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Abstract Molecular topology is an application of graph
theory and statistics in fields like chemistry, biology, and
pharmacology, in which the molecular structure matters. Its
scope is the topological characterization of molecules by
means of numerical invariants, called topological indices,
which are the main ingredients of the molecular topological
models. These are statistical models that are instrumental in
the discovery of new applications of naturally occurring
molecules, as well as in the design of synthetic molecules
with specific chemical, biological, or pharmacological
properties. In this review, we focus on pharmacology,
which is a novel field of application of molecular topology.
Besides summarizing some recent developments, we also
seek to bring closer this interesting biomedical application
of mathematics to an interdisciplinary readership.

Keywords Topological indices . Molecular topological
models . Discovery of new drugs

Introduction

Mathematics has a quite impressive record of biomedical
applications. To mention just a few: growth and propaga-
tion of tumors, computational neuroscience, design of
implantable devices and drug delivery mechanisms, genet-
ics, computerized tomography, expert systems, clinical
analyses, and epidemiology. The objective of this review,
which is based on (Amigó et al. 2007) and (García-
Domenech et al. 2008), is to introduce the reader to an
application of graph theory and statistics which is being
used for the discovery of new drugs and molecule design.
This application, which goes by the name of molecular
topology (or connectivity), is still young, its origin dating
from the 1970s, when L.B. Kier and L.H. Hall (1976), and
other researchers started using “indices” based on graph
theory to study some physicochemical properties of organic
compounds, like formation heat and boiling temperature.
They found that those properties can be expressed as linear
combinations of a few such indices. The application of
molecular topology to the pharmacological research was
only a matter of time, the pioneering work being done in
the mid-1980s (Arviza 1985) and the first papers appearing
at the beginning of the 1990s (Gálvez et al. 1991).
Whatever the field, the interest on molecular topology is
clear: Predicting with confidence some specific activity of a
molecule saves time and money. Although the applications
of molecular topology are manifold, we will focus on the
pharmacological ones because of their novelty value and
social impact.

Basically, molecular topology builds on the somewhat
surprising correlations existing between a given physical,
chemical, or biological property of a substance and the
corresponding molecular characterization provided by some
numerical descriptors generically called topological indices.
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So to speak, these indices encapsulate structural informa-
tion at the molecular level which is pertinent to the property
in question. Other subsequently proposed indices, called
topological charge indices, incorporate also physicochem-
ical information in the form of the number of valence
electrons. To illustrate the modus operandi of molecular
topology, suppose that a new drug with a specific activity is
sought. Once an “optimal” suite of topological indices has
been selected with the aid of known active molecules, a
classification function is produced [usually via linear
discriminant analysis (LDA) or neuronal networks] to
distinguish between active and inactive molecules. This
classification function is then used to filter potentially
active candidates from a chemical data base. If the data
base contained naturally occurring molecules, and the
activity of the selected molecule was unknown before, the
result is the discovery of a new drug. If the data base
consisted of synthetic (say, computer-generated) molecules,
we are dealing with the inverse task: design of new drugs.
Last but not the least, the predicted activity of the
candidates is put to test in vivo or in vitro.

Besides molecular topology, there are other techniques
for molecular design (not least, quantum-mechanical
methods), but they are not so straightforward nor are they
always applicable. In particular, in the case of design ex
novo, i.e., design of an entirely new drug, these techniques,
unlike molecular topology, require information on the
biological receptor.

It is worth highlighting that graph theory is a fine
instance of pure mathematics that has found a variety of
applications in the course of time. Created in the works of
L. Euler (1707–1783) in the eighteenth century, and
developed by A. Cayley (1821–1895) and J.J. Sylvester
(1814–1897) in the nineteenth century, graph theory
became in the twentieth century an essential tool in any
area of science and technology where connectivity plays a
role. Think, for instance, of the optimization of communi-
cation and transport networks, the design of electrical
circuits (e.g., in computers), the synchronization of inter-
acting oscillators with different topologies, the analysis of
social networks, etc. (Newman et al. 2006). Interestingly
enough, it was Cayley who pointed out the correspondence
between certain chemical constitutions and graph-theoretical
trees.

This paper is organized as follows. In the next section,
we introduce a few basic concepts of graph theory that are
necessary to understand the subsequent exposition, along
with a selection of some important topological indices, both
for illustration purposes and further references. The two
following sections are devoted to present the statistical tools
needed for the application of the graph-theoretical infor-
mation contained in the topological indices: linear regres-
sion equations (also called predictive equations), and

discriminant (or classification) equations; both kinds of
equations comprise what is called a model. Our exposi-
tion continues with different applications of molecular
topology to the selection and design of molecules in
pharmacology, together with model instances. Lastly, we
will present one real example of discovery of new drugs
via molecular topology. Of course, we could have
addressed many other topological indices and applica-
tions, say, to physical chemistry. But the purpose of the
present review is rather to convey a general picture of
both theory and praxis of molecular topology, in
particular of its high degree of “connectivity” with other
areas of science.

The basis of molecular topology: topological indices

Molecular topology deals with the application of graph
theory (Bollobás 1998) to the description of molecular
structures. To fix the basic concepts and the notation, let us
recall that a graph G is a set of points, called vertices, along
with a set of links, called edges, joining some pairs of
vertices. The set of vertices will be denoted by V=V(G),
and the set of edges by E=E(G). Formally, a graph is an
ordered pair of sets, G=(V, E), where E is a subset of
unordered pairs of V. We consider only finite graphs, that is,
graphs with a finite number of vertices and edges. In this
case, |G| denotes the order or number of vertices of G,
which can be thought to be numbered in some convenient
way. We say that two vertices i, j are adjacent if they are
joined by an edge e (that is, e={i, j} ∈ E), in which case,
we write e ¼ eij ¼ eji; alternatively, we say that i, j ∈ V are
the endvertices of eij ∈ E. Furthermore, the number of
adjacent vertices to a given vertex i∈V will be called the
degree of i and denoted by degi.

