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Abstract Inferences of function and ecology in extinct taxa
have long been a subject of interest because it is fundamental
to understand the evolutionary history of species. In this study,
we use a quantitative approach to investigate the locomotor
behaviour of Simocyon batalleri, a key taxon related to the
ailurid family. To do so, we use 3D surface geometric mor-
phometric approaches on the three long bones of the forelimb
of an extant reference sample. Next, we test the locomotor
strategy of S. batalleri using a leave-one-out cross-validated
linear discriminant analysis. Our results show that S. batalleri
is included in the morphospace of the living species of
musteloids. However, each bone of the forelimb appears to
show a different functional signal suggesting that inferring
the lifestyle or locomotor behaviour of fossils can be difficult
and dependent on the bone investigated. This highlights the

importance of studying, where possible, a maximum of skel-
etal elements to be able to make robust inferences on the
lifestyle of extinct species. Finally, our results suggest that
S. batalleri may be more arboreal than previously suggested.

Keywords Ecomorphology . Locomotion . 3D geometric
morphometrics . Palaeobiological inference . Forelimb

Introduction

The reconstruction of the ecology, behaviour and lifestyle of
extinct species of mammals is a subject that has been of inter-
est to many evolutionary biologists and palaeontologists
(Bock and von Wahlert 1965; Gonyea 1978; Damuth 1981;
Gould and Vrba 1982; Van Valkenburgh 1984, 1985, 1987,
1988; Ewer 1973; Taylor 1989; Damuth and MacFadden
1990; Vrba 1992; Janis andWilhelm 1993; Jones and Stoddart
1998; Iwaniuk et al. 1999, 2000; Yalden 1999; Ruff 2000;
Argot 2001, 2003a, b, 2004; Andersson 2003, 2004a, b,
2005; Schmitt 2003; Salesa et al. 2005, 2010; Schutz and
Guralnick 2007; Webb and Sparrow 2007; Boyer and Bloch
2008; Boyer et al. 2010a; b; Polly 2008; Polly and Macleod
2008; Samuels and Van Valkenburgh 2008; Flores and Díaz
2009; Meachen-Samuels and Van Valkenburgh 2009;
Figueirido et al. 2011; Figueirido and Janis 2011; Halenar
2011; Ercoli et al. 2012; Samuels et al. 2013; Meachen-
Samuels 2012;Walmsley et al. 2012; Meloro et al. 2013; Janis
and Figueirido 2014; Martín-Serra et al. 2014). Indeed, the
investigation of fossil organisms is fundamental to under-
standing the evolutionary history of species (Simpson 1953;
Slater et al. 2012). Unfortunately, a fossil is rarely well pre-
served with all its soft and hard tissues, and thus teeth, bones
or parts of bones are the main material with which
palaeontologists work. The reconstruction of the
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palaeobiology of an extinct species with its skeleton as prin-
cipal evidence is a difficult exercise. As such, one first needs
to understand the adaptive nature of the morphology of the
skeleton in living species and its relation to ecology, locomo-
tion or behaviour, while taking into account potential effects
of shared ancestry.

The main methods used for palaeobiological reconstruc-
tions are ecomorphological ones (Wainwright 2007). Al-
though the relationships between form and function are intu-
itively appealing, they are often not straightforward due to
behavioural filters and processes such as many-to-one map-
ping (Alfaro et al. 2005; Wainwright et al. 2005; Polly 2008).
Form and function are, however, linked at a fundamental lev-
el, and bones are functionally important (Bock and von
Wahlert 1965). They allow movement and, whilst supporting
loads, also need to respond and resist to muscular forces
(Hildebrand 1985; Bryant and Seymour 1990; Bryant and
Russell 1992; Demes et al. 1994; Witmer 1995; Jungers
et al. 1998; Biknevicius et al. 2004; Alexander 2006; Polly
2008; Fabre et al. 2014). As bones are shaped by force and
motion, they are intimately related to the movements executed
and, by inference, also the lifestyle of a species. Following
these principles, different approaches can be used to recon-
struct the palaeobiology of a species. Most commonly, quali-
tative approaches consisting of the anatomical comparison of
a fossil with living relatives or analogous species are used.
The main problem of this approach is the impossibility to test
the hypotheses of the inferences that are made. On the other
hand, quantitative approaches including morphometrics (e.g.
Van Valkenburgh 1984, 1985, 1987, 1988; Andersson 2003,
2004a, b, 2005; Polly 2008; Polly and Macleod 2008; Sam-
uels and Van Valkenburgh 2008; Ercoli et al. 2012; Janis and
Figueirido 2014), functional morphology (e.g. Argot 2001,
2003a, b, 2004; Salesa et al. 2005, 2010) and biomechanics
(e.g. Schmitt and Lemelin 2002; Hutchinson 2004, 2011;
Alexander 2006; Hutchinson and Gatesy 2006; Hutchinson
et al. 2007) can be used to reconstruct the locomotor modes
of fossils. However, reducing the shape of a bone to linear and
angular measurement may lead to a loss of information and a
lack of precision. Geometric morphometric approaches allow
for a detailed description of the shape of a bone and accurate
tests and comparisons of the shape of a fossil to its living
relatives and analogues.

