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Abstract Cardiac contraction is triggered by the cyclic
interaction of the “molecular motor” protein myosin with
the actin filament, consuming ATP as the energy source
to produce tension or shortening. The myosin heavy
chain (MHC) contains the actin- and ATP-binding sites
and represents the molecular motor of muscle contrac-
tion. This review describes the various subunits of hu-
man heart myosin in health and disease and discusses
their functions. Two different MHC genes (α and β) with
distinct biochemical features are expressed in the human
heart. α-MHC confers a higher ATPase activity and
higher shortening velocity to the heart than β-MHC. Mo-
tor function is regulated by myosin light chain (MLC)
isoforms. Expression of the atrial MLC-1 isoform in the
hypertrophied human ventricle increases cross-bridge
cycling and contractility. It is suggested that MLC-1 acts
as a MHC/actin tether. Weakening of this tether increas-
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es myosin function. MLC-2 slows the rate of tension de-
velopment of myosin. This relative inhibition is relieved
upon phosphorylation of the MLC-2 perhaps caused by
“swing-out” of cross-bridges from the myosin filament.
Mutations in all ventricular myosin subunits have been
found in patients with hypertrophic cardiomyopathy.
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Scope of this review

This review considers the molecular motor myosin of the
human heart. I will describe the molecular mechanisms
through which the motor function is fine-tuned by inter-
action with various light subunits.

Structure of the molecular motor of striated muscle

Under the electron microscope the sarcomeric motor
protein myosin appears as an elongated 150-nm rod-
shaped molecule with two N-terminal pear-shaped head
domains. The globular head domain and the α-helical
part which noncovalently binds two types of light chains
are designated as subfragment 1 (S1). Limited proteoly-
sis of S1 reveals three major segments, a 25-kDa N-ter-
minal, a central 50-kDa, and a 20-kDa C-terminal do-
main (for review see [1]).
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The three-dimensional structure of the S1 domain of
the myosin molecule of chicken skeletal muscle has been
elucidated by X-ray crystallographic analysis [2]. It con-
sists of a heavy chain (MHC) which folds at the N-termi-
nus into an asymmetric globular head domain (Fig. 1).
This head is16.5 nm long, 6.5 nm wide, and 4 nm thick
and comprises a seven-stranded β-sheet connected by
flanking α-helices and/or loops which constitute the cata-
lytic domain. The 50-kDa domain is split by a long nar-
row cleft with actin-binding sites located on both sites of
the cleft. Also, the ATP-binding (active) site forms an
open cleft and is located opposite from the actin binding
site at the 25/50 kDa junction. The apex of the long cleft
through the 50 kDa domain is very close to the nucleotide
binding cleft, thus mediating signal transduction between
the actin and nucleotide binding clefts. Amino acids
771–843 at the C-terminus form a 8.5-nm α-helical struc-
ture -the neck region – which binds two types of light
chains. The essential myosin light chain binds between
amino acids 783 and 806 and the regulatory light chains
further downstream between amino acids 808 and 842.
The catalytic and light chain binding domains are joined
by a so-called converter domain (around amino acids
711–771). Further downstream, not represented by the
three-dimensional structure [2], the 140-nm α-helical
“rod” domain joins the S1 part which forms the myosin
filament. Therefore the basic structure of the myosin mol-
ecule is a trimer. In vivo two trimers associate to the na-
tive double-headed myosin molecule with Mr approx. 470.

Function of the molecular motor

In the intact contractile structure the ATP- or ADP-Pii-
loaded MHC binds as the “cross-bridge” to the N-termi-
nus of actin. Myosin undergoes changes in actin affinity
and structure, being strongly attached to actin (having
high affinity) or weakly attached (having low affinity)
[3, 4]. Force is generated upon the transition from the
weakly to the strongly attached state. This transition is
considered to be coupled to the Pi release step [5].

These structural changes in the cross-bridges are as-
sociated with the strain of an elastic component present
in the cross-bridges which operates over a range of 8–10
nm [6]. In a contemporary model the α-helical neck do-
main is believed to function as a lever arm which swings
relative to the catalytic domain: picometer changes in the
active site of S1 are magnified into nanometers of mo-
tion by rotation of the converter domain [3, 7]. In fact,
truncation and elongation of the light chain binding do-
mains show that the sliding velocity of actin filaments is
proportional to the length of the lever arm [8]. Further-
more, the light chain binding domain, rather than the cat-
alytic domain, reveals tilting motions during length per-
turbations of an isometrically contracting muscle [9, 10,
11] (see Fig. 2). This is in contrast to text-book cartoons
shich show tilting S1 portions. The elastic element of the
cross-bridge may therefore reside in the lever arm [12].

Orientation of the myosin head in the isometric state
does not seem to be perpendicular to the actin filament
longitudinal axis, as revealed by X-ray diffraction stud-
ies with submillisecond time resolution [10] and fluores-
cence polarization studies [9]. The force-generating
cross-bridges are arranged more parallel to the actin fila-
ment axis. They pass through the perpendicular during
shortening. Hence the angle between the actin filament
axis and the force-generating myosin cross-bridge ap-
pears to be less than 90° (Fig. 2).

