
Abstract A primary challenge in biomedical research
today is the elucidation of the underlying genetic archi-
tecture of complex conditions such as obesity. In contrast
to simple Mendelian disorders that result from a muta-
tion in a single gene, complex phenotypes are the prod-
uct of the action (as well as interaction) of multiple
genes and environmental factors. The genetic configura-
tion of these genes can range from effectively polygenic
(i.e., many genes each with a relatively small contribu-
tion) to oligogenic (i.e., a few genes with relatively large

measurable effects often expressed on a residual additive
genetic background). While the task at hand is compli-
cated, it is not intractable; however, it does require con-
sideration of the nature of the disease and definition of
its associated phenotypes in selecting the most appropri-
ate study design. Here we will discuss the characteristics
of obesity and its related phenotypes, which must be
considered in designing analyses to identify the genes in-
volved as well as reviewing what these approaches have
provided in the search for genes influencing adiposity in
humans
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Introduction

While it is clear that environmental factors play a signifi-
cant role in the development of obesity [18, 31, 40, 67,
72], work over the past two decades has clearly demon-
strated a genetic influence on adipose tissue accumula-
tion and distribution [11, 24], with estimations of an ad-
ditive genetic contribution to the expression of some
obesity-related traits of 50% or greater [16, 25, 42, 63].
With the existence of a genetic component established,
more recent efforts in this area have focused on the iden-
tification of the specific genes involved in the regulation
of body fat. Some of this effort has focused on the identi-
fication of rare single gene defects that typically lead to
extreme obesity (e.g., [54, 73]. While these efforts have
provided important insights into various aspects of the
biochemical pathways involved in adipose tissue regula-
tion, they have not identified the genes influencing the
common variation observed in obesity-related pheno-
types. Here we focus on the approaches employed to
identify common genes for complex phenotypes such as
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those related to obesity as well as reviewing the current
results of these efforts.

In this search for common genes influencing the vari-
ation observed in human adiposity a variety of method-
ological approaches have been employed. Unfortunately,
given the nature of obesity as a clinical condition and the
characteristics of obesity-related phenotypes in general,
many of these methodological approaches are inefficient
or even inappropriate with regards to identifying genes
with significant measurable effects for common diseases/
conditions [5, 14]. As a result, there has been little con-
sistency in findings between many of the studies to date.
However, given recent developments in both molecular
genetic techniques and statistical genetic methods in the
past few years, there now exists some very powerful ana-
lytical tools for the identification of genes for common
complex diseases such as obesity which have begun to
yield replicable results across a number of studies. Spe-
cifically, these developments have now made genome-
wide scanning feasible making it possible to move be-
yond the largely unsuccessful traditional candidate gene
approach and allowing for the identification of previous-
ly unsuspected genes with measurable effects on the ex-
pression of obesity-related phenotypes.

Defining the phenotype

Obesity as a complex phenotype

A complex phenotype refers to a quantifiable character-
istic of an organism that is influenced by both multiple
genetic and nongenetic (i.e., environmental) factors as
well as their interactions, which leads to a significant de-
gree of variation in expression across the population

(e.g., body mass index, BMI; see Fig. 1). While the term
“complex” is generally associated in this context with
phenotypes which are measurable on a continuous scale
(i.e., body weight or waist circumference), it refers to the
sources of interindividual variation for a specific trait,
rather than whether a trait is continuous or discontinuous
in its distribution within a population. Therefore, even
when obesity is diagnosed clinically based on some “cut-
point” (i.e., a BMI greater than 27) it can still be classi-
fied as a “complex” trait because variation in its age at
onset or severity of other associated symptoms cannot be
attributed to a single gene or environmental factor. As a
result of this complexity it is generally impossible to eas-
ily discern a pattern of simple Mendelian inheritance
across generations of relatives. However, with the proper
sampling strategies and analytical tools (selected on the
basis of the characteristics of the condition of interest), it
is possible to not only elucidate the genetic architecture
of such complex conditions as obesity, but to identify the
specific genes responsible for the variation observed in
its expression in a population [3, 11, 66].

Characterizing obesity: a continuous versus discrete
phenotype

Obesity as a clinical condition is currently defined as an
excess accumulation of adipose tissue resulting in a BMI
greater than 30 [84]. While the diagnosis of obesity by
this, and other, criteria may have clinical relevance with
regards to intervention, management, and/or treatment of
the condition or from an epidemiological perspective
[45], it offers little utility for the study of the genetics
underlying variation in body fat accumulation and distri-
bution. For example, BMI values exhibit a normal distri-
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Fig. 1 Distribution of body
mass index (BMI) in a random-
ly ascertained sample of Mexi-
can-Americans



bution with no clear discontinuities between the “clini-
cally obese” (BMI >30) and the nonobese. Even focus-
ing on the morbidly obese (BMI >40), these individuals
merely fall at one end of a continuum (Fig. 1). Such a
pattern of continuous distribution is not restricted to
merely BMI but is found in all obesity-related pheno-
types, including anthropometric measures (e.g., skin-
folds, and circumferences), measures of body composi-
tion (e.g., percentage body fat, fat mass), and associated
endocrine levels (e.g., leptin) (Fig. 2). Given these obser-
vations, it becomes apparent that the “disease state” of
obesity represents merely the extreme of one tail of the
distribution for these continuously distributed pheno-
types. Therefore the division of individuals into “obese”
versus “nonobese” categories has a certain degree of ar-
bitrariness that does not appear to follow any underlying
biological phenomenon or natural discontinuities. As a
result the basis for defining obesity as a clinical condi-
tion can vary and has varied based on changing popular
opinion, rather than on marked discontinuities between

lean and obese individuals. This is in sharp contrast to
the use of continuous phenotypic measures whose varia-
tion is consistent with what is known concerning the
mechanisms of gene action. Most importantly, however,
the use of a clinical definition (which takes continuously
distributed measures and converts them to such dichoto-
mous states as “disease” vs. “no disease”) actually hin-
der attempts to identify genes influencing complex phe-
notypes by greatly decreasing statistical power, since
significant information is lost in the transition from a
continuous to a discontinuous scale [29, 79, 83]. There-
fore consideration of the distributional characteristics of
obesity-related phenotypes becomes of paramount im-
portance in selecting the appropriate method for genetic
analyses of these traits [3, 14].