In the present study, we aim to quantitatively infer the loco-
motor strategy of an extinct carnivoran, the ailurid Simocyon
batalleri, from the LateMiocene of Spain. The nearly complete
skeleton of the extinct species S. batalleri was previously de-
scribed by Salesa et al. (2008) as a generalist terrestrial carni-
vore able to climb trees: ‘Such locomotor abilities are consistent
with a palaeobiological model of a generalised carnivore that
foraged mainly on the ground but could readily climb to trees
for safety if facedwith the threat of larger competing carnivore’.
Several anatomical features of the postcranial skeleton of

S. batalleri points towards this lifestyle: for example, this spe-
cies had an enlarged radial sesamoid (‘false thumb’) that likely
allowed for considerable climbing ability; the lumbar region
was likely adapted to produce strong vertical forces whilst
climbing; the hand showed a higher degree of pronation–supi-
nation capability than other carnivorans; the scapula had an
increased attachment areas for those muscles involved in pro-
ducing strong adduction–abduction forces at the shoulder
(Antón et al. 2006; Salesa et al. 2008).

In order to quantitatively test the hypothesis that S. batalleri
was semi-arboreal, we used 3D surface geometric morpho-
metric approaches performed on the three long bones of the
forelimb for a large sample of musteloids and explored the
position of S. batalleri in the morphospace of the living spe-
cies. Moreover, we compare the morphology of S. batalleri to
the mean morphologies of extant species with different types
of locomotion. Finally, we test the locomotor strategy of
S. batalleri using a leave-one-out cross-validated linear dis-
criminant analysis. Our predictions follow those of Salesa
et al. (2008), and we predict that S. batalleri will fall in the
morphospace of the living species that have a generalist ter-
restrial or semi-arboreal locomotor style.

Materials and methods

Materials

The sample is composed of the three long bones of the
forelimb of 77 individuals belonging to 20 extant species
of mustelids, one extant species and one extinct species of
ailurid, eight extant species of procyonids and four extant
species of mephitids. For each species, the number of
specimens ranged from 1 to 7 (Table 1; Supplementary
Table S1). All specimens were adults and predominantly
of wild-caught origin. Equal numbers of males and fe-
males were included where possible. Specimens were ob-
tained from the following collections: Mammifères et
Oiseaux, Muséum National d’Histoire Naturelle, Paris,
France; the Naturhistorisches Museum, Basel, Switzer-
land; the Harvard Museum of Comparative Zoology,
Cambridge, Massachusetts; the Smithsonian National Mu-
seum of Natural History, Washington, District of Colum-
bia, USA; the MNCN, Museo Nacional de Ciencias
Naturales—CSIC, Madrid. See Supplementary Table S1
for a complete list of the specimens used in the analyses.