Due to its elasticity the cross-bridge exhibits variable
free energy profiles [13]. In addition to the chemical po-
tential of the cross-bridge, either stretching or compress-
ing the “spring” changes the free energy of the cross-
bridge attached to actin. Assuming linear elasticity of the
spring with a constant k, the free energy G of an attached
state equals: G0+(kx2)2, where G0 is the free energy in
the unstrained position and x is the relative position of
the actin filament. Hence under isometric conditions ba-
sic free energy of the unstrained actomyosin-ADP-Pi
state equals that of the strained actomyosin-ADP state:
the chemical energy is converted into mechanical energy.
Upon detachment the cross-bridge recoils and the stored
energy is dissipated as heat. Under isotonic conditions

Fig. 1 Three-dimensional rib-
bon structure of myosin-S1
(see references in [2]). The
MHC consists of a 25-K N-ter-
minal (green), a 50-K (red),
and a C-terminal joining 20-K
(blue) domain. The pear-shaped
head is called the catalytic do-
main. Essential myosin light
chain MLC-1 (yellow) and reg-
ulatory MLC (MLC-2) are as-
sociated with the α-helical C-
terminal part of the 20-K do-
main (light chain binding do-
main)
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the actin filament is allowed to slide, the stretched spring
becomes discharged, and the mechanical energy stored
in the spring is liberated as work.

Myosin heavy chain expression in the human heart

In the human heart two sarcomeric myosin II genes are
expressed generating two isoenzymes of the myosin
heavy chain (designated α- and β-MHC). These are lo-
cated in tandem on the long arm of human chromosome
14q11.2-q13 [14] (Table 1). In the normal heart both
MHC isoenzymes are expressed in a tissue-specific man-
ner: the α-MHC is preferentially expressed in the atrium,
and the β-MHC is almost exclusively expressed in the
ventricle (Table 2; for review see [15]). In the rodent β-
MHC reveals a lower ATPase activity and is associated
with a lower maximal shortening velocity of the cardiac
fibers than α-MHC. It is still not clear to what extent the
various myosin light chain subunit isoforms present in
atrium and ventricle contribute to the higher cycling ki-
netics of human atrial myosin than in human ventricular
myosin [13].

In the hypertrophied atrium considerable amounts of
β-MHC are expressed [16, 17], which is associated with
a decrease in maximal shortening velocity [18]. α-MHC,
however, is either found to be a minor component of hu-

man ventricular myosin [16, 19, 20] or could not be de-
tected at all [21]. Furthermore, there are no changes in
α-MHC expression during hypertrophy of the human
ventricle [16, 19, 20, 21]. Since α-MHC can be detected
on the mRNA level [21, 22, 23] in the human ventricle,
α-MHC mRNA translation may be either suppressed or
may be too low to be recognized by the translational ma-
chinery [21].

Myosin heavy chain mutations

Around 40 mutations – predominantly missense muta-
tions – of the β-MHC gene, and an α-MHC chimeric
gene have been described in some familiar forms of hy-
pertrophic cardiomyopathy, an autosomal dominant in-
herited heart disease. Some of these mutations have al-
ready been characterized at the functional level using in
vitro motility assays and demembrated fiber mechanics.
Since it is not within the scope of this contribution to re-
view myosin mutations (excellent articles include [24,
25]), only some are considered. Arg-403 Gln [26, 27] in
the actin-binding site reveals a decreased function and
coincides with a high incidence of sudden cardiac death
and decreased life expectancy [28]. Normal myosin
function and low incidence of sudden cardiac death are
associated with Gly-256 Glu mutation [26].

Myosin light chain expression in the human heart

Two types of myosin light chains (MLC), essential and
regulatory, are associated with the neck region of the
MHC. The essential MLC is designated as the MLC-1 or
alkali MLC. The regulatory MLC is designated as MLC-
2 or phosphorylatable MLC or 5,5-dithio-bis-(2-nitro-
benzoate)-MLC [21]. Together with calmodulin and tro-
ponin C, both types belong to the superfamily of EF-
hand Ca2+ binding proteins [30].

In the human heart two different genes encode the es-
sential myosin light chain isoforms, the ventricular-spe-
cific (VLC-1) and an atrial specific (ALC-1). VLC-1 is
located on chromosome 3p21 [31], coding for a 194 ami-
no acid protein, which is the same isoform as the MLC-

Fig. 2 Schematic synopsis of recent structural and biochemical
studies of actin-myosin interaction. The catalytic domain (CD) of
myosin S1 binds to actin in a non-force-generating state. Force
generation is elicited by elastic bending of the light chain binding
domain, the lever arm rather than by rotation of the catalytic do-
main. In addition to the CD, the N-terminus of the essential myo-
sin light chain (ELC) binds to a neighboring actin monomer in the
force (high Ca2+) but not in the non-force-generating (low Ca2+)
state. M: Towards M-line

Table 1 Chromosomal localization (Chr) and amounts of amino
acid (AS) of myosin subunits in the human heart

Subunit Chr AS Reference

α-MHC 14q11–13 1939 14
β-MHC 14q11.2–13 1935 14
ALC-2 nd 175 34
VLC-2 12q23 166 33
ALC-1 17q21 196 32
VLC-1 3p21 194 31

Table 2 Myosin subunits in the normal and hypertrophied human
heart on the protein level: in the hypertrophied ventricle, ALC-1
becomes reexpressed in addition to the ventricular-specific myosin
subunits

Normal Hypertrophied

Atrium
α-MHC α -MHC, β-MHC
ALC-1 ALC-1, VLC-1
ALC-2 ALC-2, VLC-2a, VLC-2b

Ventricle
β-MHC β-MHC
VLC-1 VLC-1, ALC-1
VLC2a, VLC-2b VLC-2a, VLC-2b



1s present in the adult slow skeletal muscle. ALC-1 is lo-
cated on chromosome 17q21 [32] coding a 196 amino
acid protein (Table 1).