Selecting the analytical tools

Quantitative genetics

As we and others have demonstrated, obesity is a com-
plex condition that is defined based on measures of
clearly continuously distributed traits (e.g., BMI, fat
mass, waist circumference, leptin levels). Given these
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Fig. 2 Distribution of waist circumference, subscapular skinfolds,
fat mass, and serum leptin levels in a randomly ascertained sample
of Mexican-Americans



characteristics of obesity and obesity-related phenotypes,
a quantitative genetic approach is required. At its most
simplistic, quantitative genetic analyses are used to esti-
mate the relative proportion of the total phenotypic vari-
ance in a complex trait that is attributable to the additive
effects of genes (i.e., its heritability), and represents the
first and most fundamental step in the identification of
specific genes with measurable effects on the phenotype.
Using basic quantitative genetic principles, it is possible
to decompose the total phenotypic variance in a trait
(σ 2

P) into its genetic (σ 2
G) and environmental (i.e., nonge-

netic; (σ 2
E) components, so that σ 2

P = σ 2
G + σ 2

E [32, 49].
By extension, these components can be further decom-
posed, such that σ 2

G can be separated into components
representing the variance attributable to additive genetic
effects (σ 2

A) dominance (σ 2
D), and epistasis (i.e.,

gene–gene interaction; σ 2
I), while σ 2

E can be decomposed
into components attributable to measured environmental
factors (e.g., smoking and alcohol consumption) and ran-
dom, unmeasured factors. The heritability (h2) of a trait
represents the proportion of the phenotypic variance due
to genetic differences among individuals. The proportion
of phenotypic variation attributable to all genetic effects
(e.g., additivity, dominance, epistasis) is referred to as
the “broad sense” heritability and is expressed as h2 =
σ 2

G/σ 2
P while the heritability in the “narrow sense” refers

to the proportion attributable to the additive genetic vari-
ance alone, i.e., h2 = σ 2

A/σ 2
P [32, 48]. Unless otherwise

specified, we use the term “heritability” in this latter,
narrow sense here. Given the additive nature of the com-
ponents of the phenotypic variance, the heritability of a
trait is influenced by the magnitude of the underlying ge-
netic variance and the amount of environmentally in-
duced variation.

From these basic quantitative genetic principles it is
possible to make theoretical extensions to allow for the
identification of specific genes that influence the ob-
served phenotypic variation [2, 6, 8, 34, 68]. In theory,
any locus that influences the variability in a quantitative
phenotype (e.g., leptin levels or BMI) may appropriately
be classified as a quantitative trait locus (QTL) [66]. In
practice, however, there are a number of factors that im-
pact on the ability to detect a QTL, and these factors also
impact the choice of methods utilized in this search for
genes [3, 14, 66].

In effect the ability to detect a QTL is a complex
function of the effect size of the QTL itself (i.e., the pro-
portion of the total phenotypic variance attributable to
the QTL), the study design (i.e., data obtained from sib-
pairs, sibships, nuclear families, or extended pedigrees),
sample size, and the characteristics of the genetic data
(i.e., number and heterozygosity of molecular genetic
markers). Given these conditions, there is generally a
limit to how small a QTL effect that can reliably be de-
tected. In general, the detection and localization of QTLs
are most successful for traits whose phenotypic variance
is influenced primarily by a single locus (i.e., monogenic)
or a few loci each with substantial effects (i.e., oligogenic)
as opposed to traits whose phenotypic variation is attrib-

utable to dozens of genes with equal and individually
small effects (i.e., polygenic). With the exception of the
few single gene defects referred to above, obesity and its
related phenotypes seem to best fit the oligogenic cate-
gory of traits that is, a few genes each with measurable
effects expressed on a polygenic background [21, 26, 37,
48, 55, 56, 76]. By means of the analytical methods dis-
cussed below, it is now reasonable to expect that, with
appropriate sample sizes and study designs, individual
genes accounting for as little as 10–15% of variation in a
trait can be localized to specific chromosomal regions
[80, 81, 82].

The failure of the traditional candidate gene approach

Until relatively recently efforts to identify specific genes
influencing complex traits such as obesity have relied on
the candidate gene concept. Candidate genes are those
with generally well-known chromosomal locations and
which are known to be part of a relevant biochemical
pathway to the phenotype under study. This approach is
appealing since the selection of genes for use in linkage
and/or association studies is based upon a priori knowl-
edge of the phenotype and the potential function of the
gene involved. Based on this type of approach there are
currently more than 200 genes that have been proposed
as potential candidates for human obesity [22]. However,
to paraphrase Thomas Huxley, the vast majority of these
candidates have been “beautiful hypotheses killed by the
ugly fact” that they have not been shown to have a sig-
nificant contribution to the observed variation in obesity-
related phenotypes. A perfect example of this can be
found in the leptin gene (Ob) as a candidate gene for the
regulation of leptin expression. While several studies
have now identified genes with measurable effects of the
expression of leptin [26, 37, 76], the leptin gene has never
been demonstrated to have a significant effect on the
normal variation in leptin expression or related measures
of adiposity. In contrast, several new obesity-related can-
didate genes that have now been identified based on their
proximity to a linkage signal would not necessarily have
been suspected prior to a full genome scan (this ap-
proach is discussed in more detail below).