Bones of extant specimens were scanned using a
Breuckmann 3D surface scanner at the Muséum National
d’Histoire Naturelle, Paris (white light fringe StereoSCAN3D

model with a camera resolution of 1.4 megapixels). Bones of
the fossil were scanned using a Philips Brilliance 64 CT Scan
at the Hospital Nuestra Señora de América (Madrid, Spain;
Fig. 1).
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Geometric morphometrics

The shape of the long bones of the forelimb is complex
and cannot be adequately represented using a traditional
landmark-based approach. Consequently, a 3D sliding-
landmark procedure (Bookstein 1997; Gunz et al. 2005;
Gunz and Mitteroecker 2013) was used to better describe
and quantify the morphology of these long bones, and
especially their articulations given the importance of the
articulations in determining limb segment excursions im-
portant during locomotion. The acquisition of the mor-
phometric data was done using the software Idav Land-
marks (Wiley et al. 2005), while Edgewarp3D 3.31
(Bookstein and Green 2002) was used to obtain the slid-
i n g l a n dma r k s ( S u p p l eme n t a r y F i g . S 1 a n d
Supplementary Tables S2, S3 and S4). Once all landmark
data were obtained, a generalised Procrustes superimposi-
tion (Rohlf and Slice 1990) was performed using the
package Rmorph (Baylac 2012) in R (R Development
Core 2011). Finally, a principal component analysis
(PCA) was performed on the shape data to evaluate the
distribution of the specimens in morphospace. A PCA was
also performed on the combined shape data of the

forelimb using the whole tangent dataset derived from
the Procrustes analyses for each long bone. For more in-
formation concerning the protocol and methods of 3D
surface geometric morphometric approaches used in this
paper, we refer to Fabre et al. (2013a, b; 2014, 2015).

Locomotor category attribution of S. batalleri

A leave-one-out cross-validated linear discriminant analy-
sis (LDA) was performed on each long bone of the fore-
limb as well as on the combined shape data of the entire
forelimb. The LDAwas performed using the ‘lda’ function
from the ‘MASS’ package in the software R, performed on
the principal components of the Generalised Procrustes
Superimposition (GPA) for each bone and for the whole
forelimb of the living specimens. The leave-one-out
cross-validation procedure removes one specimen at a time
and predicts its classification using LDA function comput-
ed on all the remaining specimens. At the end, a classifi-
cation accuracy of the locomotor category of each living
specimen is given by the percentage of specimens correctly
assigned by the cross-validated LDA. Finally, the fossil is

Fig. 1 Long bones of the
forelimb of Simocyon batalleri:
B-2390, right humerus in caudal
(a) and cranial (b) views; B-438,
left ulna in caudal (c) and cranial
(d) views; B-430, left radius in
cranial (e) and caudal (f) views

Table 2 Definitions of lifestyle categories used in this study

Lifestyle Definition

Terrestrial Species that spend the most part of their time on the ground, but occasionally climb, swim or dig

Semi-arboreal Species that spend both time in trees and on the ground without a clear preference for either

Arboreal Species that spend the majority of their time in trees

Aquatic Species that spend the most of their time in water to forage, escape, disperse

Semi-fossorial Species that spend the majority of time on the ground, but regularly dig burrows or dig to find food
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added to the analysis and assigned to a locomotor category.
We defined five categories of locomotion (Table 2) follow-
ing Nowak (2005), Wilson and Mittermeier (2009), Hunter
and Barrett (2011b), Samuels et al. (2013) and Fabre et al.
(2013a, 2015) (Tables 1 and 2): arboreal, semi-arboreal,
terrestrial, aquatic and semi-fossorial. Note, however, that
while animals were classified as belonging to a single life-
style, they may occasionally also show other locomotor
behaviours. For example, most musteloids will swim when
needed, and many will dig in the leaf litter and top soil to
find food.

Results

Geometric morphometrics

The first two principal component axes of the analysis on the
shape of the humerus account for 61.1 % of the total shape
variation (Fig. 2a, Supplementary Fig. S2). The overall distri-
bution of the different taxa in the morphospace shows the
arboreal and semi-arboreal species clustering together, which
tend to overlap with the terrestrial species on these axes. Semi-
fossorial and aquatic species are at the opposite side of the