Several MLC-2 isoforms exist in the human, prefer-
entially expressed in the atrium (ALC-2) or in the ventri-
cle (VLC-2). VLC-2 has been mapped to chromosome
12q23-q24 [33] in human encoding a 166 amino acid
protein. ALC-2 is composed of 175 amino acids [34],
but no data are available yet about the chromosomal lo-
calization. Biochemical experiments have revealed that
the human ALC-2 is slightly more acidic than the VLC-2
[35]. Furthermore, sequence analysis suggests the exis-
tence of two VLC-2 isoforms in chicken [36], cow, and
rabbit [37]. In addition, electrophoretic analysis suggests
the existence of two different VLC-2 isoforms in the hu-
man heart having the same molecular weight but differ-
ent isoelectric points (VLC-2a for the more acidic and
VLC-2b for the more basic isoform) [35].

Essential MLC

Expression of ALC-1 is tissue specific and developmen-
tally regulated. Human embryos express large amounts
of ALC-1 both in the whole heart and in skeletal muscle
(for review see [38]). ALC-1 protein levels decrease in
the ventricle to undetectable levels during early postnatal
development but persisted in the atrium throughout the
whole life [39].

The situation differs in patients with congenital heart
disease such as Tetralogy of Fallot. Tetralogy of Fallot is
a complex congenital heart disease characterized by four
components: right ventricular infundibular stenosis, ven-
tricular septal defect, dextroposed aorta overriding the
interventricular septal defect, and right ventricular hy-
pertrophy [40]. The hypertrophied right ventricle of chil-
dren with tetralogy of Fallot express large amounts of
VLC-1 in the atrium [41] and ALC-1 in the ventricle, up
to adulthood [40]. Similarly, the hypertrophied left ven-
tricle of patients with ischemic, dilative, and hypertro-
phic cardiomyopathy express ALC-1 [42, 43, 44]. Surgi-
cal intervention and subsequent normalization of the he-
modynamic state decrease ALC-1 expression in these
patients [45].

Regulation of ALC-1 expression in the human heart is
still not well understood. In the mouse two E boxes,
which interact with muscle-specific basic helix-loop-he-
lix (bHLH) regulatory proteins of the MyoD family, and
a diverged CArG box, which binds to the serum response
factor, exist within the first 630 bp of the ALC-1 promot-
er region [46]. E boxes have been shown to be sufficient
for ALC-1 transcription regulation during skeletal mus-
cle differentiation [46]. bHLH regulatory factors of the
MyoD family regulate skeletal muscle differentiation by
forming heterodimers with E12 bHLH factors that bind
to E-box elements, thus increasing the transcription rate
of target genes (for review see [47]). Recently two cardi-
ac-specific bHLH proteins homologous to the MyoD
family have been detected in the heart, designated as the

e and d forms of heart–autonomic nervous system–neu-
ral crest derivative (HAND) [48, 49]. They are important
for early development and looping of the embryonic
heart [50]. Since both HAND transcription factors bind
weakly to E-box as E12 heterodimers, the ALC-1 may
be a target gene. Recently it has been reported that in the
human hypertrophied ventricle there is upregulation of
HAND gene expression and a positive correlation be-
tween HAND and ALC-1 mRNA [43]. Furthermore,
ALC-1 expression may be regulated by endogenous anti-
sense ALC-1 mRNA present the human ventricle [43].

The essential MLCs modulate myosin function

The functional role of the essential MLC in the heart has
remained obscure for many years. Recently we described
for the first time that maximal shortening velocity, rate
of tension redevelopment, isometric force generation,
and Ca2+ sensitivity of isometric force generation in-
crease upon partial replacement of VLC-1 by ALC-1 in
the human ventricles [44, 51]. Furthermore, there was a
significant positive correlation between ALC-1 expres-
sion and dP/dtmax of patients with hypertrophic obstruc-
tive cardiomyopathy (HOCM) in vivo [21]. Thus cross-
bridge cycling kinetics and tension generation per cross-
bridge are modulated by differential expression of MLC-
1 genes. These results demonstrated for the first time
that there is a molecular mechanism which allows the
ventricular cardiomyocyte to adjust to enhanced work
load through modification of the structure of the molecu-
lar motor – the partial substitution of VLC-1 by ALC-1 –
which increases power output of the sarcomeric motor
macromolecules and improves cardiac contractility. This
is in contrast to the rodent heart, which modulate myosin
motor function by MHC gene variation. These results
have been supported in a transgenic mouse model which
overexpresses atrial essential MLC in the ventricle:
working heart function increases upon atrial essential
MLC expression in the ventricle of transgenic rats over-
expressing ALC-1 [52]. In the same mouse model a rise
in cardiac beating frequency caused by running exercise
was significantly lower in the transgenic group, demon-
strating a large contractile reserve in ventricles with
ALC-1 [52].