There are a number of potential explanations as to
why the candidate gene approach has failed to yield sig-
nificant results in the effort to identify genes with mea-
surable effects on the common variation seen in adiposity
among humans. The first explanation begins with the
fact that the majority of these candidate genes have been
generated from rodent models of obesity. While the con-
tribution of these animal models to the study of obesity
(and other complex diseases) has been invaluable in
helping to delineate the biochemical pathways that influ-
ence the expression of these complex phenotypes, in
general they have not identified genes with significant
effects at the population level in humans. Given the evo-
lutionary distance that separates humans from many of
these animal models, it would not be surprising that not
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all genes which influence adiposity in rodents are simi-
larly influential in humans and vice versa. Another issue
that could account for the lack of significant candidate
gene results to date is the fact that most of these studies
were carried out utilizing inefficiently collected or rela-
tively small samples, resulting in a significant loss of
statistical power to detect these genetic effects. Finally,
there is also the possibility that the failure to obtain truly
significant results utilizing the traditional candidate gene
approach simply derives from our general inability to
specify reasonable human candidate genes a priori for
complex phenotypes. As a result of this general lack of
positive results from candidate gene studies in human
obesity, numerous researchers have begun adopting
alternative approaches to gene discovery such as ge-
nome-wide scans.

The rise of genome scanning

Given the equivocal nature, at best, of the results pro-
duced from the traditional candidate gene approach (for
both linkage and association studies), along with recent
revolutionary advances in both molecular and statistical
genetics allowing for the use of large numbers of anony-
mous polymorphisms, we are now seeing a move toward
full genome scanning to identify genes influencing a
variety of complex phenotypes including those related to
obesity.

The primary point that distinguishes the genome scan
from the “traditional” candidate gene approach is the fact
that no a priori assumptions concerning the potential im-
portance of genes or chromosomal regions are made be-
fore starting the scan, but rather the variation across the
entire genome is examined. Therefore it is the results of
the genome scan which establish candidate chromosomal
regions, or in some cases positional candidate genes,
which then becomes the focus of more intensive follow-
up analyses (e.g., combined linkage/disequilibrium anal-
ysis [5]). A positional candidate gene differs from a “tra-
ditional” candidate gene in that it is only considered as a
candidate after the establishment of its proximity to a
QTL that was identified via linkage analysis in a genome
screen and not merely a priori assumptions concerning
its possible physiological role. This is not to say that
some current “traditional” candidate genes may not also
prove to be positional candidate genes as well. Thus, the
genome scan approach offers the potential of identifying
new and/or previously unsuspected genes influencing the
phenotype of interest.

In a genome scan, linkage analysis is conducted using
a series of anonymous polymorphisms, scattered across
the entire genome to identify QTLs affecting the pheno-
type of interest. Microsatellites, or simple sequence re-
peat loci (e.g., single tandem repeats) have become the
dominant type of genetic marker for linkage analyses
[19, 77]. These units are highly susceptible to mutations
that increase or decrease the number of repeats, and
therefore a population accumulates a large number of al-

leles at these loci that differ in the number of repeat units
present. The human genome map now includes more
than 8,000 of these polymorphisms.

In order to maximize their information content these
anonymous markers should be highly heterozygous and
spaced evenly across the entire genome. The power to
detect a QTL in a genome scan depends in part on the
heterozygosity of the genetic markers used. Heterozy-
gosity refers to the probability that a random individual
is heterozygous for any two alleles at a locus. Markers of
low heterozygosity are less useful in determining which
alleles are identical by descent among a set of individu-
als, and therefore statistical power is reduced (see be-
low). The average spacing among polymorphic markers
is also a factor in determining statistical power, since
functional genes that occur in large gaps within a map
are less likely to be detected than genes more closely
linked to a genotyped marker. The generally accepted
density of information for initial linkage analyses is a
linkage map of markers with average heterozygosity
about 0.70 or higher, and average spacing less than or
equal to 10 cM.

While there is general enthusiasm for the genome
scan approach for identifying genes influencing complex
traits in humans, there is some disagreement as to what
constitutes the most efficient sampling strategies and an-
alytical methods for the identification of genes contribut-
ing to the expression of such common conditions as obe-
sity.

QTL mapping methods for complex phenotypes

Classical penetrance-based linkage analysis has been
successfully applied to the mapping of diseases with
monogenic influences (i.e., Huntington disease and
achondroplasia) in human pedigrees. While classical
penetrance model based methods can be extremely power-
ful for mapping genes, they require detailed knowledge
of the underlying genetic model. Specifically, it is neces-
sary to stipulate the prevalence of the trait, its mode of
inheritance, the allele frequencies at the presumed dis-
ease gene, and the probability of being affected, or pene-
trance, for each genotype, and in addition, for quantita-
tive traits, the allele frequencies, and the mean trait value
for each genotype must also be specified. In the case of
complex phenotypes such as those related to obesity and
other common diseases, which are influenced by multi-
ple genes with a variety of interactions, such precise
specification for all relevant parameters is extremely dif-
ficult. Failure to properly specify these parameters leads
to a significant loss of power to detect linkage [35, 36,
50] but can also increase the probability of falsely ex-
cluding a chromosomal region containing a QTL [65].