A path P is a graph of the form

V ðPÞ ¼ i0; i1; . . . ; ilf g; EðPÞ ¼ ei0i1 ; ei1i2 ; . . . ; eil�1ilf g: ð1Þ
The vertices i0, il are the endvertices of P, and l is the

length of P. Sometimes, we want to consider P as going
from i0 to il, and then call i0 the initial and il the terminal
vertex of P. A graph is connected if for every pair {i, j} of
distinct vertices, there is a path from i to j. Usually, paths
appear as subgraphs of a given graph G, i.e., P⊂G. There
are also other notions related to that of a path in a graph. In
particular, a walk W of length l in a graph is an alternating
sequence of vertices and edges of the form: i0; ei0i1 ; i1;
ei1i2 ; . . . ; eil�1il ; il. If a walk W is such that l≥3, i0= il, and the
vertices ik, 0 � k � l � 1, are distinct from each other, then
W is said to be a cycle or a circuit of length l. A path of
length l will be denoted by Pl, and a cycle of length l (an l-
cycle) by Cl. In particular, we call C3 a triangle, C4 a
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quadrilateral, and so on. Sometimes, an l-cycle is also
called an l-gon. A graph without any cycles is called
acyclic.

Beside paths and cycles, we will also meet below
subgraphs of the type tree and star. A tree of length l is a
connected, acyclic graph with l edges. A star consists of
|G|−1 vertices of degree 1 linked to a “central” vertex of
degree |G|−1. The number of edges, namely, |G|−1, is
called the length of the star. Figure 1 illustrates the different
kinds of graphs we have presented.

When graph theory is applied to molecules, the vertices
correspond to atoms and the edges to chemical bonds—
usually covalent bonds, since molecular topology has found
its major field of application in the organic chemistry. The
resulting graph, which depicts how atoms are bonded with
each other and which path or paths connect one atom with
another one in the molecule, is called a molecular graph.
Thus, in a molecular graph, an edge between two nodes
signalizes the existence of a chemical bond between the
atoms represented by those nodes, no matter what the
valence of the chemical bond is. Sometimes it is needed to
take into account the valence of the chemical bonds in order
to deal with molecules with the same number of atoms and
topology but different kind of chemical bonds—simple,
twofold, triple, or quadruple covalent bonds. The result is
called a molecular pseudograph or multigraph. We will not
consider pseudographs in this introductory paper, so there
will be no multiple edges between connected nodes.

Thus, suppose that we want to structurally characterize
an organic compound. In the usual procedure, one starts
removing all the hydrogen atoms from the molecule. The
remaining atoms build the vertices of the molecular
(hydrogen-suppressed) graph. Henceforth, all molecular
graphs are meant to be hydrogen-suppressed, although not
explicitly stated (For simplicity, we will not consider here
more general procedures in which the hydrogen atoms are
retained.). The structural information contained in the
molecular graph can be now codified by means of different
mathematical objects, like matrices, numerical indices,
polynomials, spectra, groups, and operators.

Next, we will give a flavor of some of the simplest
graph-theoretical tools used in molecular topology.

Matrices associated to a molecular graph

The adjacency matrix is perhaps the simplest graph-
theoretical tool of molecular topology, since it gives only
information about which vertices/atoms are joined/bonded
in the graph/molecule. If the given hydrogen-suppressed
molecule has N atoms, then the molecular graph G has
order |G|=N, and its adjacency matrix A=A(G) is an N×N
symmetric matrix with entries

Aij ¼ 1 if the atoms i; j are bonded;
0 otherwise:

�
ð2Þ

Since A(G) is real and symmetric, its distinct eigenvalues,
lmin < . . . < lmax, are also real. It is easy to prove that
lmin < 0 < lmax (Bollobás 1998). The eigenvalues of the
adjacency matrix are related to several properties of G. In
particular, dðGÞ � lmaxðGÞ � ΔðGÞ, where δ(G) and ∆(G)
are the minimal and maximal degree of the vertices of G,
respectively. For this reason, lmax(G) is usually taken as a
measure of the number of vertices of G with degree 3 and
higher, a property that we will refer to as branching or
ramification of G.

Figure 2 shows the molecular graph of the molecule 2-
methyl, 3-aminopropane, along with its adjacency matrix. This
simple molecule is going to be our “workhorse” in the sequel.

The sum of all entries on the ith row of A,
PN

j¼1 Aij, as
well as the sum of all entries on its ith column,

PN
j¼1 Aji,

result in the number of edges going into (or out of) the
vertex i, that is, the degree (or topological valence) of
vertex i, degi. If DEG ¼ DEGðGÞ ¼ DEGij

� �
1�i;j�N is the

diagonal matrix with entries DEGij=degiδij (where δij is
Kronecker’s delta, i.e., δij=0 if i≠ j, and δii=1), then the
(combinatorial) Laplacian matrix of graph G, L ¼ LðGÞ ¼
Lij

� �
1�i;j;N

, is defined as

LðGÞ ¼ DEGðGÞ � AðGÞ: ð3Þ

Fig. 1 Different kinds of subgraphs

Fig. 2 The graph of the 2-methyl, 3-aminopropane molecule, and its
adjacency and distance matrices
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The eigenvalues of L(G) are also related to properties of G
(Bollobás 1998).