ALC-1 expression in the hypertrophied and failing
human ventricle is heterogeneous and varies between 0%
and 35% of total MLC-1. However, mean amount of
ALC-1 appears higher in hypertrophied ventricles of pa-
tients with HOCM than in the failing ventricles of pa-
tients with dilated cardiomyopathy. Patients with HOCM
express mean ALC-1 levels of 13% (range 0–32%) [43]
while those with dilated cardiomyopathy reveal mean
ALC-1 levels of 4% (range: 0–10%) [44] in their ventri-
cles.

Thus, ALC-1 expression can be considered as a mole-
cular adaptation mechanism to compensate an increased
work demand or impaired sarcomeric function. In dilated
cardiomyopathy the expressed ALC-1 levels may be too

547



548

low to balance adequately decreased contractile function.
Hence patients with dilated cardiomyopathy may be a
target for therapeutic upregulation of ALC-1 expression
either by genetic (viral) transfer of ALC-1 cDNA into
the cardiomyocyte or by upregulation of ALC-1 gene
transcription.

The essential MLC isoforms act as MHC/actin tether

MLC-1 binds not only to the neck domain of the MHC
[2] but also with its N-terminus to the C-terminus do-
main of actin [53, 54, 55, 56]. Thus MLC-1 tethers the
MHC to the actin filament (Fig. 2). It has been demon-
strated that MHC and MLC-1 bind to different actin
monomers [57]. Binding of MLC-1 to actin cannot be
predicted from the crystal structure of myosin S1 [2].
This is due to the limited resolution of the three-dimen-
sional structure of the N-terminus of MLC-1 [2]. In fact,
around 40 N-terminal amino acid residues of MLC-1 are
not seen in the crystal structure [2]. This missing part of
MLC-1 contains ten Pro and ten Ala residues, which
could form an antennalike structure long enough to
bridge the gap to the actin filament.

Experimental evidence for the functional importance
of the MHC/actin tether has been obtained by weakening
the tether on the MLC-1/actin interface and/or MLC-
1/MHC interface and simultaneous registration of cross-
bridge function. Inhibition of the MLC-1/actin interac-
tion by peptide competition using synthetic N-terminal
MLC-1 peptides increases force production and shorten-
ing velocity of both demembrated (skinned) and of intact
electrically driven human ventricular fibers [58] as well
as myofibrillar ATPase activity [59]. We propose that
tethering MHC to the actin filament via MLC-1 imposes
a load on the myosin cross-bridge. Relieving or weaken-
ing the MHC/actin tether decreases this load and acceler-
ates cross-bridge cycling kinetics and at the same time
enhances tension output per cross-bridge, thus increasing
contractility [58].

To explain the effects on contractility by partial VLC-
1/ALC-1 replacement in the hypertrophied human ven-
tricle [51, 44], we have suggested that binding of ALC-1
to actin is weaker than the binding of VLC-1 to actin,
representing a weaker MHC/actin tether. Interestingly,
ALC-1 and VLC-1 differ in the primary structure of the
N-terminus [31] (Table 3). Indeed, the affinity for actin
of the N-terminal peptide 5–14 derived from ALC-1 is
significantly lower than the actin affinity of the corre-
sponding N-terminal peptide of VLC-1 [56]. These re-
sults support the initial hypothesis [51]: because of its
low actin affinity ALC-1 is a weaker MHC/actin tether

than VLC-1 and has increased cross-bridge cycling ki-
netics and force generation.

There is further experimental evidence in favor of this
hypothesis: reconstitution of demembraned skeletal mus-
cle fibers with MLC-1, with charged residues substituted
by uncharged Ala at the most N-terminus increased
shortening velocity [60]. The N-terminus of ALC-1 con-
tains seven charged amino acids while VLC-1 contains
nine [31]. From these data it appears that cross-bridge
kinetics can be regulated by charge interactions between
the N-terminus of MLC-1 and the actin C-terminus. De-
creasing the amount of charged amino acid – by Ala sub-
stitution or differential MLC-1 isoform expression –
weakens the MHC/actin tether and increased cross-
bridge function.

Interaction between the N-terminus of essential MLC
and actin may depend on the ionic conditions. In the test
tube the N-terminus of essential MLC is cleaved by pro-
teases only in the presence of Ca2+ [61]. Thus, various
conformational states of the N-terminus of essential
MLC may exist: an extended state with Ca2+ and a bent
state without Ca2+ [61]. In the cardiomyocyte this would
require a fluctuation of the N-terminus from an extended
antennalike form which could bind to actin during systo-
le (high Ca2+) and a bent form during diastole (low Ca2+)
dissociated from actin. The molecular mechanism pro-
posed for force generation and essential MLC action are
schematically demonstrated in Fig. 2.

There is an additional interpretation of the functional
effects of essential MLC isoforms. Maximal force pro-
duction of the myosin cross-bridge may depend on the
stiffness of the lever arm in the sense that the less stiff it
is, the less the force that would be generated per cross-
bridge [12]. Since the light chains are associated with the
lever arm, various MLC isoforms may affect the cross-
bridge stiffness. It may be suggested that the β-MHC as-
sociated with the VLC-1 has a greater stiffness than β-
MHC with the ALC-1 thus generating more force per
motor molecule.