Fig. 2 Results of the principal components analyses performed on the
morphometric data of a the humerus, b the ulna, c the radius and d the
forelimb. Symbols are as follows: green circles and polygon indicate
arboreal species; yellow circles and polygon indicate semi-arboreal

species; red circles and polygon indicate terrestrial species; brown circles
and polygon indicate semi-fossorial species; blue circles and polygon
indicate aquatic species; black circle indicates Simocyon batalleri
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arboreal and semi-arboreal species, and semi-fossorial species
tend also to overlap with the terrestrial species on these axes.
In this scatter plot, S. batalleri falls in the morphospace of the
arboreal and semi-arboreal species. This suggests that the
shape of the humerus of S. batalleri is similar to that of arbo-
real and semi-arboreal musteloids. Indeed, S. batalleri falls in
the morphospace of extant species (Supplementary Fig. S2)
close to the arboreal red panda (Ailurus fulgens), kinkajou
(Potos flavus), the semi-arboreal stone marten (Martes foina)
and the pine marten (Martes martes).

The first two principal components axes accounted for
63.2 % of the total shape variation of the ulna (Fig. 2b, Sup-
plementary Fig. S3). The overall distribution of the locomotor
categories shows that the arboreal species are included within
the morphospace of the semi-arboreal species when consider-
ing these two axes. Both of them tend to be separated from
terrestrial, semi-fossorial and aquatic species which fall in the
opposite part of the morphospace. Aquatic species tend to be
separated from all the other locomotor styles. In this scatter
plot, S. batalleri falls in the morphospace of the terrestrial
species, not so far of the semi-arboreal and semi-fossorial
ones. This suggests that the ulna of S. batalleri is morpholog-
ically similar to some terrestrial, semi-arboreal and semi-
fossorial musteloids. More specially, S. batalleri tends to clus-
ter with the generalist terrestrial wolverine (Gulo gulo) and the
semi-arboreal tayra (Eira barbara).

The first two principal component axes represent 71.8 % of
the total shape variation of the radius (Fig. 2c, Supplementary
Fig. S4). This scatter plot displays the arboreal and semi-
arboreal species in the same part of the morphospace. They
tend to overlap with a few of the species on these first two
axes. The terrestrial species tend to overlap with the semi-
fossorial species on these axes. Aquatic species are in the same
part of the morphospace as semi-fossorial and terrestrial spe-
cies, but they are completely separated from other kinds of
locomotor types. In this scatter plot, S. batalleri falls in the
morphospace of semi-arboreal and terrestrial species. This
suggests that S. batalleri has a radius that is morphologically
similar to semi-arboreal and terrestrial musteloids. In this scat-
ter plot, S. batalleri tends to be similar to the semi-arboreal
coatis (Nasua nasua andNasua narica), the terrestrial wolver-
ine (Gulo gulo) and the American mink (Neovison vison).

The first two principal components axes represent 61.5 %
of the overall shape variation of the combined data set for the
forelimb (Fig. 2d, Supplementary Fig. S5). This scatter plot
shows the arboreal species are included in the morphospace of
the semi-arboreal species on the plot defined by the first two
PC axes. The terrestrial species are in the middle of the
morphospace and overlap with some semi-arboreal species
and some semi-fossorial species on these axes. The semi-
fossorial species have a large distribution and they overlap
with a large part of the aquatic species on the first two PC
axes. Both of them are located at the opposite side of the

arboreal and semi-arboreal species. In this scatter plot,
S. batalleri is included within the morphospace of the semi-
arboreal living species of musteloids which means that
S. batalleri display an overall morphology of the long bones
of the forelimb similar to that of semi-arboreal musteloids. In
this scatter plot, S. batalleri tends to group with the semi-
arboreal coatis (N. nasua and N. narica), the tayra (Eira
barbara) and the ringtail (Bassariscus astutus).

Locomotor categories discrimination and attribution
of S. batalleri

The results obtained after the LDA for the humerus shows that
80 % of the aquatic specimens are well classified and 20 % is
classified as semi-fossorial (Table 3). Concerning the arboreal
specimens, 86.7 % are well classified and 13.3 % of them are
classified as semi-arboreal. For the semi-arboreal group,
88.9 % specimens are well classified and 7.4 % of them are
classified as arboreal, and 3.7 % of them as terrestrial. One
hundred percent of the semi-fossorial specimens are well clas-
sified. Finally, 75 % of the terrestrial specimens are well clas-
sified and 16.7 % is attributed to the semi-arboreal group and
8.3 % to the semi-fossorial group. The results of the leave-
one-out cross-validated linear discriminant analysis per-
formed on the shape data of the humerus attribute S. batalleri
to the arboreal category at 97.5 %. The shape of the humerus
of S. batalleri appears similar to that of the arboreal
musteloids.