The distance matrix, D=D(G), is an N×N symmetric
matrix whose entries are the topological distances,

Dij ¼
minimal length of the paths joining node i with node j; if i 6¼ j;

0; if i ¼ j

:
8><
>: ð4Þ

Therefore, D provides a qualitative picture of the
proximity relation between pairs of vertices in the molec-
ular graph. The sum of the topological distances between a
given vertex i and all other vertices of the graph, is called
the distance sum of vertex i:

DSi ¼
XN
j¼1

Dij ¼
XN
j¼1

Dji ð5Þ

Observe that the distance matrix can be obtained from
the adjacency matrix. Figure 2 shows also the distance
matrix for the 2-methyl, 3-aminopropane molecule.

The path layer matrix (also known as the atomic path
code) of a graph G is the matrix τ=τ(G)=(τi,j), where τi,j is
the number of simple paths P⊂G with initial vertex i and
length j (Randić 1979, 1990). Other matrices used in
molecular topology include the matrix # ¼ #ðGÞ ¼
#ij

� �
1�i;j�N

(Randić 1992), where

#ij ¼ degi � degj
� ��1=2

if eij 2 E Gð Þ;
0 otherwise;

(
ð6Þ

the matrix of inverse distances (Ivanciuc et al. 1993), the
detour matrix (Trinajstić et al. 1997), the resistance matrix
(Klein and Randić 1993), etc.

Topological indices

The objective of the topological indices is to codify
information on the molecule structure in a purely numerical
fashion. Moreover, the information contained in those
indices is of topological nature, thus independent of the
numbering of the vertices, Euclidean distances between
atoms, and deformations which do not change the connec-
tivity of the molecule. Furthermore, their numerical format
facilitates enormously the automatic search of other
molecules with similar structural properties, hence strong
candidates to share the physicochemical, biological, and/or
pharmacological properties sought. The relation between
graphs and topological indices is not one-to-one though.
This means that given the value of one index or the values
of several indices, there are in general, more than one
molecular graph with that value or those values; this is
called the degeneration problem. It is precisely this
degeneration that allows to identify groups of molecules

with hypothetical common properties via topological
indices.

Out of the manifold of topological indices discussed in
the literature (see, for instance, (Balaban et al. 1984;
Trinajstić 1992; Ivanciuc 1998)), we present next a
selection of those that have proved to be specially useful.
In particular, the indices of Hosoya, Kier and Hall, and
Randić are among the first ever proposed. Moreover, we
restrict our selection to topological indices based on the
adjacency and distance matrix.

Discrete invariants

The following, so-called discrete indices will be used below.

1. Already appeared, N is the number of non-hydrogen
atoms, i.e., the number of vertices in the molecular graph.

2. Vk is the number of vertices of degree k, i.e., the
number of atoms having k bonds in the hydrogen-
suppressed molecular graph.

3. PRk, k≥0, is the number of pairs of ramifications (i.e.,
pairs of vertices with degree ≥3) at topological distance k.

4. L is the diameter of the graph G, which is defined as
L ¼ maxi;j2V ðGÞ Dij.

5. E is a so-called form factor. Its definition is E=S/L2,
where S is the molecular surface parameter. S is
calculated as the sum of contributions from simple
subgraphs whose S values can be found, e.g., in Table 5
of (Gálvez et al. 1994b).

Connectivity indices

Randić introduced in (Randić 1975) a connectivity number
χR, now called Randić index, to characterize the branching
of a molecular graph G. If f: E(G)→R (R is the set of real
numbers) is the map given by

f eij
� � ¼ degi � degj

� ��1=2
; ð7Þ

then the index χR is defined as

#RðGÞ ¼
X

eij2EðGÞ
f eij
� �

: ð8Þ

As a result, the greater the branching of the molecule, the
smaller the value of χR.

Later, Randić introduced a second connectivity number,
called identification number ID (Randić 1984). Given Pl, a
path of length l in G, define the map f *: E(Pl)→R as

f � Plð Þ ¼
Y

eij2E Plð Þ
f eij
� �

; ð9Þ
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Then,

IDðGÞ ¼ N þ
X
Pl

f � Plð Þ; ð10Þ

where the summation goes over all distinct paths in G.
The Randić index was generalized by Kier and Hall

(1976, 1986). In order to define the Kier and Hall indices
lχ, the molecular graph is decomposed into all possible
paths Pl of length l. Then,

l#ðGÞ ¼
X

degi0 � degi1 � . . . � degil
� ��1=2

; ð11Þ
where the sum is over all paths Pl⊂G, and {i0,i1,⋯,il}=V
(Pl). Note that

0#ðGÞ ¼
XN
i¼1

deg�1=2
i ; 1 #ðGÞ ¼ #RðGÞ: ð12Þ

Example 1 Figure 3 depicts the topological valences degi of
the 2-methyl, 3-aminopropane molecular graph and its
decomposition into length-2 paths. This is all the informa-
tion needed to calculate 2χ for this molecule:

2# ¼ P
degi0 � degi1 � degi2
� ��1=2

¼ 1ffiffiffiffiffiffiffi
1�3�1p þ 1ffiffiffiffiffiffiffi

1�3�3p þ 1ffiffiffiffiffiffiffi
1�3�3p þ 1ffiffiffiffiffiffiffi

3�3�1p þ 1ffiffiffiffiffiffiffi
1�3�1p ¼ 2:488:

In turn, the Kier and Hall indices (Eq. 11) can be further
generalized in two steps:

& By taking in Eq. 11 connected subgraphs other than
paths. The following notational remark is in order here:
The subgraphs of type star, tree, and cycle (see Fig. 1)
are traditionally called cluster, path-cluster, and chain,
respectively, in the context of the generalized Kier and
Hall indices. Thus, the indices

l#c;
l #pc;

l #ch; ð13Þ
stand for those Kier and Hall indices obtained using
subgraphs with l edges of type star, tree, and cycle,
respectively. In agreement with this notation, sometimes
lχ is written lχp, where the subindex p stands for
“path”.