Another important feature in the regulation of the
contractile cardiac system by essential MLC is the sensi-
tivity. Only small changes in the VLC-1/ALC-1 ratio are
required to produce strong effects in the human heart
[44, 51]. Furthermore, peptide competition experiments
with the N-terminal VLC-1 peptide reveal maximal in-
hibitory peptide concentrations of MLC-1/actin interac-
tion in the nanomolar range [58]. This phenomenon
could be explained by the cooperative interaction of
myosin with actin: it is well known that binding of a
cross-bridge to the actin filament facilitates binding of
other cross-bridges [62, 63, 64]. Ca2+ binding to troponin
C weakens the binding between actin and troponin I, but

Table 3 Primary structures of the N-terminal domains of human ventricular (VLC-1) and atrial (ALC-1) essential myosin light chain iso-
forms (bold positively charged residues, italics negatively charged residues)

Human VLC-1[31] 1-Ala-Pro-Lys-Lys-Pro-Glu-Pro-Lys-Lys-Asp-Asp-Ala-Lys-Ala-Ala-Pro-Ala-Pro-Lys-Ala-Ala-
Human ALC-1[32] 1-Ala-Pro-Lys-Lys-Pro-Glu-Pro-Lys-Lys-Glu-Ala-Ala-Lys-Pro-Ala-Pro-Ala-Pro-Ala-Pro-Ala-



strengthens the troponin I/troponin C interaction. At the
same time changes in tropomyosin position along the ac-
tin filament are believed to allow transition of cross-
bridges into the force-generating, strong binding state
[65, 66]. Conversely, cross-bridge binding to actin may
be able to modulate troponin C conformation and its
Ca2+ affinity. Thus inhibition of the MLC-1/actin interac-
tion would result in the force-generating state with en-
hanced tension output (of the cross-bridges) which in
turn would facilitate recruitment of non-force-generating
cross-bridges for tension production. In fact, MLC-1
peptides derived from the N-terminus are especially ef-
fective in those myofibrils with complete actin filament
structure [59] and therefore intact reciprocal coupling.

What is the role of MLC-2?

The presence of MLC-2 in striated muscle has been
shown to be important for both myosin structure and
function. Selective removal of MLC-2 changed the struc-
ture of the cardiac myosin molecule [67]. Extraction of
MLC-2 from demembrated skeletal muscle fibers de-
creases Vmax [68] and actin filament sliding velocity [69].

The rate of force redevelopment of cross-bridges (kre-

dev) increases with the level of activating Ca2+ [70]. This
phenomenon seems to depend on the presence of MLC-
2, since removal of MLC-2 eliminates the Ca2+ depen-
dency of kredev [71, 72]. In these experiments extraction
of MLC-2 increased kredev at submaximal Ca2+ levels to
the value normally observed at maximal Ca2+ activation.
Therefore it is possible that MLC-2 selectively downreg-
ulates the attachment rate constant of cross-bridges. This
hypothesis is supported by the increased stiffness and
Ca2+ sensitivity of isometric tension generation observed
upon MLC-2 extraction [73]. An increased attachment
rate constant upon MLC-2 elimination leads to an in-
creased number of force-generating cross-bridges at a
given Ca2+ activation level and consequently to in-
creased stiffness and Ca2+ sensitivity [70].

The molecular mechanism for the regulation of kredev
by MLC-2 probably lies in the different myosin filament
structures with and without MLC-2. The highly ordered
myosin filament structure with MLC-2 is lost upon
MLC-2 extraction [74]. This suggests a swing-out of
cross-bridges away from the myosin filament backbone
closer to the actin filament. The relative proximity of the
cross-bridge to the thin filament may increase the proba-
bility of attachment and subsequent force production.
The same mechanism is also discussed for phosphoryla-
tion of the MLC-2 (see below).

As mentioned above, MLC-2 is a member of the su-
perfamily of Ca2+-binding proteins. MLC-2 has lost its
Ca2+-binding ability in subdomains 2, 3, and 4 [30]. On-
ly the first subdomain in the N-terminus retains high-af-
finity divalent metal binding [75]. This binding site
seems to be important for normal myosin function since
a mutation in the cation binding site results in reduced
tension generation and stiffness [76].

Some years ago it was reported that MLC-2 protein
levels are reduced in dilated cardiomyopathy, suggesting
that this is the cause of heart failure [77]. However, in
our own studies we have never observed any changes in
MLC-2 content in patients with dilated or ischemic car-
diomyopathy [44, 78].

Towards understanding cardiac MLC-2 isoforms

The functional roles of the three different MLC-2 iso-
forms in the human heart – ALC-2, VLC-2a, VLC-2b –
are still not clear. Transgenic approaches, which replace
cardiac MLC-2 with skeletal muscle MLC-2 [79] or
ALC-2 with VLC-2 in the atrium [80] of mice, have re-
cently been introduced to explore the functional role of
the various MLC-2 isoforms. Substitution of VLC-2 by
skeletal MLC-2 depressed contractility and relaxation of
the left ventricle, leaving Vmax unchanged [79]. However,
MLC kinase (MLCK) in the heart differs from that in
skeletal muscle [81], and it is possible that the skeletal
MLC-2 is not a suitable substrate for the cardiac MLCK
in vivo. It remains to be elucidated whether the observed
decreased contractility in skeletal MLC-2 transgenic ani-
mals is the result of an incomplete posttranslational
modification of the MLC-2 transgene product in the
heart. Substitution of ALC-2 by VLC-1 in cardiomyo-
cytes of the mouse atrium causes a shift of contractile
characteristics to the ventricular phenotype [80]. No in-
formation concerning the MLC-2 phosphorylation levels
of the transgene products have been provided.

