left to right) crocodiles, snakes, turtles, mammals, birds, lizards, fish and
amphibians. aOxygen isotope composition of bone phosphate (δ18Op) as
variations in parts per mille from the ratio of 18O/16O in Vienna Mean
Ocean Water (‰ VSMOW) b Sulphur isotope composition of bone
apatite (δ34Sapatite) as variations in parts per mille from the ratio of
34S/32S in Vienna Canyon Diablo Troilite (‰ VCDT). For a, b, each
data point represents a biologically independent animal (n = 64) and

corresponds to the average value of five and three repeated
measurements for oxygen and sulphur isotope analysis, respectively
(see “Material and Methods”). Each error bar corresponds to 1 s.d.
(Online Information 1). For both panels, light blue, dark blue and green
colours indicate that the species lives in freshwater, seawater or terrestrial
environments, respectively (see Online Information 2). The name of each
species is indicated close to the corresponding dot
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compositional and isotopic standard (S% = 0.72, certified
value ((Community Bureau of Reference 1982); δ34S =
18.4‰ (V-CDT); Fourel et al. 2015; Goedert et al. 2016)
to ensure that analytical conditions were optimal to per-
form sulphur isotope analyses of samples with low-S con-
tent. The sample average standard deviation for δ34S mea-
surements is 0.34‰ ± 0.34‰. Data are reported as δ34S in
‰ vs V-CDT.

Results

Oxygen isotope

The different vertebrates analysed had oxygen isotope com-
positions ranging from + 12.1 to + 24.2‰ V-SMOW (Online
Information 1; Fig. 1a), which mainly reflect the variability of
oxygen isotope compositions of environmental waters. On the

Fig. 2 Reconstructed oxygen and sulphur isotope composition of the
environmental waters (δ18Ow, δ

34Sw) of the modern vertebrates. For
oxygen, the isotopic composition of water was calculated using
published isotopic fractionation equations for different groups of
vertebrates (Online Information 3). For sulphur, the isotopic composition
of water is very close to that recorded in bone apatite (i.e., almost no
isotopic fractionation) and was calculated using published values of sul-
phur isotope composition of bone apatite and associated environmental
water measured in present-day vertebrates (Goedert et al. (2018); Online
Information 4). Each data point represents a biologically independent
animal (n = 64) and corresponds to the average value of five and three
repeated measurements for oxygen and sulphur isotope analysis, respec-
tively (see “Material and Methods”). Each dot is numbered according to
the species it represents (cf. Online Information 1). Error bars of each
individual data point are given in Online Information 3 and Online
Information 4 for oxygen and sulphur respectively. Results are given as
variations in parts per mille from the ratio of 18O/16O in Vienna Mean
Oean Water (‰ VSMOW) for oxygen and 34S/32S in Vienna Canyon
Diablo Troilite (‰ VCDT) for sulphur. Species living in freshwater are
represented by light blue dots; those living in seawater are represented by
dark blue dots, and green dots are used for terrestrial species. (1):
Crocodylus niloticus; (2): Crocodylus siamensis; (3): Gavialis
gangeticus; (4): Crocodylus porosus; (5): Crocodylus suchus; (6):

Crocodylus suchus; (7): Acrochordus granulatus; (8): Xenochrophis
flavipunctus; (9): Homalopsis buccata; (10): Hydrophis obscurus; (11):
Pelamis platura; (12): Cerastes cerastes; (13): Testudo kleinmanni; (14):
Dogania subplana; (15): Chelydra serpentina; (16): Chelonia mydas;
(17): Chelonia mydas; (18): Trachemys scripta elegans; (19):
Trachemys scripta elegans; (20): Trachemys scripta elegans; (21):
Trachemys scripta elegans; (22): Lutra lutra; (23): Platanista gangetica;
(24): Monachus monachus; (25): Odobenus rosmarus; (26): Phoca
vitulina; (27): Monodon monoceros; (28): Enhydra lutris; (29):
Phocoena phocoena; (30): Dugong dugon; (31): Hydrodamalis gigas;
(32): Hydrodamalis gigas; (33): Hippopotamus amphibius; (34):
Rhinoceros sondaicus; (35): Camelus dromedarius; (36): Camelus
bactrianus; (37): Ursus arctos; (38): Ursus maritimus; (39): Tapirus
indicus; (40): Tapirus terrestris; (41): Castor fiber; (42): Larus
argentatus; (43): Spheniscus demersus; (44): Anas platyrhynchos; (45):
Buteo buteo; (46): Amblyrhynchus cristatus; (47): Cyprinus carpio; (48):
Silurus glanis; (49): Oncorhynchus mykiss; (50): Salmo trutta; (51):
Salvelinus fontinalis; (52): Oncorhynchus mykiss; (53): Sander
lucioperca; (54): Solea solea; (55): Gadus morhua; (56): Limanda
limanda; (57): Dicentrarchus labrax; (58): Oncorhynchus nerka; (59):
Pelophylax ridibundus; (60): Pelophylax ridibundus; (61): Pelophylax
ridibundus; (62): Pelophylax ridibundus; (63): Pelophylax ridibundus;
(64): Salamandra salamandra
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whole, vertebrates living or foraging in marine environments
had significantly higher δ18Op values than animals living or
foraging in continental (freshwater or terrestrial) environments
(median δ18Op = + 19.8‰, 1σ = 3.0, n = 18 vs median
δ18O = + 15.4‰, 1σ = 2.4, n = 40; P = 4.244e-5; Mann-
WhitneyU test). It is also worth to note that vertebrates which
live in both freshwater to seawater environment had interme-
diate median δ18Op values (δ