Given these issues concerning proper model specifi-
cation, there has been a recent effort to develop more ef-
ficient linkage analysis methods specifically designed to
address complex traits using a penetrance model free ap-
proach. Here we present a brief overview of some of the
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most widely used methods and study designs for linkage
analysis of complex phenotypes with particular emphasis
on their applicability to the study of obesity. While these
types of methods do not estimate parameters regarding
the mode of inheritance, references to them as “nonpara-
metric” and “model-free” linkage methods is somewhat
misleading since they do involve the estimation of other
parameters.

The underlying principle on which penetrance model-
free methods for linkage analysis is based is the concept
of identity by descent (IBD) allele sharing among rela-
tives. For two alleles to be considered IBD they must
have been inherited from the same ancestor. In addition,
it is also possible to describe allele sharing in terms of
identity by state (IBS). In this case two alleles are lBS if
they are of the same form, regardless of their origin.
These two concepts can be illustrated in the following
example. In Fig. 3, individuals 4 and 5, who are half-
siblings, share the allele C IBD because both received it
from a common ancestor, their father. Alternatively,
while they both have an A allele, these alleles are not
IBD but rather IBS since they were inherited from the
unrelated mothers of the two half-siblings and cannot be
traced back to a common ancestor. In addition, while in-
dividuals 1 and 3 cannot share any alleles IBD, as they
are unrelated, they share the A allele IBS. IBD allele
sharing provides information about linkage, while IBS
allele sharing provides information about population
level association between the marker and the trait of
interest.

In the absence of inbreeding (i.e. that is matings be-
tween close relatives), a pair of individuals can share 0,
1, or 2 alleles IBD, and the degree of IBD sharing is usu-
ally expressed as the proportion of alleles shared (π) and
can take the values 0, 1/2, and 1. The expected IBD shar-
ing over the entire genome [E(π)] for a relative pair is
equal to twice the pair’s kinship coefficient (2Φ). For
siblings, E(π) is 1/2, whereas it is 1/4 for half siblings
and 1/8 for first cousins. If a pedigree is inbred, higher
degrees of IBD sharing are possible when individuals are
homozygous for an allele from a particular ancestor. Cal-

culation of IBD sharing for a genotyped marker locus is
straightforward for nuclear families but becomes more
complicated for extended pedigrees in which the top few
generations are often unavailable for genotyping. How-
ever, a number of methods have been proposed to calcu-
late IBD probability matrices when some marker data are
unavailable [7, 27, 78].

Analytical approaches

Currently there are two basic analytical approaches to
penetrance model free linkage analysis that are routinely
used in genome scanning efforts: the Haseman and
Elston [39] method and variance components methods
[2, 3, 6, 14, 33, 34, 61, 68]. Until recently the most com-
monly used of these two basic approaches to quantitative
trait linkage analysis was the Haseman-Elston method.
This method is based on regressing the squared differ-
ence in trait values for pairs of siblings on the proportion
of alleles shared IBD. The conceptual basis of this
approach is rather straightforward; whenever a marker
locus is closely linked to a gene that influences a pheno-
type, a significant negative regression coefficient should
exist between number of alleles shared IBD and the
squared phenotypic difference between sibs. This comes
from the fact that siblings who are more similar pheno-
typically should also share more alleles IBD at the mark-
er locus than sibs who are dissimilar for the phenotype
under analysis. Recently the Haseman-Elston method
has been revised [30] to use the product of the sibs’ trait
values rather than the difference. This new method ad-
dresses the phenotypic covariance between sibs and is
functionally similar to variance component methods (de-
scribed below), except in that it uses regression rather
than maximum likelihood. Least squares regression is
computationally more efficient than maximum likelihood
estimation, and the new Haseman-Elston method can be
more rapid than variance component methods.

While the attraction of the Haseman-Elston sibpair
method is its relative simplicity of design and computa-
tion, it has been shown that for linkage analysis of quan-
titative traits the variance component method is more
powerful [4, 62, 80]. Specifically, the variance compo-
nent method explicitly deals with the nonindependence
of the elements of the phenotypic covariance matrix, and
since it is likelihood based, it yields a more powerful test
than the Haseman-Elston method. In addition it can be
expanded to deal with pedigrees of arbitrary size and
complexity [2, 3, 14].

The basic idea behind the variance component linkage
method is to attribute the population variance (i.e., the
spread of the phenotypic values around the population
mean) to a variety of genetic and nongenetic causes. The
variance component method seeks to explain the correla-
tions in phenotype among members of a family by parti-
tioning the phenotypic variance into components due to
the effect of a specific QTL linked to a genotyped marker,
to other QTLs unlinked to the region under consider-
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Fig. 3 An example of identity by descent (IBD) and identity by
state (IBS)



ation, to environmental factors shared among family
members (e.g., diet), and to individual-specific environ-
mental sources such as measurement error [6, 43].

In its simplest form for a trait influenced by n QTLs,
the variance components are estimated by modeling the
covariance among pedigree members as:

where Π^ i is a matrix of estimated IBD sharing among
family members at marker i, σ 2

qi is the additive genetic
variance due to a QTL linked to marker i, Φ is a matrix
of kinship values, σ 2

a is the residual additive genetic
variance, σ 2

e is the individual-specific environmental
variance, and Ι is an identity matrix. One advantage of
the variance component approach is that not only does it
provide an estimate of the location for a QTL but also an
estimate of the relative effect size for each modeled QTL
as well. Following these same analytical principles, the
variance component method can be extended to incorpo-
rate the consideration of oligogenic (i.e., multiple) QTLs
simultaneously [2, 13]. With regards to the formal test
for linkage, the model in which one or more QTL com-
ponents are estimated is compared to that of a model in
which these components are constrained to zero, testing
the hypothesis that σ 2

qi is significantly greater than zero.
For a single locus analysis, the difference in the log10
likelihood between the two models is equivalent to the
LOD score obtained from classical parametric linkage
analysis.