The existence of two different VLC-2 isoforms (VLC-
2a and VLC-2b; see above) in the human ventricle sug-
gests three different myosin isoenzymes: a VLC-2a-ho-
modimer, VLC-2a/VLC-2b-heterodimer, and VLC-2b-
homodimer. In the normal human heart mainly the VLC-
2b isoform is expressed (LC-2b to LC-2a ratio of 2.3)
[44, 51, 78]. In most patients with limited cardiac func-
tions, this ratio remains at its normal level. However, re-
cently we found that in patients with HOCM VLC-2a ex-
pression declines in favor of the VLC-2b form [43] The
physiological function of different VLC-2 isoenzymes in
the human heart is still not understood. It is puzzling that
slow-contracting (soleus, ventricle) but not fast-contract-
ing (vastus, atrium) muscle types showed a MLC-2 poly-
morphism [82, 83]. In addition, species with fast-con-
tracting ventricular muscle fibers (rat) reveal no MLC-2
polymorphism [84]. Thus there may be a functional role
of the MLC-2 isoforms in the regulation of cross-bridge
cycling kinetics. It may be speculated that the predomi-
nant expression of VLC-2b in HOCM [43] is a molecular
mechanism to increase contractility of the cardiomyocyte.

MLC-2 phosphorylation increased cross-bridge
cycling kinetics

The MLC-2 of the heart and skeletal muscle can be re-
versibly phosphorylated by a specific enzyme system
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comprised of a MLC phosphatase and a Ca2+-calmodu-
lin-dependent kinase (MLCK) [81]. MLCK catalyzes the
transfer of the γ-phosphoryl residue of ATP to Ser-14 of
the N-terminus of the human VLC-2 [81]. Also, Ser-21
and Ser-22 of human ALC-2 are phosphorylated by
MLCK [34] (Table 4). Thus, human VLC-2 isoforms are
monophosphorylated, while human ALC-2 may be
mono- or diphosphorylated [83]. Ser-14 is also phos-
phorylated by protein kinase C but not by protein kinase
A [67].

The first evidence of a functional role of MLC-2
phosphorylation came from studies with demembraned
(skinned) fiber. In these experiments MLC-2 was thio-
phosphorylated using ATPγS [85, 86, 87] instead of the
physiological substrate ATP. Thiophosphorylated pro-
teins are resistant to dephosphorylation by protein phos-
phatases, and thus high levels of MLC-2 (thio)phosphor-
ylation were obtained. In these studies thiophosphoryla-
tion of the MLC-2 depressed Vmax and ATP consumption
while isometric force generation was barely affected
[87]. However, when ATPγS was substituted by ATP as
substrate for MLCK, there was an increase in isometric
force production of demembrated cardiac [88, 89] and
skeletal muscle fibers [90] which was very pronounced
at submaximal Ca2+ activation levels. Experiments at the
single cardiomyocyte level have verified the MLC-2
phosphorylation effect [91]. Vmax of demembrated fibers
with phosphorylated MLC-2 remains unchanged in both
demembraned cardiac [92, 93] and skeletal [90] muscle
preparations. Some years later the cause of the contro-
versial results between thiophosphorylation and physio-
logical phosphorylation were elaborated: With ATPγS,
the essential light chain rather than the regulatory light
chain – the physiological substrate – became predomi-
nantly phosphorylated [93].

MLC-2 phosphorylation changes cross-bridge func-
tion. Maximal shortening velocity – which is determined
by the detachment rate constant of negatively strained
cross-bridges [94] – does not change with MLC-2 phos-
phorylation [90, 92, 93]. Similarly, the ratio of
ATPase/force under isometric steady state conditions,
which equals the detachment rate of positively strained
cross-bridges remains unchanged in the phosphorylated
and unphosphorylated states [71]. A mechanical method
[70] was than used to determine the effect of MLC-2
phosphorylation on the rate constant of force redevelop-
ment (kredev) of demembrated skeletal muscle fibers. In
fact, kredev rose upon increasing the MLC-2 phosphoryla-
tion at both low and (in a less pronounced manner) high
Ca2+ activation levels [95, 96, 97]. This finding obtained

with skinned skeletal muscle fibers has been reproduced
with skinned cardiac muscle fibers using an alternative
experimental approach [98].

These results allowed elucidation of the molecular ba-
sis of force increase by MLC-2 phosphorylation. Since
kredev equals the sum of attachment rate (fapp) and detach-
ment rate (gapp) of cross-bridges under isometric condi-
tions [70], and since the detachment rate remains un-
changed [71], MLC-2 phosphorylation selectively en-
hances the attachment rate constant of myosin cross-
bridges of striated muscle types. Isometric force in the
steady state equals the proportion of cross-bridges in the
force-generating state, which is given by fapp/(fapp+gapp)
[94, 70]. Simulations of force-Ca2+ ratios at various val-
ues for fapp and/or gapp [84] demonstrate that the Ca2+

sensitivity of isometric tension production increases with
increasing values of fapp – perfectly explaining the Ca2+-
sensitizing effect of MLC-2 phosphorylation in striated
muscle fibers [70, 88, 89, 90].

