
&p.1:Abstract Although it is well established that CD40 and
its ligand (CD40L) play pivotal roles in the development
of humoral immunity, their roles in cell-mediated immu-
nity and cell-mediated autoimmune diseases are not well
defined. We report here that CD40:CD40L interaction is
crucial for the development of experimental autoimmune
encephalomyelitis (EAE), a prototype TH1-cell mediated
autoimmune disease. Specific blockade of CD40L at the
time of immunization markedly suppressed the inci-
dence, mortality, day of onset, and clinical scores of
EAE in (PLJ×SJL) F1 mice. Importantly, the disease
suppression was not associated with anergy or deletion
of autoreactive T cells but was accompanied by a drastic

alteration of their cytokine profiles. The production of
interferon (IFN)-γ was markedly suppressed while that
of interleukin (IL)-4 enhanced. These results suggest that
CD40:CD40L interaction plays important roles in the
differentiation of autoreactive TH1 versus TH2 cells in
vivo, and that CD40L blockade is effective in preventing
autoimmune encephalomyelitis.
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Introduction

The interaction between CD40 and CD40L plays pivotal
roles in the development of humoral immunity [1].
CD40L deficiency leads to hyper-IgM syndrome in hu-
mans, a genetic immunodeficiency disease associated
with severely impaired humoral immune responses [2].
Deficiency in CD40L also affects cell-mediated immuni-
ty [2–4], and specific blockade of CD40L has recently
been shown to hamper the development of T cell re-
sponses in a number of systems [5–8]. It appears that
CD40:CD40L interaction may affect T cells directly
through CD40L-mediated signals [9] or indirectly by up-
regulating costimulatory molecules (such as B7) on anti-
gen-presenting cells [5, 10, 11]. Whether any of these
mechanisms plays a role in cell-mediated autoimmune
diseases and in differentiation of different subsets of T
cells in vivo is not well understood.

Experimental autoimmune encephalomyelitis (EAE)
is a self-contained central nervous system disease which
is considered to be a putative animal model for human
multiple sclerosis. The disease can be induced in suscep-
tible strains of mice or rat by immunizing animals with
myelin antigens such as myelin basic protein (MBP) or
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proteolipid protein in complete Freund’s adjuvants. The
immunization leads to differentiation of myelin-specific
precursor T cells into encephalitogenic TH1-type cells
secreting interferon (IFN)-γ, tumor necrosis factor, and
interleukin (IL)-2. The commitment of myelin-specific
precursor T cells (which are nonencephalitogenic and are
present in all normal individuals) to the TH1 pathway of
T cell differentiation is essential for the development of
EAE since myelin-specific TH2 cells are not encephali-
togenic and are capable of suppressing EAE [12]. A re-
cent report by Gerritse et al. suggests that CD40L block-
ade in vivo suppresses EAE in SJL mice immunized with
proteolipid protein peptide [13]. The mechanisms of this
disease suppression were not investigated, and the effect
of CD40L blockade on the development of encephalito-
genic TH1 versus TH2 cells was unknown. We report
here that CD40L blockade dramatically alters the differ-
entiation of MBP-specific T cells in vivo and suppresses
actively induced EAE in (SJL×PLJ) F1 mice.

Materials and Methods

Mice

Female (PLJ×SJL/J) F1 mice, 6–8 weeks of age, were purchased
from Jackson Laboratory (Bar Harbor, ME) and were housed in
the University of Pennsylvania Animal Care Facilities.

Induction and clinical evaluation of EAE

Each mouse received (a) a subcutaneous injection on flank of
200 µg mouse MBP in 0.1 ml PBS emulsified in an equal volume
of complete Freund’s adjuvants containing 4 mg/ml mycobacteri-
um tuberculosis H37 RA (Difco, St. Louis, MO), and (b) an intra-
venous injection of 200 ng pertussis toxin in 0.1 ml PBS. Mice re-
ceived a second injection of pertussis toxin (200 ng/mouse) 48 h
later and were scored for EAE as follows: 0, no disease; 1, tail pa-
ralysis; 2, hind limb weakness; 3, hind limb paralysis; 4, hind limb
plus forelimb paralysis; 5, moribund.