There are several factors that have a direct effect on
the power of the variance component method to detect a
QTL. Most important among these factors are the magni-
tude of the QTL-specific heritability, the size and com-
plexity of the relationships represented in the sample, as
well as in the case of complex disease states (e.g., obese
or diabetic) the population prevalence of the condition or
disease of interest.

As previously noted, heritability in the broad sense is
the proportion of the phenotypic variance that is attribut-
able to all genetic effects while the QTL-specific herita-
bility is the proportion of the phenotypic variance attrib-
utable to the additive genetic effects pf a specific QTL.
Higher QTL-specific heritability yields greater power to
detect linkage [81]. There are several ways to increase
the QTL-specific heritability. For example, using the
variance component method it is possible simultaneously
to consider the effects of measured covariates, such as
age, sex, and environmental exposures, on the pheno-
type. The inclusion of these covariate effects reduces the
unexplained variance in the phenotype and increases the
relative proportion of variance due to any QTLs, thereby
increasing the power to detect linkage.

Another way to increase the power to localize QTLs
is to allow for some of the complications of inheritance
that are likely to play a role in determining quantitative
variation in phenotypes. For example, genotype-by-envi-
ronment interaction is likely to play an important role in
the determination of some physiological phenotypes [12,

70]. The relationship between phenotype and genotype
may be context dependent, such that genes act differently
in the two sexes or change as a function of age [75, 86].
If such complications exist in the genotype-phenotype
relationship, localization of QTLs may be more difficult.
However, the variance component approach to quantita-
tive trait linkage analysis can be easily extended to allow
for such genotype-environment interactions [14, 74].
Other complications which may reduce the power to de-
tect QTLs includes gene-gene interaction and epistasis.
Such effects are very similar to those seen in genotype-
environment interaction, and they too can be incorporat-
ed into the variance component framework [14, 23, 51,
71]. However, the practical impact of allowing for such
complicated models of gene action remains to be seen
and depends upon the frequency of such effects and their
relative importance which is currently unknown.

Another approach to improve the localization of
QTLs is to perform multivariate analyses. By exploiting
the genetic and environmental correlations between phe-
notypes, such analyses can improve the power to detect
linkage and provide more precise localizations of QTLs.
Multivariate linkage analyses are still in their infancy,
but they represent straightforward extensions of the stan-
dard variance component approach [4, 38, 83].

Another important factor influencing the power to
detect a linkage signal is the structure of the familial re-
lationships represented in the dataset as well as total
sample size. In general, the larger and more complex the
sampling unit, the more powerful is the variance compo-
nent analysis [82], such that on a per person basis nu-
clear families provide more linkage power than sibpairs,
and extended pedigrees provide more power than nuclear
families. The availability of analytical results for the
asymptotic power of affected sibpair and variance com-
ponent linkage analysis allows alternative sampling de-
signs to be readily compared with regard to their effi-
ciency for localizing genes that influence complex com-
mon diseases. Figure 4 compares the power to detect
linkage with these approaches by comparing the number
of individuals required in each analysis to achieve 80%
power to detect a QTL with a LOD score of 3 or better.
Five study designs are illustrated in each graph. The two
dashed lines show the numbers of individuals required in
an affected sibpair study when the disease-associated
allele is rare (P=0.1) or common (P=0.5). The three solid
lines represent the required sizes of randomly selected
samples when the variance component method is used
with sibships of size 2 and 4 (labeled ‘2′ and ‘4′, respec-
tively) and in extended pedigrees (labeled ‘P’). For the
extended pedigrees, we used a typical family structure
from the San Antonio Family Heart Study containing 
48 individuals. The prevalence of the focal disease is 1%
in Fig. 4a, and 35% in Fig. 4b. The prevalence of 1% is
typical of a rare complex disease, such as schizophrenia,
whereas a prevalence of 35% is seen for numerous
chronic diseases in the United States, including obesity
and hypertension. It is clear from Fig. 4 that each ap-
proach to linkage analysis is optimal for different disease
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prevalences, with the quantitative trait variance compo-
nent approach outperforming the affected sibpair ap-
proach for common diseases. These power curves also
reveal the dramatic advantage of pedigree-based designs
over sibship-based designs and highlight the potential
power of extended pedigrees for mapping QTLs at any
disease prevalence. For example, QTLs accounting for
as little as 5% of the variance can be mapped with only
10000 persons if large pedigrees are employed. This may
seem to be a prohibitively large sample size, but many
epidemiological studies are larger, as are some collabora-
tive genetic studies.

Lastly, the variance component approach has its max-
imum power in the detection of genetic effects on nor-
mal variation in common, continuously varying, complex
traits such as that expressed in obesity-related pheno-
types [83]. There are both strengths and weaknesses to
the various penetrance model free linkage methods avail-
able, and the choice of the most appropriate method de-
pends greatly on the characteristics of the phenotype be-
ing analyzed (e.g., continuous vs. discrete distribution;
common vs. rare expression) as well as the design of the
data collection (e.g., simple sibpairs vs. extended pedi-
grees). With particular regard to obesity-related pheno-
types, recent work has shown that quantitative traits
measured on a continuous scale are more informative for
linkage analysis than dichotomizations of the same trait
[10, 29, 46, 79]. That is to say, if the trait of interest is
continuously distributed (as we have already shown is
the case with obesity-related phenotypes), or trait has

quantitative correlates, analyzing the said trait measured
on a continuous scale has more power than an analysis
based on categorization of individuals into high and low
or affected and unaffected classes. However, if the phe-
notype of interest must be measured on a discontinuous
scale, the choice of sampling design and analytical
method is driven by the prevalence of the condition. In
such a case affected relative methods are often used, and
the statistical power of affected relative pair methods is
maximized when population prevalence of the dis-
ease/phenotype is low (i.e., typically less than 10% in
the population). In contrast, variance component meth-
ods are most powerful when disease prevalence ap-
proaches 50%. Additionally, the collection of data from
extended pedigrees within populations that are randomly
ascertained with respect to phenotype offers demonstra-
bly greater power to detect QTLs for common continu-
ously varying complex traits.