18Op = + 17.7‰, 1σ = 0.9, n = 6),
although the difference was only significant compared to con-
tinental environments and not seawater ones (P = 0.01255 and
P = 0.1611, respectively). One exception concerns the horned
desert viper (Cerastes cerastes) and the Kleinmann’s tortoise
(Testudo kleinmanni), which had both recorded high oxygen
isotope ratios in their bones due to their desert lifestyle.

Sulphur isotope

The different vertebrates analysed had sulphur isotope compo-
sitions of apatite (δ34Sapatite) ranging from + 1.1 to + 22.9‰ V-
CDT (Online Information 1; Fig. 1b). On the whole, vertebrates
living or foraging in marine environments had significantly
higher δ34S values than those living or foraging in continental
(freshwater or terrestrial) environments (median δ34Sapatite = +
16.9‰, 1σ = 4.4, n = 18 vs median δ34Sapatite = + 10.4‰, 1σ =
4.4, n = 40; P = 0.0001357). This isotopic pattern reflects an
almost systematic 34S-enrichment of marine environments
compared to continental ones. It is again worth to note that
vertebrates living in freshwater to seawater environment had
intermediate median δ34Sapatite values (δ

34S = + 13.8‰, 1σ =
6.0, n = 6), although the difference was not significant with that
of continental or marine environments (P = 0.1063 and P =
0.5264). Sulphur isotope analysis of fossilised apatite can,
therefore, help to detect the presence or proximity of seawater
in the living environments of extinct vertebrates.

Discussion

Oxygen isotope composition

Oxygen isotope analysis of vertebrate biogenic apatite has
been widely applied to fossilised apatite of extinct vertebrates
to get information on their living environment (e.g. Clementz
et al. 2003, 2006; Tütken et al. 2006; Amiot et al. 2015, 2009,
2010; Pouech et al. 2014; Guy et al. 2018). As illustrated by
our results, this analysis can be particularly useful to distin-
guish vertebrates living or foraging in marine environments
from those living or foraging in continental (freshwater or
terrestrial) ones (e.g. sharks: Gates et al. 2019; mosasaurs:
Makádi et al. 2012; coelacanths: Simon et al. 2003).

It can also be used to further differentiate aquatic or semi-
aquatic lifestyle from a terrestrial one in the case of sympatric
vertebrates (e.g. Amiot et al. 2010). Indeed, terrestrial animals

lose more water than semi-aquatic animals through transcuta-
neous evaporation or sweat. Water lost during this process as
vapour is preferentially 16O-enriched, resulting in a relative
18O-enrichment of the residual body water (Cerling et al.
2008). Although the different vertebrates sampled come from
different regions of the world, it should be noted for instance
that the Eurasian otter (Lutra lutra) and the Eurasian beaver
(Castor fiber), both having a semi-aquatic lifestyle, have re-
corded lower oxygen isotope ratios in their bones than fully
terrestrial mammals (Online Information 1 and Fig. 1a). This
is also the case for the semi-aquatic mallard duck (Anas
platyrhynchos), which recorded in its bones lower oxygen
isotope ratios than the common buzzard (Buteo buteo)
(Online Information 1 and Fig. 1). In the latter case, it is
worthy to note that both specimens come from the same geo-
graphic area and therefore rely on environmental waters of
comparable oxygen isotope compositions.

On the contrary, it can be used to detect desert lifestyle
(Lécuyer et al. 1999). For instance, the horned desert viper
(Cerastes cerastes) and the Kleinmann’s tortoise (Testudo
kleinmanni), had both recorded high oxygen isotope ratios in
their bones.

Nonetheless, for low-latitude environments, oxygen iso-
tope compositions of freshwater and marine environments
can display significant overlap. Consequently, water oxygen
isotope compositions recorded in vertebrate apatites may not
always be a diagnostic tracer of their living environment (e.g.
Pouech et al. 2014).

Sulphur isotope composition

Compared to oxygen, sulphur isotopes have been less applied
to question the ecology of extinct vertebrates, principally due
to technical difficulties. Due to the large amplitude of natural
isotopic variations, particularly observed between terrestrial
and marine environments, it remains a particularly relevant
environmental tracer (cf. Background information).