& By replacing degi in Eq. 13 by

degvi ¼ Zv
i � Hi; ð14Þ

where Zv
i is the number of valence electrons (i.e., the

electrons in the outermost electron shell) of atom i, and
Hi is the number of hydrogen atoms suppressed at atom
i. The resulting indices, called valence Kier and Hall
indices, are written

l#v l
p; #

v
c;

l #vpc;
l #vch: ð15Þ

Closely related to these generalized Kier and Hall
indices are the difference of connectivity indices,

lDt ¼l #t �l #vt ; ð16Þ
where l≥0 and t=p, c, pc, ch, etc., and the quotient of
connectivity indices,

lCt ¼
l#t
l#vt

: ð17Þ

The Wiener index W was originally defined as the
number of all chemical bonds between pairs of atoms in an
acyclic molecule (Wiener 1947). The current definition of
W, based on the distance matrix D, was proposed by
Hosoya (1971):

W ðGÞ ¼ 1

2

XN
i;j¼1

Dij ¼
X
i< j

Dij ¼
X
i>j

Dij; ð18Þ

(since Dii=0). In spite of its simplicity, the Wiener index
correlates very good with some physical properties like, for
example, the boiling point of the alkane series (methane,
ethane, propane,...). Yet, its degeneration is comparatively
high, and this calls for other indices to be jointly used.

Hosoya (1971) proposed also the topological index now
known as the Hosoya index:

Z Gð Þ ¼
XN=2j j

k¼0

n G; kð Þ; ð19Þ

where n(G, k) is the number of ways in which k non-
adjacent edges of G can be chosen. By definition, n(G, 0)≡
1 and n(G, 1)=|E(G)|.

The Balaban index (Balaban 1982) of the molecular
graph G is calculated by the formula

JðGÞ ¼ EðGÞj j
mþ 1

X
eij2EðGÞ

DSi � DSj
� �

; ð20Þ

where DSi and DSj denote the distance sums (5) of the
endvertices of the edge eij∈E(G), and μ denotes the number
of cycles of G. It has been proven analytically and
computationally that J(G) has a low degeneracy.

Fig. 3 Decomposition of the 2-methyl, 3-aminopropane molecular
graph into paths of length 2
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It was also Balaban who suggested to replace the
function f *(Pl) appearing in the definition of Randić’s
identification number, Eqs. (7–10), by the function

g� Plð Þ ¼
Y

eij2E Plð Þ
DSi � DSj
� ��1=2

; ð21Þ

in order to define the selective identification number SID:

SIDðGÞ ¼ N þ
X
Pl

g� Plð Þ; ð22Þ

where the sum goes over all distinct paths in G. As
advertised by its name, it has been found that the index SID
is highly selective (Balaban 1987).

To wrap up this short list, we include also the molecular
topological index MTI (Ivanciuc and Balaban 1999), in
whose definition both matrices A and D enter explicitly.
First of all, calculate the vector E=E(G)=(E1,⋯,EN) of
structural descriptors for the vertices,

E Gð Þ ¼ Deg Gð Þ Aþ Dð Þ; ð23Þ
where the degree vector of G, Deg(G)=(deg1,⋯,degN),
multiplies as a row vector (i.e., as a N×N matrix) the N×N
matrix A+D. Then

MTI Gð Þ ¼
XN
i¼1

Ei: ð24Þ

Table 1 shows some of the indices discussed so far for the
2-methyl, 3-aminopropane molecule.

Topological charge indices

The topological charge indexes Gl and Jl evaluate the
charge transfers between pairs of atoms, and hence, the
global charge transfers in the molecule (Gálvez et al.
1994a). Since many physical, chemical, and biological
properties are related to the charge distribution, the
introduction of topological indexes to characterize this
property is convenient.

Define the N×N matrix

M ¼ AD�; ð25Þ

where A is the adjacency matrix and D� ¼ D�
ij

� �
1�i;j�N

is
the inverse square distance matrix,

D�
ij Gð Þ ¼ D�2

ij if i 6¼ j;
0 if i ¼ j:

�
ð26Þ

The matrix M gives rise to the charge term matrix CT as
follows:

CTijðGÞ ¼ Mij �Mji if i 6¼ j;
degi if i ¼ j:

�
ð27Þ

Therefore, for i=j, the charge terms CTij represent the
topological valence of the vertex i. For i≠ j the charge terms
CTij are a measure of the net charge transferred from atom j
to atom i. Hence, if CTij<0, this means that atom i will
transfer a net charge to atom j.

Next, for each path of length l, we define the so-called
topological charge index as

Gl ¼
XN�1

i¼1

XN
j¼1þ1

CTij

�� ��d l;Dij

� �
; ð28Þ

where δ(l, Dij) is Kronecker’s delta. These new descriptors
evaluate the total charge transfer between atoms placed at
topological distance l. Thus, for a linear molecule, there are
N–1 indexes Gl: G1,⋯,GN–1.

Lastly, we introduce the average topological charge
index

Jl ¼ 1

N � 1
Gl; ð29Þ

and the total topological charge index

J ¼
XL
l¼1

Jl; ð30Þ

The valence topological charge indices Gv
k and J vk are

defined in a similar way to Gk and Jk, respectively, but
using Av, the “electronegativity-modified adjacency ma-
trix,” instead of A. The entries of A and Av are identical
except for the main diagonal, where A has zeros and Av the
corresponding Pauling electronegativity values1, weighted
by 2 for each atom which is neither carbon nor hydrogen.