General discussion of power
A critical concern with any method of linkage analysis is
its statistical power, or the probability that the test will
correctly reject a false null hypothesis of no linkage.
Power studies can be difficult, however, and often make
use of simulated datasets [29, 80]. Recently, however,
some general findings have been presented that can be
used to evaluate different strategies for linkage analysis
[65, 81]. An essential lesson emerging from these studies
and comparisons is that different diseases require differ-
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disease prevalences



ent study designs, which in turn require different analyti-
cal methods.

Disease prevalence offers the best basis for choosing
the optimal sampling design and analytical method for a
given trait. With rare complex diseases, linkage studies
using only affected individuals recover most of the infor-
mation regarding the genetics of the trait [64]. Unaf-
fected individuals provide little additional information;
hence it is most cost effective to target the sampling
effort to the collection of the affected individuals.

Risch [64] has shown that the power to localize a dis-
ease-influencing QTL in an affected-sibpair linkage de-
sign is a monotonic function of the relative risk to sib-
lings, λS. The relative risk is usually defined in terms of
prevalences as λS=KS/K, where K is the population prev-
alence and KS is the prevalence in sibs of an affected
proband. The relative risk can also be expressed in terms
of the trait heritability as:

where h2
b is the relative proportion of variance due to

dominance effects on the binary scale. We emphasize that
the additive genetic and dominance effects are on a binary
scale because this scale is fundamentally inappropriate
for diseases that truly have an underlying continuous lia-
bility; the discrepancy between the two scales generally
leads to underestimates of the true heritability [28].

The dominant quantity in the expression for λS is the
disease prevalence; the factor (1–K)/K can take any posi-
tive value depending upon the magnitude of K, while the

factor has a theoretical maximum of 0.5.

Therefore λS can become very large as the disease preva-
lence decreases, even when the contribution of the QTL
is very small. This has the peculiar effect of rendering
affected sibpair methods either more or less powerful to
detect the same gene in populations that differ only in
their disease prevalence.

With common complex diseases the situation is en-
tirely different. For a common disease (e.g., obesity as
based on a clinical threshold of a BMI >30), having a
prevalence greater than about 10%, inclusion of unaf-
fected individuals can markedly improve power, and
studies limited only to affected individuals rapidly lose
power. In contrast to the affected-pair method, the power
to detect linkage using the variance component method
for quantitative traits is primarily a function of the dis-
ease heritability on the quantitative scale, and is only
slightly influenced by disease prevalence.

Williams and Blangero [81] investigated in general
terms the power of variance component linkage analysis
of quantitative traits and derived exact expressions for
the sample size required to achieve a given power with
various sampling structures. For example, in a linkage
analysis model consisting only of a major gene effect, a
residual additive genetic effect, and an individual-specific
random environmental effect, the contribution by a
single sibpair to the expected LOD score is:

where h2
T is the total trait heritability and h2

q is the herita-
bility due to the QTL. For a test of linkage having 80%
power at a LOD score of 3.0, the number of sibpairs re-
quired is n=20.78/[(2ln10) ELOD] and the total number
of individuals required is 2n.

A result for arbitrary relative pairs is also of interest
and can serve as a basis for estimating the power of any
given pedigree. At a given locus let k1 denote the proba-
bility that two individuals, i and j, share one allele IBD,
and let k2 denote the probability that i and j share both
alleles IBD. The contribution per relative pair to the ex-
pected LOD score is then:

This result can be used to estimate the power to detect
linkage with a pedigree of any structure by summing the
expected LOD score for each relative class over the dis-
tribution of relative classes within the pedigree. This re-
sult is based, however, on the assumption that the rela-
tive pair in question exhibits nonzero variance in the
number of alleles they share IBD; consequently, parent-
offspring pairs and monozygotic twin pairs must be ex-
cluded. This is of no particular disadvantage, however,
for investigating the power to detect linkage, since nei-
ther of these relationships exhibits any variance in IBD
sharing at a QTL and cannot be informative for linkage.

Current results of genome scans for obesity

While the use of genome scans has increased over the
past several years, the number of published scans with
obesity-related phenotypes as the primary focus is still
rather small. However, there is a large amount of litera-
ture looking at linkage and association with traditional
candidate gene loci and which is covered in a number of
other reviews [17, 20, 22, 58, 58]. For the reasons out-
lined in the earlier part of this review, however, we focus
only on those studies based on full genome scans. To
date the results of full genome scans for obesity-related
traits have been published on five different populations
and include Mexican-Americans [26, 53], Native Ameri-
cans [38, 56, 56, 76], French [37], a United States sam-
ple of individuals of predominantly white ancestry [48],
and French Canadians [21], with several other studies in
progress or set to begin soon. Despite the relatively
small number of scans thus far published there have
already been several significant findings, some which
have now been replicated across several populations.
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Mexican-Americans (the San Antonio Family 
Heart Study)

At present the strongest evidence for a quantitative trait
locus influencing obesity-related phenotypes in humans
comes from the San Antonio Family Heart Study [26,
41]. This study utilized a sample of 459 Mexican-Ameri-
cans distributed in ten families (this sample represents
5667 relative pairs ranging from parent-offspring to dou-
ble second cousins) using a variance component linkage
approach [2] to genomic screening. Results were initially
reported based on a 20-cM map of microsatellite mark-
ers, and identified significant linkage on chromosomes 2
(LOD=4.95) for leptin levels and fat mass (LOD 2.75)
[26], and following the typing of additional markers to
create a 10-cM map, the multipoint LOD score for leptin
on chromosome 2 increased to 7.46 (Fig. 2), the largest
LOD score yet published for a QTL in humans [41]. In
addition, significant linkage has also been detected on
chromosome 8 with both leptin (LOD=2.2) [26] and
BMI (LOD=3.2) [53].