Antigens, antibodies, recombinant cytokines, and ELISA

Mouse MBP was prepared from the brain tissue by a modified
method of Deibler et al. [14]; the purity of the MBP preparation
was confirmed by gel electrophoresis and amino acid analysis.
Hamster anti-mouse CD40L was purchased from TSD Bio (Ger-
mantown, NY). The following reagents were purchased from
PharMingen (San Diego, CA): purified rat anti-mouse IL-2 (clone
JES-1A12), IL-4 (clone BVD4-1D11), and IFN-γ (clone R4-6A2)
monoclonal antibody (mAb); biotinylated rat anti-mouse IL-2
(clone JES6-5H4), IL-4 (clone BVD6-24G2), and IFN-γ (clone
XMG1.2) mAb; recombinant mouse IL-2, IL-4, IFN-γ. Quantita-
tive enzyme-linked immunosorbent assay (ELISA) for IL-2, IL-4,
and IFN-γ were performed using paired mAbs specific for corre-
sponding cytokines per manufacturer’s recommendations [15].

Cell culture

Splenocytes or lymph node cells, 1×106 each, were cultured in
0.2 ml of serum-free medium (X-vivo 20, Biowhittacker, Walk-
ersville, MD), containing various concentrations of MBP. Culture
supernatants were collected 40 h later for cytokine assays. For
proliferation assay 1µCi [3H]thymidine was added to each culture
72 h later. Cells were harvested and radioactivity counted 16 h la-
ter using a flatbed beta counter (Wallac, Gaithersburg, MD) [16].

Statistical analysis

Disease severity, day of onset and cytokine concentrations were all
analyzed by analysis of variance.

Results

CD40L blockade prevents experimental autoimmune
encephalomyelitis

To test the role of CD40L in the development of EAE we
studied the effect of CD40L blockade in (PLJ×SJL) F1
mice. As shown in Fig. 1 and Table 1, subcutaneous im-
munization of mice with MBP in complete Freund’s ad-
juvants induced severe EAE. This was dramatically sup-
pressed by intraperitoneal injection of 100µg of anti-
CD40L mAb three times. Specifically, the incidence of
the disease was reduced from 91% in the control to 50%
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Table 1 CD40L blockade pre-
vents experimental autoim-
mune encephalomyelitis. Mice
were treated as in Fig. 1 and
monitored for symptoms of
EAE; experiments were repeat-
ed twice with similar results&/tbl.c:&tbl.b:

Treatment Incidence Mortality Mean day of onset Mean maximal score
(mean±SE)* (mean±SE)**

Control Ig 10/11 6/11 15.6±1.0 2.82±0.71
Anti-CD40L 3/6 0/6 20.7±4.3 0.67±0.49

*P=0.028; **P=0.048
&/tbl.b:

Fig. 1 CD40L blockade prevents EAE. Two groups of (PLJ×SJL)
F1 mice, six mice per group, were immunized for EAE as de-
scribed in the text. Starting from the day of immunization, one
group of mice received peritoneal injection of 100µg hamster an-
ti-CD40L mAb once every other day for a total of three injections.
Another group received hamster IgG as control. Mice were moni-
tored for symptoms of EAE as described in the text. The experi-
ments were repeated twice with similar results&/fig.c:



in anti-CD40L treated group. Mortality was reduced
from 55% to 0%. Mean maximal clinical score was re-
duced from 2.82 to 0.67, and the mean day of onset was
delayed from 15.6 to 20.7 days. Consistent with the clin-
ical manifestations, histochemical analysis of the brain
samples collected 33 days after the immunization re-
vealed drastic differences between the two groups: se-
vere inflammation and leukocyte infiltration were ob-
served in the control but not CD40L-treated animals
(Fig. 2).