For the ulna, the LDA classified 80 % of the aquatic spec-
imens correctly and misclassified 20 % as terrestrial species
(Table 3). Eighty six percent (86.7 %) of the arboreal speci-
mens are correctly attributed; thirty percent (13.3 %) of them
are attributed to the semi-arboreal group. Concerning the
semi-arboreal category, 18 specimens are well attributed,
and three are classified as arboreal. For the semi-fossorial
category, 14 specimens are well classified whereas two are
attributed to the semi-arboreal group. Finally, all the speci-
mens of the terrestrial category are well classified. The results
of the LDA performed on the ulnar shape data attribute
S. batalleri to the semi-arboreal category at 48 % to semi-
fossorial at 23.4 % and to the terrestrial one at 19.8 %. This
suggests that the ulna of S. batalleri is morphologically similar
to that of semi-arboreal species and some semi-fossorial and
terrestrial ones.

For the radius, the result of the classification for the aquatic
specimens after an LDA resulted in 40 % being classified
correctly, 40 % attributed to the terrestrial group and 20 %
attributed to the semi-fossorial group (Table 3). Ninety three
percent (93.3 %) of the arboreal specimens are well classified
and 6.7 % of them are attributed to the semi-arboreal group.
Concerning the semi-arboreal specimens, 88.9 % of them are
well attributed whereas 3.7 % of them are attributed to the
arboreal specimens and 7.4 % of them to the semi-fossorial
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group. Seventy six percent (76.5 %) of the semi-fossorial
specimens are well classified; 17.6 % are attributed to the
semi-arboreal group and 5.9 % to the terrestrial category.
For the terrestrial category, 66.7 % of the species are well
classified, 16.65 % are classified as semi-fossorial and
16.65 % as semi-arboreal. The results of the LDA predictions
using the radial shape data attribute S. batalleri to the arboreal
locomotor strategy at 68.2 % and to the terrestrial locomotor
strategy at 24.8 %. This result means that the shape of the
radius of S. batalleri is similar to that of arboreal and some
terrestrial specimens of musteloids.

The results of the LDA for the combined data set of the
forelimb show a good classification for all the specimens in
the aquatic category (Table 3). Ninety three percent (93.3 %)
of the specimens of the arboreal category are well attributed
whereas only 6.7 % are classified as semi-arboreal. For the
semi-arboreal category, all the specimens are well classified.
Eighty eight percent (88.2 %) of the specimens are well attrib-
uted to the semi-fossorial category, whereas 11.8 % of them
are attributed to the terrestrial category. Among the terrestrial
category, 66.7 % of the specimens are well classified, 16.7 %
are classified among the semi-fossorial category, 8.3 % among
the semi-arboreal category and 8.3 % to the arboreal one.

Finally, the result of the LDA performed on the discriminant
function of the whole forelimb shape attributed S. batalleri to
the arboreal locomotor group at 99.9 % probability. This sug-
gests that the shape of the long bones of the forelimb in
S. batalleri is morphologically similar to that of the arboreal
species of musteloids.

Discussion

The first interesting result of this analysis is that S. batalleri
falls within the morphospace of the living species, which
means that its forelimb morphology is similar to that of extant
musteloids. The PCA performed on the forelimb shape data
set showed different results depending on the bone analysed.
S. batalleri falls in the morphospace of the arboreal and semi-
arboreal species when evaluating the humerus shape (Fig. 2a).
However, when examining the ulna, S. batalleri falls in the
morphospace of the terrestrial species (Fig. 2b), and for the
radius, S. batalleri falls in the morphospace of the terrestrial
and semi-arboreal species (Fig. 2c). The results obtained for
the humerus, the ulna and the radius are relatively congruent
with the locomotor hypothesis of Salesa et al. (2008).