QSAR/QSPR models

The quantitative structure–activity relationship (QSAR) and
quantitative structure–property relationship (QSPR) are

Table 1 Some topological indices for the 2-methyl, 3-aminopropane
molecule

0χ 1χ 2χ 3χc
4χpc W Z J

5.155 2.643 2.488 0.667 1 18 10 1,785

1 Electronegativity explains the fact that the covalent bond between
different atoms (A–B) is stronger than would be expected by taking
the average of the strengths of the A–A and B–B bonds. Pauling
proposed in 1932 an empirical formula for its calculation (Pauling
1960).

754 Naturwissenschaften (2009) 96:749–761



approaches in pharmacology and physical chemistry based
on the assumption that the activity or, more generally, the
physicochemical properties of a compound depend on their
molecular structure (Tropsha 2006a, b). In molecular topol-
ogy (and this is what differentiates molecular topology from
other methods), the information on the molecular structure
takes the form of topological indices; see (Devillers and
Balaban 2000) for an excellent collection of research papers
on this topic. Thus, according to the QSAR/QSPR approach,
given a property y (say, boiling temperature or analgesic
activity), there is a set of topological indices x1,⋯,xq such
that y is a mathematical function of them, y=f(x1,⋯,xq).
Unfortunately, the function f and the relevant topological
indices for y cannot be derived from first principles; hence, it
has to be determined phenomenologically.

The simplest and hence best choice when looking for an
unknown functional relationship is a linear one both for the
parameters and the input variables with an offset (or bias):

y ¼ c0 þ c1x1 þ . . .þ cqxq; q � 1ð Þ: ð31Þ

After all, any function over a small domain can be
approximated by an affine function (or, geometrically, the
graph of a differentiable function can be locally approxi-
mated by an hyperplane). This means that the effective
QSAR/QSPR models will be valid only within certain
ranges of the variables, called validity domain (Tropsha and
Golbraikh 2007). If y=(y1,⋯yn)

T ∈ Rn (the upper index T
denotes, as usual, transposition) denotes the column vector
made up by n experimental values of y as measured at n
distinct compounds, x0=(1,1,⋯,1) ∈ Rn, and x1,⋯,xq ∈ Rn

are the corresponding data of the topological indices (i.e.,
the ith component of the row vector xj is the ith
experimental value of the topological index xj), then we
can write a linear system of equations for the coefficients ci:

y ¼ Xc; ð32Þ
where X is the n×(q+1) matrix whose jth column is the
vector xTj , 0≤ j≤q, and c=(c0,c1,⋯,cq)

T∈Rq+1. The system
32 is the starting point for the fitting of the linear model and
for the discriminant analysis. The optimal topological
indices are normally chosen either by trying all combina-
tions of the best suited indices or, more efficiently, by
means of a greedy algorithm, i.e., a forward selection
technique which at each step introduces the next best index
(more on this, in the next section).

Of course, one can also use a nonlinear ansatz in the
input variables, like y ¼ c0 þ c1x

a1
1 þ . . .þ cqx

aq
q , and then

find the “nonlinear parameters” α1,⋯,αq with optimization
procedures. For brevity, we will consider only linear
expressions.

The quality of the regression Eq. 31 is usually assessed
by a variety of statistical parameters, which include the

correlation parameter of the regression r, the standard
deviation of the estimate s, and the Fisher ratio F.
Sometimes, a few outliers worsen the statistical quality of
a predictive equation. In such cases, we recommend to
compare experimental with predicted property plots.

When fitting whether linear or nonlinear models to data,
it is good methodology to divide the data in two sets: (1) a
training (or calibration) set, used to derive the fit-model
equation (as we did above with n hypothetical observations)
and to fix its range of validity, and (2) an evaluation (or
hold-out) set, used to compare the predictions of the model
with the experimental observations and hence evaluate its
reliability. This should be also done to avoid overfitting, i.
e., the use of models or methods that include more terms or
procedures than are necessary (Hawkins 2004, Bishop
2006). An overfitted model can be more flexible than it
needs to be (this usually happens with neural networks) or
include irrelevant components that make it more compli-
cated than needed. There are a number of reasons that make
overfitting undesirable, like wasting resources or being
detrimental to portability. In drug discovery—the case we
are interested in—a wrong decision to use a certain
molecular feature in a QSAR model when this feature is
actually irrelevant, might entail the lost of valuable leads.

Linear regressions (but also neural networks) can
produce satisfactory predictions for some data but grossly
fail for others because the original data were overfitted.
When data are short in number so as all of them are needed
to set up the model, one can use the method called “leave-
one-out,” “cross-validation,” or “jackknifing” to check for
overfitting. In this method, one piece of the training data (or
two pieces for the second-order jackknife, etc.) is removed,
the training is performed on the remaining samples, and
then the model so obtained is used to predict the sliced-out
data. This procedure is repeated until each data point has
been removed at some stage and predicted. The quality of
the leave-one-out method is measured by the so-called
prediction coefficient (Carbó-Dorca et al. 2000). It is also
good policy to keep the number of indices (q) well below
the number of observational data of the property y in order
to avoid chance correlations that may occur whenever there
are more variables than points to be fitted. A decreasing
Fisher ratio F, with all other statistics increasing in quality,
is a clear sign that the new, additional index is useless.