In the case of both the chromosome 2 and chromo-
some 8 linkage results, strong positional candidate genes
for obesity have been found within the chromosomal re-
gions identified. The 95% confidence interval surround-
ing the chromosome 2 QTL contains the POMC locus,
which codes for the prohormone pro-opiomelanocortin.
POMC was identified as a candidate based on its loca-
tion [26] and is further supported by recent studies de-
tailing its potential physiological involvement in obesity
[47, 85]. Recently completed work has now identified
polymorphisms in POMC that can be used in formal as-
sociation analyses. With a haplotype generated using two
common polymorphisms in POMC (one located in exon
3 and the other in the 5′ untranslated region) we have de-
tected significant association (P=0.001) between molec-
ular variation in the POMC locus and variation in serum
levels of leptin among Mexican-Americans [41]. Since
neither of these two polymorphisms appears to be func-
tional, work is currently focusing on identifying addi-
tional polymorphisms in the promoter region of POMC.

The 95% confidence interval surrounding the chro-
mosome 8 linkage contains the structural gene for the 
β-3-adrenergic receptor (ADRB3), a strong candidate
gene previously identified based on its known physiolog-
ical activity [69]. Given the linkage results from the San
Antonio Family Heart Study, ADRB3 is supported as a
potential contributor to observed variation on the basis
of chromosomal position as well. While previous associ-
ation studies testing the relationship between the
Trp64Arg polymorphism of ADRB3 and obesity-related
phenotypes yielded equivocal results [1], the argument
for ADRB3 as a human obesity gene has been strength-
ened by follow-up analyses in this same sample of Mexi-
can-Americans discussed above with regard to POMC
[52]. By first accounting for the effects of the QTL iden-
tified on chromosome 2, Mitchell and colleagues [52]
were then able to detect association between variation in
ADRB3 and several obesity-related phenotypes (i.e.,
BMI, fat mass, waist circumference).

The Pima

The Pima Indian community of Arizona has been the
subject of extensive efforts to identify genes influencing
diabetes and its related conditions such as obesity [44].
To date the results of the genome screening of obesity-
related phenotypes has detected potential evidence of
several QTLs [38, 55, 56, 76]. This work has been re-
stricted to sibships and nuclear families ranging upwards
to approximately 1000 individuals and utilizing an aver-
age map density less than 10 cM. These analyses have
utilized both the Haseman-Elston sibpair approach as
well as variance components. The obesity-related pheno-
types for which genome scan results have been published
include BMI, percentage body fat, the ratio of waist to
thigh circumference, 24-h metabolic rate, sleeping meta-
bolic rate, 24-h respiratory quotient, and leptin levels.
Currently QTLs have been detected on chromosomes 1,
3, 6, 11, 18, and 20 with LOD scores ranging from 2 to
3.6 [38, 55, 56, 76]. The strongest evidence for a QTL in
the Pima is on chromosome 11 (approximately 11q21-
q24) with a LOD score of 3.6 for BMI and was obtained
using a variance component approach [38]. Additional
obesity-related phenotypes including percentage body fat
(LOD=2.8) [55], 24-h energy expenditure (LOD=2.0)
[56], and diabetes status (LOD=1.5) [38] have also
yielded linkage signals in this same region of chromo-
some 11 in the Pima. A bivariate analysis of BMI and
diabetes status produced a LOD score of approximately
5.0 in this same region [38]. The next best supported evi-
dence for a QTL in the Pima is located on chromosome
20 (approximately 20q11.2) for 24-h respiratory quotient
with a LOD score of 3.0. Using a variance-components
approach, Norman et al. [56] detected a LOD score 
of 2.3 on chromosome 18 (18q21) for percentage body
fat and a LOD score of 2.8 for 24RQ on chromosome 1
(1p31-p21). Walder and colleagues [76], also using a
variance component approach, have recently reported a
QTL on chromosome 6 (6p) with a LOD score of 2.1, as
well as several other smaller signals (1<LODs<2) on
chromosomes 3, 11, 13, 15, and 16 in the Pima. How-
ever, given the marginal LOD scores for several of these
signals along with the total number thus far reported, it is
highly likely that some of these signals represent false
positives.

French

Hager and colleagues [37] have published the results of a
genome scan for obesity as a discrete trait (defined as a
BMI >27) in affected sibpairs as well as quantitative
variation in leptin levels also conducted in sibpairs in a
sample collected from French families. This study uti-
lized 514 individuals distributed over 158 nuclear fami-
lies with each family having a proband with a BMI high-
er than 40 and at least one sibling with a BMI higher
than 27. Using an affected sibpair approach they de-
tected significant evidence of linkage on chromosome 10
(10p) with a LOD score of 4.9 [37]. In addition, using a
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quantitative trait analysis they reported suggestive evi-
dence of linkage for variation in serum leptin levels on
chromosomes 2 (2p) and 5 (5cen-q) with LOD scores of
2.7 and 2.9, respectively [37]. While there are no readily
apparent positional candidate genes in the regions of
linkage on chromosomes 5 and 10 which might immedi-
ately appear to be involved in the regulation of adipose
tissue, the signal they report on chromosome 2 is in the
region of POMC as was previously reported in Mexican-
Americans [26, 41].