However, as discussed in the “Introduction” section, the
‘sea spray’ effect may complicate interpretation concerning
the living environment of vertebrates for terrestrial environ-
ment under the influenced of marine ones. Moreover, some
freshwater settings may have sulphur isotope compositions
close to that of marine environments. For instance, rivers
draining basins in which marine evaporites are exposed may
have elevated dissolved sulphate content (more than 200mg/L
for the Colorado River system; Shope and Gerner 2014) and
δ34S values (up to seawater-like 19.5‰ for the Mackenzie
River system; Hitchon and Krouse 1972). Therefore, verte-
brates living in such environments are expected to have high
sulphur isotope compositions that could be misinterpreted as
reflecting an aqueous environment at least submitted to some
marine influences. Finally, vertebrate species living in aquatic
environments submitted to the influences of both fresh and
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marine water, like in estuaries, may record a sulphur isotope
composition in their bioapatite difficult to correctly interpret in
terms of living environment.

Combined oxygen and sulphur isotope composition

On the whole, the combined use of oxygen and sulphur isotope
compositions of bone apatite allows, in most cases, environmen-
tal identification for the present-day vertebrates after the conver-
sion of the measured δ18O and δ34S values of apatite into envi-
ronmental water δ18O value and dissolved environmental sul-
phate δ34S values using known isotopic fractionation equations
(Fig. 2; Online Information 3 and 4).

The complementarity of these two isotopic systems lies in the
different abundance ratios of oxygen and sulphur, respectively, in
seawater and freshwater bodies. Indeed, oxygen is equally pres-
ent (as H2O) in both marine and freshwater reservoirs whereas
sulphur content (as SO4

2−) of seawater is generally 100 to
1000 times higher than in freshwater (Fry and Chumchal
2011). Consequently, sulphur isotopes will be particularly rele-
vant to detect the presence of seawater in the environment, even
if only a small quantity of seawater intrudes freshwater environ-
ment, and oxygen isotopes will be relevant to quantify the
amount of freshwater in the environment, in particular in aquatic
environments where freshwater and seawater are mixing, like in
deltas or estuaries (Goedert et al. 2018).

Vertebrates living or foraging in marine environments tend to
have higher oxygen and sulphur isotope compositions recorded
in their bone apatite than those from freshwater and terrestrial
habitats. This rule is especially valid when we compare verte-
brates of close phylogenetic affinity. For instance, the wild gha-
rial (Gavialis gangeticus), living in freshwater streams, and the
two captive specimens of desert crocodiles (Crocodylus suchus),
kept in freshwater at the Zoo of Lyon, have recorded in their bone
apatite δ18Op and δ34Sapatite values (+ 12.1‰ and + 15.9‰, +
14.5‰ and + 8.2‰, and + 13.9‰ and + 8.5‰, respectively)
lower than those measured in bones of the wild Nile crocodile
(Crocodilus niloticus; + 17.5‰ and + 20.1‰) and saltwater
crocodile (Crocodilus porosus; + 16.8‰ and + 16.3‰), both
known to undertake incursions in brackish waters to seawaters
(cf. Online information 2). Similarly, the sea otter (Enhydra
lutris), fully adapted to life in seawater, has higher δ18Op and
δ34Sapatite values (+ 17.4‰ and + 18.1‰) than those of the
Eurasian otter (Lutra lutra) (δ18Op = + 14.0‰ and δ34S = +
12.8‰), inhabiting freshwater environments. In a similar way,
the marine narwhal (Monodon monoceros) has higher δ18Op and
δ34Sapatite values (+ 17.0‰ and + 16.0‰) than those of the South
Asian river dolphin (Platanista gangetica; + 14.3‰ and +
10.2‰).

The general picture we have of major ecological transitions
that took place during vertebrate evolution are incomplete and
potentially biased as it corresponds to the final stages of these
transitions. For instance, the colonisation of terrestrial

environments by early tetrapods at the beginning of the
Carboniferous gave rise to a wide evolutionary radiation of ter-
restrial tetrapods that are still present on lands today. Similarly,
the multiple iterations of secondary adaptation to the aquatic
environment are well illustrated by the numerous species of ver-
tebrates belonging to different groups (crocodiles, snakes, turtles,
lizards, birds and mammals), which live in present-day aquatic
environments. All these vertebrates testify that different groups
adapted to new environments from a common ancestor.
However, the way these major ecological transitions proceeded,
especially during their early stages, is difficult to infer and often
remained elusive. Indeed, morpho-functional adaptations to a
specific environment can be diachronous with its effective use
(exaptation); the diagnose of living environment of vertebrates
from morpho-functional analysis is thereby limited. Therefore,
the combined use of 18O/16O and 34S/32S ratios of skeletal apatite
should be particularly promising and powerful to document ma-
jor ecological transitions in the fossil record for any phylogenetic
group of vertebrates. For instance, this method has already been
successfully applied to determine the aquatic environment of
some Devonian early tetrapods and their associated vertebrate
fauna (Goedert et al. 2018). Furthermore, it could also help to
precise the ecology of some present-day aquatic vertebrates and
shed light on the modalities of transition between terrestrial and
aquatic environments during the course of vertebrate evolution
over the Phanerozoic. It is also worthy to note that this method
has the potential to shed light on the ecology of numerous
present-day vertebrates living in transitional environments, and
for which the ecology remains unclear.
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