Table 3 The cross-classification table of predicted and actual specimens assignments to each locomotor category given by the linear discriminant
analysis

Aquatic Arboreal Semi-arboreal Semi-fossorial Terrestrial

Predictions for the humerus according to the discriminant Aquatic 4 0 0 0 0

Arboreal 0 13 2 0 0

Semi-arboreal 0 2 24 0 2

Semi-fossorial 1 0 0 17 1

Terrestrial 0 0 1 0 9

Sum 5 15 27 17 12

Predictions for the ulna according to the discriminant Aquatic 4 0 0 0 0

Arboreal 0 13 4 0 0

Semi-arboreal 0 2 23 0 2

Semi-fossorial 1 0 0 16 1

Terrestrial 0 0 0 1 9

SUM 5 15 27 17 12

Predictions for the radius according to the discriminant Aquatic 2 0 0 0 0

Arboreal 0 14 1 0 0

Semi-arboreal 0 1 24 3 2

Semi-fossorial 1 0 2 13 2

Terrestrial 2 0 0 1 8

SUM 5 15 27 17 12

Predictions for the forelimb according to the discriminant Aquatic 5 0 0 0 0

Arboreal 0 14 0 0 1

Semi-arboreal 0 0 27 0 1

Semi-fossorial 0 0 0 15 2

Terrestrial 0 1 0 2 8

SUM 5 15 27 17 12
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Importantly, these results show that the functional signal can
be different from one bone to another. When taking into ac-
count the whole forelimb in the shape analysis (Fig. 2d), the
results of the PCA show that S. batalleri fall in the
morphospace of the semi-arboreal musteloids. This result con-
firms the prediction of Salesa et al. (2008) that S. batalleri
tends to be a generalist with a semi-arboreal locomotor strat-
egy. This result shows that including the different bones to-
gether in the analysis may provide better results than when
treating each bone separately.

The results of the cross-validation test of the LDA of the
living musteloids for each bone show that the species tend to
be generally well assigned to the locomotor categories based
on literature data (Table 3). For the humerus, the locomotor
assignment is perfect for the semi-fossorial specimens and
particularly high for the aquatic, the terrestrial and the semi-
fossorial specimens in comparison to those of the other cate-
gories. The results are similar for the ulna with good attribu-
tion for aquatic and semi-fossorial specimens. However, for
the radius, terrestrial specimens appear to be better assigned
than those of other categories. Nevertheless, the assignment is
better when the three bones are used together, except for the
semi-fossorial specimens where the humerus by itself pro-
vides better results.

The results of the LDA attribute S. batalleri to the
arboreal category for the humerus. Yet, when using the
ulnar shape, this fossil ailurid is similar to the semi-
fossorial species and some terrestrial species. The results
of the LDA for the radius suggest that S. batalleri is
similar to the arboreal and some terrestrial specimens of
musteloids. Finally, the result for the whole forelimb sug-
gests very strongly that S. batalleri is morphologically
similar to arboreal specimens of musteloids. For each
bone taken individually, the results are similar to those
of the PCA performed on the forelimb data set and high-
light the fact that each bone can have a different function-
al signal. This highlights the difficulty to infer the
palaeobiology of an extinct species based on single bones.
However, these results tend to be in accordance with the
terrestrial and semi-arboreal locomotor category attribu-
tion of S. batalleri in the study of Salesa et al. (2008).
Concerning the result obtained for the whole forelimb, it
is somewhat different than the previous results, suggesting
that S. batalleri is more arboreal than expected. The re-
sults, with S. batalleri attributed to the arboreal locomo-
tion for the humerus, radius and the total forelimb, where-
as it is attributed to semi-arboreal category for the ulna,
may reflect the fact that there are multiple morphologic
(phenotypic) solutions to the same functional or ecologi-
cal problem (Alfaro et al. 2005: Wainwright et al. 2005;
Wainwright 2007; Losos 2011).