Example 2 Yaffe et al. (2001) describe the use of a
classification procedure to predict aqueous solubility of
organic compounds. In a calibration set of size 437, the
resubstitution errors have a standard deviation of 0.0045.
An independent hold-out data set of size 78 gives
prediction errors with a standard deviation of 0.16, which
is larger by a factor of 35. The vast difference between
these two estimates of error is an indication that the
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modeling method has close to one parameter per observa-
tion. This is a good example raising the suspicion that the
model overfits.

Example 3 In a study on terpenoids, based on 20
experimental values taken from (Wang et al. 2008),
terpenoids #8–#20 were used as a training set, while
terpenoids #1–#7 were reserved for evaluation. The fit
model equation was

Log CCRð Þ ¼ �0:96I1 � 0:63I2 þ 2:219;

where CCR is shorthand for “corrected repellent ratio at
1.5 h” and I1, I2 are two topological indices. Figure 4 shows
the excellent fit of the calculated Log(CCR) values with
respect to the experimental ones (the correlation coeficient
is 0.9487). But the same plot for the evaluation set results
in an extremely poor prediction (see Fig. 5). This reveals
again an overfitting problem.

Molecular topological models

Molecular topological models are used to find new active
compounds. For this, two different kinds of equations are
generally needed, both containing topological indices: (1)
linear regression equations (LEs) to predict quantitative
properties and (2) discriminant equations (DEs) to recog-
nize to which category (usually called “good” and “bad” in
the two-category case) the compound belongs to. The LEs
are also referred to as predictive equations for obvious
reasons. A model consists of several such equations of
either type, together with the corresponding validity

domains, and thresholds to discriminate between categories.
In sum, a model filters potentially good or active new
compounds; only those satisfying the LEs and complying
with the thresholds are selected for further scrutiny. The
more equations the model consists of, the more selective it
will be in principle, although a trade-off between modeliza-
tion effort and number of potentially “good” compounds
has to be made on a case by case basis.

Linear regression analysis

The objective of linear regression analysis is to find a linear
combination of variables x1,⋯,xq, see Eq. 31, which
correlates with the physicochemical, biological, or pharma-
cological property y of interest. The Furnival–Wilson
algorithm (Furnival and Wilson 1974) is used to obtain
subsets of variables and equations with the least Mallows’
parameter (Mallows 1973),

Cp ¼ RSS

s2
þ 2p� n; ð33Þ

where RSS is the residual sum of squares based on the
selected independent variables, s2 is the residual mean
square based on the regression using all independent
variables, p is one plus the number of independent variables
in the selected subset, and n is the number of data. The
Furnival–Wilson algorithm combines two methods of
computing the RSS for all possible regressions, into a
simple leap-and-bound technique for finding the best
subsets without examining all possible ones. The result is
a reduction by several orders of magnitude in the number of
operations required to find the best subsets.

y = x 
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Fig. 4 Log(CRR) experimental vs Log(CRR) calculated for terpe-
noids #8–#20 (Wang et al. 2008). R here is the correlation coefficient
(0.9487)
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Fig. 5 Log(CRR) experimental vs Log(CRR) calculated for terpe-
noids #1–#7 (Wang et al. 2008). Q denotes the correlation coefficient
of the test set (0.0557)
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Linear discriminant analysis

The objective of LDA is to find a linear combination of
variables (topological indices in our case) that allows to
discriminate between two or more categories or classes of
objects. In practice, two classes of compounds are consid-
ered in the analysis: The good one, comprising a set of
compounds with proven pharmacological activity, and the
bad one, built by a set of compounds known to be inactive.
The selection of the descriptors is based on the Fisher
parameter, and the classification criterion is the shortest
Mahalanobis distance (i.e., the distance of the observation
from the mean of the good and bad classes used in the
regression). Variables used in the linear classification
functions are chosen stepwise. At each step, either the
variable that contributes the most to the separation of the
groups joins the discriminant function, or the variable that
contributes the least is removed from the discriminant
function. The quality of the discriminant function is
measured by Wilks’ l, which is the bigger, the greater the
overlap of the good and bad classes (l=0 when there is no
overlap). The descriptors in the discriminant function are
selected or deleted so as to minimize Wilks’ parameter.

There are several methods to asses the discriminant
ability of a selected function. The simplest one uses an
external validation set. The number of cases classified in
each class and the percentage of correct classification are
shown then in the so-called classification matrix. Needless
to say, the higher the percentage of correct classification,
the better the discriminant function.

Pharmacological-activity distribution diagrams

Beside predictive and discriminant equations, pharmacological-
activity distribution diagrams (PDDs) is an auxiliary tool
that is very useful in practice. These are histogram-like
plots (see Fig. 6) in which the compounds are grouped into
intervals of the predicted value of the property y=f(x1,⋯,xq).
Thus, over each interval I of y-values, the number of
compounds exhibiting those values is represented by a bar.

For each interval I, the expectancy of activity is defined as
Ea=a/(i+1), where a is the ratio of the number of active
compounds in I to the total number of active compounds,
and i is the corresponding ratio for the inactive compounds.
The expectancy of inactivity is analogously defined as Ea= i/
(a+1). Given the step-functions Ea and Ei corresponding to
the PDD of a given property y, it is in general a simple
matter to decide whether the function f(x1,⋯,xq) is useful in
molecular design, depending on whether the overlap of Ea

and Ei is small or not. This also allows to determine those y-
intervals where the probability of finding new active
compounds is greatest compared to the choice of a false
active.

Selection and design of molecules

Molecular topological models can be applied with a variety
of purposes, depending on the data base used. If the data
base contains naturally occurring molecules, we can find
compounds with so far unknown properties, i.e., we can
discover new drugs. If the data base consists of synthesized
molecules, the discovery of new drugs amounts to the
inverse task: design of new drugs. In the following
subsections, we will present some variations on this basic
theme. Needless to say, the molecular models will select
from the data bases those active compounds used to build
the model and, eventually, other molecules with similar
structures. If this were its only performance, molecular
topology would be nothing more than a complicated
method of recognizing structural similarity. The magic of
molecular topology is precisely its capability of catching
structural similarities that the eye cannot catch.