MLC-2 phosphorylation-induced “swing out”

Based on the introduction of negative charges by phos-
phorylation it has been hypothesized that the cross-
bridges move away from the filament backbone [99].
This “swing-out” positions the cross-bridge closer to the
actin filament, thus increasing the probability of attach-
ment and force generation. In fact, electron microscopic
studies of myosin filaments reveal that MLC-2 phos-
phorylation increases the distance of the cross-bridge
from the myosin filament backbone [99, 100].

MLC-2 phosphorylation modifies the inotropic state
of the heart

In the human heart steady-state phosphorylation of
MLC-2 isoforms is not uniform. The ALC-2 in quickly
frozen atrial resections are mono- (35.7% of ALC-2) and
biphosphorylated (20.3% of ALC-2) [83]. Both VLC-2
isoforms in quickly frozen biopsy specimens of human
ventricles reveal phosphorylation levels of 0.39 mol
Pi/mol VLC-2b and 0.26 mol Pi/mol VLC-2a [102a]. In
25% of patients with severe cardiac failure (NYHA III or
IV) the two VLC-2 isoforms were completely dephos-
phorylated [102a], providing an attractive hypothesis to
explain cardiac insufficiency. Similar to the human ven-
tricle, we detected in vivo phosphorylation of the pig
ventricular VLC-2 isoforms with values of 0.39 mol

Table 4 Primary structures of the N-terminal domains of ventricular MLC-2 (VLC-2) of human and chicken

Human VLC-2[121] 1-Ala-Pro-Lys-Lys-Ala-Lys-Lys-Arg-Ala-Gly-Gly-Ala-Asn-Ser-Asn-Val-Phe-
Human ALC-2[34] 1-Ala-Ser-Arg-Lys-Ala-Gly-Thr-Arg-Gly-Lys-Val-Ala-Ala-Thr-Lys-Gln-Ala-Gln-Arg-Gly-Ser-Ser-Asn-Val-Phe 
Chicken VLC-2a[36] 1-Pro-Lys-Lys-Ala-Lys-Lys-Arg-Ile-Glu-Gly-Ala-Asn-Ser-Asn-VaL-Phe-
Chicken VLC-2b[36] 1-Pro-Lys-Lys-Ala-Lys-Lys-Lys-Val-Glu-Glu-Gly-Gly-Ser-Asn-Val-Phe-

MLCK recognizes specific sequences upstream (Lys-Lys-Arg or
Lys-Arg-Arg) and downstream (Val-Phe) of the phosphorylated
serine residue [120]. These are Ser-14 for human VLC-2, Ser-

21and Ser-22 for human ALC-2, and Ser-13 for both chicken
VLC-2a and VLC-2b



Pi/mol for VLC-2b and 0.25 mol Pi/mol for VLC-2a
[98]. In the rabbit ventricle the phosphorylation states
VLC-2b and VLC-2a are 0.36 and 0.15 mol Pi/mol, re-
spectively [82]. In the rat ventricle in vivo phosphoryla-
tion is 0.39\mol/Pi/mol VLC-2 [84, 102b]. This normal
level decreases significantly to less than one-half in old
spontaneously hypertensive rats but remains normal in
age-matched Wistar-Kyoto rats [102b]. The onset of ab-
normal MLC-2 phosphorylation may be associated with
the onset of myocardial insufficiency, which has been
observed in old hypertensive rats [103]. Long-term run-
ning training of rats caused an increased MLC-2 phos-
phorylation level in the ventricle [104], a phenomenon
which might be considered as an adaptive mechanism to
improve cardiac performance. In the European hamster
during summer activity we have observed a phosphory-
lation level of 0.45 mol Pi/mol VLC-2, which declines to
0.18 mol Pi/mol VLC-2 during hibernation [105]. Re-
duced in vivo VLC-2 phosphorylation levels could mean
a reduced cross-bridge cycling and thus energy con-
sumption of the heart in the hibernating state.

For decades it was not known whether MLC-2 phos-
phorylation of striated muscle types is of any functional
significance in vivo. This was due to the fact that MLC-2
phosphorylation was not considered a prerequisite for
striated muscle contraction [106, 107], as it is in the
smooth muscle [81]. Furthermore, the involvement of
MLC-2 phosphorylation in the beat-to-beat regulation of
the heart was excluded [106, 107]. An exception may be
the tortoise, kept at +4°C. Cardiac beating rate is approx.
5 times per minute: MLC-2 phosphorylation increases
during systole and decreases during diastole [108].

MLC-2 phosphorylation levels do not change during
systole and diastole due to a continuous activation of the
MLCK during the heart cycles under physiological con-
ditions. Assuming a similar kinetic behavior in skeletal
and cardiac muscle, the half-time of inactivation of
MLCK is 1.3 s in situ [109]. Taking a twitch-time of a
cardiomyocyte of 300 ms, the diastolic periods of around
150 ms (i.e., low Ca2+ conditions) are too short to induce
MLCK inactivation. The net phosphate content of the
MLC-2 then reflects the steady-state equilibrium be-
tween phosphorylation and dephosphorylation catalyzed
by the MLCK and the MLC phosphatase, respectively. In
vivo around 40% of the MLC-2 are phosphorylated (see
above), reflecting the low MLCK and MLC-phosphatase
activity in the heart [110]. Decreasing steady-state MLC-
2 phosphorylation to 50% of its initial value requires 30
min of cardioplegic arrest [109], most probably due to
the low MLC-phosphatase activity in the heart. Maximal
activation of MLCK even during diastole could explain
the relative stability of steady-state phosphorylation of
cardiac MLC-2 in vivo, which is hardly affected by phar-
macological interventions: neither α- nor β-adrenergic
stimulation of isolated perfused hearts changes the
MLC-2 phosphorylation level [111, 112, 113, 114].