These results highlight the importance to study the
whole skeleton, at least where possible, and to be careful

in inferring lifestyle when studying isolated bones, even
when using quantitative methods as was done here. Our
results also show that some bones better capture function-
al signal than others, which implies that some bones can
be more informative for inferring locomotor and behav-
ioural strategies in extinct species. For example (Table 3),
the humerus appears to be a good indicator of aquatic and
semi-fossorial adaptations, the ulna for the arboreal and
semi-fossorial adaptations, and the radius for arboreal ad-
aptations based on our LDA analysis. Nevertheless, it is
important to note that the discriminant analysis forces the
group classification by decreasing the intragroup variabil-
ity and increasing the intergroup variability which may
influence the result that we obtained. To overcome this
problem, it would be interesting to use alternative classi-
fication methods such as Gaussian Mixture Model that
allow one to test the presence of groups without a priori
assignments.

These results tend also to corroborate the previous study
made on the anatomy of the postcranial skeleton of S. batalleri.
Indeed, several anatomical features point towards this as an
arboreal/semi-arboreal lifestyle: for example, the forearm of
S. batalleri shows a higher degree of pronation–supination
capability compared to other carnivorans as shown by the
study of Fabre et al. (2015). The olecranon process of the ulna
is short which allows a full extension of the elbow (Samuels
and Van Valkenburgh 2008). The radial notch is also oriented
laterally in arboreal species and in S. batalleri. This has been
interpreted in previous studies as increasing the degree of
pronation and supination of the forelimb, thus allowing a
wider range of rotation at the elbow (Hildebrand 1988;
Andersson 2003, 2004b; Peigné et al. 2008; Ercoli et al.
2012; Fabre et al. 2015). Furthermore, several other anatom-
ical features of the postcranial skeleton of S. batalleri points
towards this lifestyle: for example, this species has an enlarged
radial sesamoid (‘false thumb’) that likely allowed for consid-
erable climbing ability, refining the grasping capacity of the
hand and allowing this species to reach the highest parts of
trees. Moreover, the configuration of the carpals shows adap-
tations to a semi-arboreal lifestyle: the pisiform, for example,
has a strong and ridged articular facet for the transverse carpal
ligament (or flexor retinaculum), which is markedly different
from that in other musteloids (in which the facet is smooth and
lacking ridged borders). This ligament is the attachment sur-
face of the muscles abductor pollicis brevis and opponens
pollicis (Davis 1964; Antón et al. 2006), the main flexors of
the pollex and the palm. The morphology of the pisiform thus
suggests a strong development of this ligament in S. batalleri,
pointing towards the presence of very strong muscles (Antón
et al. 2006; Salesa et al. 2008). Previous studies have also
shown that the spinous processes of the lumbar vertebrae of
S. batalleri are triangular instead of rectangular which is com-
mon in other musteloids. This indicates the presence of well-
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developed interspinal muscles between the spinous processes,
typical of carnivorans that bound, but do not trot or gallop.
These muscles may play an important role when climbing
trees. Finally, the scapula has an increased attachment area
for those muscles involved in producing adduction–abduction
at the shoulder (Antón et al. 2006; Salesa et al. 2008).

Conclusion

Our results show that S. batalleri is included in the
morphospace of the living musteloids for each bone of the
forelimb. However, our results also show that different bones
may show a different functional signal, which indicates that
inferring lifestyle of extinct taxa can be difficult. This implies
that one has to be careful when reconstructing the
palaeobiology of an extinct species when studying only iso-
lated bones. Our results also highlight the importance to study,
when possible, a maximum of skeletal elements to infer the
lifestyle of an extinct species. Our results suggest that
S. batalleri may be more arboreal than previously suggested,
although the different methods employed provided slightly
different results. This fossil ailurid shared its habitat with other
larger carnivorans, such as the sabre-toothed felids
Machairodus aphanistus and Promegantereon ogygia, or the
lion-sized amphicyonid Magericyon anceps (Antón et al.
2004; Peigné et al. 2008; Salesa et al. 2006; Siliceo et al.
2015). In this context, it seems reasonable that a generalised
carnivoran such as S. batalleri, lacking large canines and be-
ing smaller than other large members of the predator guild,
developed strong climbing abilities for escape from these larg-
er species, but likely also for some foraging on trees (Salesa
et al. 2008). A quantitative assessment of behaviour in extant
species rather than qualitative categories may provide better
congruence among methods, yet this remains to be tested.
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