Data base search

A mathematical model consisting of one or more equations
with the corresponding thresholds is used to filter a
structural database, and the so selected compounds are then
checked for the sought activity in the database bibliogra-
phy. Compounds found in the bibliography to be active
validate the model, while those not listed are proposed as
new potentially active compounds, pending from the
experimental and/or clinical verdict.

Example 4 Anticonvulsant activity (Bruno-Blanch et al.
2003). The model obtained from LDA was

DFAC ¼ �28:88� 1:944cvpc � 0:21Gv
1 þ 4:64G5 þ 20:11J v3

� 45:87J4 � 3:420Dþ 40:650Cp � 10:473Cp

þ 2:794Dp þ 1:32PR0
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Fig 6 An example of a pharmacological–activity distribution diagram
(PDD)
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with F=10, l=0.54 and n=128. The selection criterion
was: a compound is active as anticonvulsant if

DFAC > 0 ð34Þ

The 10,330 compounds comprising the Merck index
were screened using this model to predict the anticonvul-
sant activity of compounds not considered in its derivation.
As a result, 108 different compounds were selected as
potential anticonvulsant drugs. It was found in the literature
that 41 of them had been already reported to have
anticonvulsant activity, which shows the predictibility
power of the model. The rest were potential leads from
molecules known to show a different pharmacological
profile.

Molecular selection

A mathematical model consisting of one or more equations
with the corresponding thresholds is used to filter a
structural database, and the selected compounds are tested
in vitro for the sought activity. Compounds selected as
active but not showing activity in vitro, i.e., false positives,
as well as the activities found for true positives are used to
refine the model.

Example 5 Bronchodilator activity (Rios-Santamarina et al.
2002). The model consists this time of two discriminant
functions: the first one, DF1, was built using more than 300
bronchodilator drugs as well as additional structurally
heterogeneous drugs showing some extent of bronchodilla-
tor activity. A second discriminant function DF2 was also
introduced to improve the discriminant efficiency of DF1.
DF2 was obtained with a set of 70 drugs selected from
every family of bronchodilators. The discriminant functions
were the following:

DF1 ¼ 3:071cvp � 3:58G1 þ 15:32J2 þ 55:50J4

� 1:68PR1 þ 0:879PR2 � 11:71 ð35Þ
with F=287, l=0.271 and n=339, and

DF2 ¼ 17:403Dp � 12:274Dp � 6:61 ð36Þ
with F=129, l=0.315 and n=70. A compound is classified
as a potentially active bronchodilator if

�1 < DF1 < 10 or 0 < DF2 < 17: ð37Þ

Application of DF1 and DF2 to databases resulted in the
selection of 20 hypothetically active molecules. The
experimental tests showed the existence of compounds,

such as fisetin and hesperetin, with in vitro relaxation rates
on guinea pig trachea of above 80%.

Virtual combinatorial syntheses and computational
screening

A mathematical model consisting of one or more equations
with the corresponding thresholds is applied to a virtual
combinatorial library of molecular structures resulting from
a given synthesizing scheme, and the structures selected are
then actually synthesized and tested. In this way, new drugs
are designed.

Example 6 Anti-herpes activity (De Julián-Ortiz et al.
1999). The predictive equations were the following:

IC50 ¼ �17:364c þ 41:394cvpc þ 21:71 ð38Þ

with F=38, r=0.914, s=0.6, n=18 and Cp=6.0,

loge ID50ð Þ ¼ �1:420c þ 4:810cvp � 11:413cvp

� 1:323cvc þ 4:174cpc � 8:42 ð39Þ
with F=24, r=0.929, s=3.3, n=25 and Cp=5.04,

loge UDUð Þ ¼ �4:671cvp þ 8:702c � 3:643c

þ 3:153cvp � 8:053cc � 9:23 ð40Þ

with F=41, r=0.957, s=12.4, n=25 and Cp=3.03. Here,
IC50 means inhibitory concentration 50 (i.e., the concen-
tration inhibiting 50% of the virus growth), ID50 means
inhibitory dose 50 (i.e., dose leading to an inhibition of
50%), and UDU means unchanged drug in urine. The
discriminant function was

DF ¼ �1:170cvp þ 2:113c þ 2:79 ð41Þ

with F=23.4, l=0.28, n=81. The selection criterion was:
active if

�10 < IC50 < 20;�5 < loge ID50ð Þ < 3;

�4 < loge UDUð Þ < 4
ð42Þ

(the validity ranges of the predictive equations), and

�1 < DF < 5: ð43Þ

This model made possible the discovery of several
synthetic active and highly active anti-herpes compounds,
like the 1,2,3 triazole-4,5 dicarboxylic acid and the 2-
(2,3,4-trifluorophenylcarbamoyl)-1-cyclopentene-1-carbox-
ylic acid.
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General applications

As already said in the introduction, molecular topology
grew out of the study of the physicochemical properties of
organic compounds. As expected, the application of
molecular topology in biology and pharmacology is not
so clear-cut as in chemistry due to the great variability of
the test animals and patients. Moreover, many biological
and pharmacological properties are less specific than
physical and chemical properties in the sense that the
former may depend only weakly on the molecular structure
and strongly on other factors such as molecular size or the
presence of functional chemical groups. Yet, molecular
topology has been used successfully in different areas to
predict parameters and properties. Let us mention next
some representative achievements.