In addition to MLCK, protein kinase C phosphoryla-
tes MLC-2 in cultured cardiomyocytes [115]. However,
it is not known whether the steady-state level of MLC-2

phosphorylation is affected by protein kinase C activa-
tors. Upon α-adrenergic stimulation of isolated perfused
hearts, which activates protein kinase C, the steady-state
MLC-2 phosphorylation level remains unchanged [111].

Synopsis of MLC-2 function: a hypothesis

Association of the MLC-2 with MHC increases the
structural order of the myosin filament, moving the
cross-bridge closer to the myosin filament backbone.
This association reduces the probability of cross-bridge
attachment to the actin filament and therefore the rate of
force development at submaximal Ca2+ concentrations.
As a consequence the number of cross-bridges in the
force-generating states and thus force and stiffness at
submaximal Ca2+ activation are low. Phosphorylation of
MLC-2 relieves this relative inhibition: the cross-bridges
swing out from the thick filament backbone towards the
actin filament, increasing the probability of attachment
and force generation, which is most pronounced at low
Ca2+ activation levels. It is of interest that this mecha-
nism is especially relevant for the heart, since Ca2+ con-
centrations during systole are submaximal [80].

Increased and decreased MLC-2 phosphorylation lev-
els are associated with positive and negative inotropic
states of the heart, respectively. A selective decrease in
the endogenous MLC-2 phosphorylation level reduces
cross-bridge cycling and induced hypertrophic cardio-
myopathy.

Mutations shed new light on essential 
and regulatory MLC function

In patients with HOCM and middle left ventricular thick-
ening, a Met-149 Val substitution in VLC-1 is observed
[107]. Myosin with the mutated VLC-1 reveals an in-
creased actin translocation velocity in the in vitro motili-
ty assay [117]. It is worth noting that Met-149 Val is at
the binding interface with the MHC [2]. As suggested
above, tethering the myosin head to actin via MLC-1
seems to control force generation and cycling kinetics of
the cross-bridge. Therefore weakening the interaction
between MHC and MLC-1 should produce the same en-
hancement of cross-bridge function as weakening the ac-
tin and MLC-1 interaction. It is not clear whether Met-
149 Val mutation of VLC-1 really results in a weakening
of MHC-MLC-1 interaction, but if it does, this would
explain the improved function of myosin with Met-149
Val mutation in VLC-1 in the in vitro motility assay
[117]. Changing the MHC/MLC-1 interaction on the
MHC site may be represented by a missense mutation
close to the MHC/MLC-1 interface (Arg-719 Gln) [118].
Again, this mutation close to the MHC/actin tether in-
creases actin translocation velocity. These results suggest
that any deterioration in the MHC/actin tether by muta-
tion at the MHC/MLC-1 interface, increases myosin
function.
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In addition to VLC-1, there are also mutations in the
VLC-2 (Ala-13 Thr, Glu-22 Lys, and Pro-94 Arg) associ-
ated with middle left ventricular HOCM [117]. Glu-22
Lys reveals an almost normal function in the in vitro mo-
tility assay [117] and confers a higher Ca2+ sensitivity of
force generation in demembraned fibers [74]. Interest-
ingly, Glu-22 Lys causes a loss of the relaxed order of
purified myosin filaments associated with an increased
Ca2+ sensitivity of force generation [74] similar to both
MLC-2 extraction and VLC-2 phosphorylation. Addi-
tional VLC-2 mutations have recently been reported in
French patients with HOCM, namely Phe-18 Leu and
Arg-58 Gln [119]. Especially the mutation Phe-18 Leu
modifies the recognition site for MLCK [120] and may
change the substrate specificity for MLCK. Therefore it
would be interesting to analyze the in vivo VLC-2 phos-
phorylation state in these hypertrophic patients, which
may be reduced. It is interesting to note that a transgenic
mouse model expressing a VLC-2 form that cannot be
phosphorylated developed hypertrophic cardiomyopathy
as a result of inefficient sarcomeric cross-bridge cycling
[116].

Future prospects

The myosin cross-bridge drives cardiac contraction. A
certain level of phosphorylation of its regulatory light
chain is required for normal heart function. Increasing
the phosphorylation level may represent an approach to
improve cross-bridge cycling kinetics and contractility
of the diseased human heart. This could perhaps be
achieved by developing specific MLC phosphatase in-
hibitors. Another therapeutic approach to improving car-
diac contractility could be the development of drugs re-
sembling the N-terminus of essential MLC to inhibit the
interaction between essential MLC and actin. Alterna-
tively, gene constructs coding for the first 15 N-terminal
peptides of VLC-1 could be transferred into cardiomyo-
cytes for ectopic expression of the peptide which bind to
actin, thus inhibiting its interaction with the essential
MLC and eventually increasing the inotropic state of the
heart.

Both pharmacological and genetic approaches could
improve power output of cardiac contraction and can re-
present future therapeutic approaches for treatment of
cardiac failure.
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