United States whites

Using a data collection scheme focused on the recruit-
ment of extremely obese individuals, Lee and colleagues
[48] conducted a genome scan using both quantitative
and qualitative obesity-related phenotypes in families of
primarily white ancestry collected from across the United
States. This study utilized a gene map with an average
density of 10 cM and included 513 individuals from 
92 nuclear families ascertained through an extremely
obese proband (BMI ≥40) with obese siblings (BMI >30)
along with siblings and parents of normal body weight
(BMI <27) [48, 59]. The phenotypes analyzed for this
genome scan included quantitative measures of BMI and
percentage body fat as well as discrete traits of BMI ≥30
and percentage body fat ≥40%. While the results of this
genome scan are somewhat difficult to follow given the
number of analytical methods employed, overall the
strongest evidence of linkage was found on chromo-
somes 10 and 20. The strongest signal detected was on
chromosome 20q13 (LOD score=3.2) using the discrete
trait of BMI of 30 or higher in an affected sibpair test,
however, the other methods and phenotypes also showed
some evidence of linkage in this same region. Not unsur-
prisingly, the strongest evidence of linkage on chromo-
some 10 (10p) came from the quantitative analysis of
BMI (P=0.0148). However, the region of potential link-
age reported for both chromosomes 10 and 20 is rela-
tively large (as much as 83 cM for the chromosome 10
signal), making localization of the signal difficult with
respect to the identification of potential positional candi-
date genes.

French Canadians (the Quebec Family Study)

While the genome scan recently reported by Chagnon
and colleagues [21] focused on phenotypes relating to

body leanness, their findings are relevant to a discussion
of obesity genome scans given the nature of their find-
ings. Utilizing data collected as part of the Quebec Family
Study, they conducted a genome scan for fat-free mass in
a maximum of 609 pairs of extended relatives using a
gene map with an average density of approximately
12 cM. They report the detection of significant linkage
signals on chromosomes 15 (15q25-q26) and 18 (18q12)
with LOD scores 3.6 and 3.5, respectively, as well 
as suggestive evidence of linkage on chromosome 7
(7p15.3) with a LOD score of 2.7. These results are of
interest not only because of their focus on a measure of
body composition, but also because two of the areas of
linkage identified contain good positional candidate
genes for obesity-related phenotypes. The chromosome 7
linkage signal spans the region containing both the neu-
ropeptide Y (NPY) and growth hormone-releasing hor-
mone (GHRH) receptor genes, while the chromosome 15
signal is in the region containing the insulin-like growth
factor 1 receptor (IGF1R) gene.

Replications

While the genome scans published to date are based on
what are still relatively small sample sizes, the pattern of
linkage signals which is beginning to emerge is quite
fascinating. Indeed, not only are there several linkage
signals with significant LOD scores, but many of these
are in regions which contain very strong positional can-
didate genes for obesity-related phenotypes. These
points not withstanding, however, it is the fact that we
are already beginning to detect evidence of replication of
some of these findings across multiple studies which is
truly the most exciting (Table 1). In particular the link-
age result from the San Antonio Family Heart Study on
chromosome 2 has now been replicated in the French
sample [37] as well as a sample of African-Americans
[67]. These findings are even more encouraging given
the close proximity of the signal across the three studies
[26, 37, 41, 67]. Also of particular note is the similarity
in parameter estimates between the Mexican-American
and African-American samples [67]. At the same time
there also looks to be good evidence of replication of
linkage on chromosome 20 in both the Pima Indian study
[56] and in the population studied by Lee and colleagues
[48]. However, this is tempered by the breadth of the
linkage signal reported in both of these studies. Finally,
there is potential evidence of replication for the chromo-
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Table 1 Replicated QTLs from
genome scans in humans for
obesity-related phenotypes

Phenotypes Chromosome Original report Replication
location

Serum leptin levels 2p Comuzzie et al. [26] Hager et al. [37],
Rotimi et al. [67]

BMI 10p Hager et al. [37] Lee et al. [48]

24-h respiratory quotient; 20q Norman et al. [56] Lee et al. [48]
BMI (treated as a discrete trait;
BMI >30)



some 10 linkage signal reported by Hager and colleagues
[37] in the French study and the signal on chromosome
10 detected by Lee and coworkers [48]. Additionally, as
the number of genome scans focusing on obesity contin-
ues to increase, and their results are published, there is
strong reason to suspect that additional replications will
be brought to light.

Conclusion

Certainly there is no denying that obesity represents a
complex biological phenomenon, but this is not to sug-
gest that the task of dissecting out the relevant genetic
contribution to its expression is intractable. However, it
is abundantly clear that success in this endeavor to iden-
tify the genes affecting the expression of obesity is con-
tingent upon the application of the most appropriate ana-
lytical tools for the job along with the collection of large
informative data sets. While the number of published ge-
nome scans to date focusing on obesity is still limited
and their sample sizes relatively small, there already are
some intriguing findings as well as potential replication
of some of these findings across populations. With the
completion of the human genome project now well is
sight, and the rapid development of powerful new tools
such as micro-array technology, the necessary infrastruc-
ture for moving from linkage to the identification of
functional genetic variants will soon be in place. Indeed,
given the findings from the genome scans to date, there
is reason for genuine optimism that these efforts will
have a tangible pay-off in the identification of genes
with significant influence on the expression of obesity
and its associated phenotypes.
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