Prediction of physicochemical parameters Indeed, proper-
ties such as viscosity (García-Domenech et al. 1999),
surface tension, and thermal conductivity (García-Dome-
nech et al. 2003), refractive indices, and glass transition
temperatures (García-Domenech and de Julián-Ortiz 2002),
can be expressed as linear expressions of topological
indices (including some that we have not presented above).

Prediction of pharmacological properties Pharmacological
properties, such as antihistaminic (Duart et al. 2006),
antifungal (García-Domenech et al. 2002), and carcinoge-
nicity (García-Domenech et al. 2001) are predicted.

Mathematical models for the selection and design of new
active compounds We have already presented some of them
(anticonvulsant, bronchodilator, anti-herpes) in the previous
section. Also, antibacterials (De Gregorio-Alapont et al.
2000) and antimalarials (Gálvez et al. 2005; Mahmoudi et
al. 2006) belong to this group.

New biological activities discovered through virtual
screening and molecular design As way of illustration
of this last application of molecular topology, we will
explain with some detail the discovery of new non-
narcotic analgesics, as it happened in the praxis

(Gálvez et al. 1994b). The model consisted of the
predictive equation

loge IC50 ¼ 0:32Gv
1 þ 6:34J1 � 0:68V4 þ 1:4E

� 2:25 ð44Þ
with F=18, r=0.908, s=0.49, n=20, and the classification
function

DF ¼ �1:320c þ 4:671c þ 1:961cvp � 6:562cvp � 4:253c

� 4:113cc þ 2:683cvp þ 13:313cvc þ 1:284c

þ 11:754cc þ 1:224cpc � 0:04

with F=9.3, l=0.198, n=82. The selection criterion was:
active if

0 < loge IC50 < 3:5 ð45Þ
(validity range of the predictive equation) and

DF < 0:686: ð46Þ

This model selected 17 molecules from a chemical
database. Some of them were well-known for their
analgesic activity, like the acetylsalicylic acid (marketed
as Aspirin) and the pirazolones, but others were novel as
analgesics, thus potential leads for a whole new line of
analgesics.

The next step was to perform pharmacological tests (1)
to confirm the analgesic activity of the novel compounds;
(2) to determine their efficient dose 50 (ED50), i.e., the
optimal dose for the 50% of the animals tested; and (3) to
determine their lethal dose 50 (LD50), i.e., the dose that
results lethal for the 50% of the animals which were
administered the drug (Miller and Tainter 1944). These tests
were performed with a statistically significant sample of
rats weighing 20 to 30 g. The tests of analgesia followed
the Witkin protocol (Witkin et al. 1961). Out of the 17
molecules tested, ten exhibited a clear analgesic activity.
The most interesting result was that 2-(1-propenyl) phenol,
one of the novel molecules, has an analgesia percentage
almost twice the analgesia percentage of the acetylsalicylic

Compound Analgesia (%) ED50 (mg/kg) LD50 (mg/kg) TI

Acetylsalicylic acid 49±1 100±8 500±20 5

2-(1-Propenyl) phenol 85±1 34±5 720±10 21

2,4-Dimethylacetophenone 80±1 45±5 700±10 16

p-Methyl-propiophenone 56±1 100±3 590±20 6

Sulfadiazine 43±1 112±10 2,000 18

Table 2 Some pharmacological
parameters of known and novel
analgesics (see text)
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acid. Furthermore, 2′,4′-dimethylacetophenone, the other of
the novel molecules tested, obtained marks similar to the
previous one. Both molecules were patented.

But this is not the end of the story. The so-called
therapeutic index (TI), which is the number most common-
ly used to measure innocuity, is defined as the ratio

TI ¼ LD50

ED50
: ð47Þ

To certify a medicament as safe, TI≥10 must hold. It
was found that TI=21 for 2-(1-propenyl) phenol, and TI=
16 for 2′,4′-dimethylacetophenone (Gálvez et al. 1994b), to
be compared with TI=5 for the acetylsalicylic acid. As for
the sulfadiazine, the other of the novel molecules, it was
found that TI=18 (Gálvez et al. 1994b), which shows again
the acceptable degree of innocuity of all these new
analgesics, discovered thanks to the methods of molecular
topology. Table 2 summarizes these facts.

Conclusion

Molecular topology has widely demonstrated its high
performance in the discovery and design of new drugs,
which is a major objective of both academia and the
pharmaceutical industry. With this review, we seek to
contribute to a better knowledge of molecular topology in
the scientific community. Bearing this modest scope in
mind, we explained the basics of its conceptual framework
and reviewed the statistical machinery needed in applica-
tions (linear regression and discriminant analysis). The
emphasis was laid on the applications to pharmacology, not
only because of the scientific bias of the authors but mainly
because of their novelty and social impact. In regard with
this, let us mention that molecular topology has already
achieved breakthroughs in the treatment of malaria, lung
cancer, etc. (Jasinski et al. 2008a, 2008b; Mahmoudi et al.
2008), and it is currently being used in the biomedical
research on AIDS, Alzheimer, and other major diseases of
contemporary medicine. Even more is true: molecular
topology can be employed to look for drugs healing, in
principle, any disease, based on the structural information
provided by known active compounds. One could argue
that such “universality” follows from its semiempirical
character. But the quantum-mechanical methods are also
semiempirical in practice, with different phenomenological
parameters having to be fine-tuned to fit the models, while
much less applicable and efficient than molecular topology.
Once more, “pure” mathematics comes to the rescue in
practical problems, this time in the form of graph theory. If
the book of nature is written with numbers, as Galileo said,
then molecular topology is certainly a way of reading some
chapters.
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