CD40L blockade prevents differentiation
of autoreactive TH1 but not TH2 cells

To test whether CD40L blockade alters the in vivo differ-
entiation of myelin-specific T cells we examined the cy-
tokine profiles of MBP-specific T cells ex vivo. As
shown in Fig. 3, MBP-specific T cells in spleen of im-
munized mice produced high levels of TH1 cytokine
IFN-γ with little IL-4, which is consistent with the gener-
ation of encephalitogenic TH1 cells. By contrast, MBP-
specific T cells in anti-CD40L-treated mice produced lit-
tle IFN-γ but markedly enhanced IL-4. The maximum
amount of IFN-γ produced by splenocytes of the control
group was 1279 pg/ml, and this was reduced to 56 pg/ml
in CD40L-treated mice. Surprisingly, more than a sixfold
increase in IL-4 production was observed in mice treated
with anti-CD40L. These results suggest that CD40L
blockade dramatically alters the cytokine profile of
MBP-specific T cells in vivo. Of note is that the cytokine
ELISA employed here measures the amount of cytokine
accumulated in the culture supernatant, not the total
amount of the cytokine secreted. Thus, although IL-4

might also be produced by the splenocytes in the pres-
ence of 50µg/ml MBP, the amount of IL-4 accumulated
in the culture did not reach the detectable level (which
was 2 pg/ml for this assay) (Fig. 3). In addition to IFN-γ
and IL-4, we also tested IL-10 and transforming growth
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Fig. 2 Histological examina-
tion of the brain. Two groups of
(SJL×PLJ) F1 mice, three mice
per group, were treated as in
Fig. 1. Thirty-three days after
immunization, mice were sacri-
ficed and their brains harvest-
ed. Brain cryosections (6µm)
were stained with hematoxylin
and eosin (original magnifica-
tion ×200)&/fig.c:

Fig. 3 CD40L blockade prevents activation of TH1 but not TH2
cells. Two groups of (PLJ×SJL) F1 mice, three mice per group,
were treated as in Fig. 1. Splenocytes, 1×106 cells/well, were cul-
tured in 0.2 ml of serum-free medium with different concentra-
tions of mouse MBP. Culture supernatants were collected 40 h la-
ter, and cytokine concentrations were determined by ELISA. The
experiments were repeated twice with similar results&/fig.c:



factor-β in the culture supernatants. None of these cyto-
kines reached the detectable levels of our ELISA even in
the presence of 100µg/ml MBP [17] (Samoilova and
Chen, unpublished).

CD40L blockade may not induce systemic tolerance
of MBP-specific T cells

Anergy and deletion are important mechanisms of pe-
ripheral tolerance, which are often characterized by de-
creased T cell proliferation and IL-2 production [18, 19].
To investigate whether these mechanisms play a role in
anti-CD40L-mediated suppression of EAE we tested the
proliferative and IL-2 responses of MBP-specific T cells
in the spleen. To our initial surprise, anti-CD40L block-
ade had no effect on the in vitro proliferative activity of
splenic T cells specific for MBP, and IL-2 production
was not suppressed in anti-CD40L-treated animals
(Fig. 4). These results are consistent with previous obser-
vations that T cells in CD40L treated animals may not be
deleted or anergized [20]. In contrast to T cells in the
spleen, MBP-specific cells in the lymph node that drains
the site of the immunization exhibited reduced reactivity

to MBP. Thus both TH1 cytokine production and thymi-
dine incorporation were reduced in mice treated with an-
ti-CD40L (Fig. 5); TH2 cytokine IL-4 did not reach de-
tectable level in the lymph node cultures (data not
shown). These results strongly suggest that anti-CD40L
mAb does not induce systemic tolerance of encephalito-
genic T cells.

It is to be noted that, unlike IFN-γ and IL-4 which are
produced by polarized TH1 and TH2 cells, respectively,
IL-2 can be produced by precursor T (THp) cells, TH0
cells as well as TH1 cells. Moreover, IFN-γ and IL-4 act
as switching factors for TH1 and TH2 cells, respectively;
IL-2, on the other hand, may not regulate T cell commit-
ment to either TH1 or TH2 lineage but is required for the
growth of both TH1 and TH2 cells [21, 22]. As both
IFN-γ and IL-2 are present in control mice immunized
with MBP (Figs. 3, 4), IL-2 may be produced primarily
by encephalitogenic TH1 cells in these animals. By con-
trast, IL-2 production in anti-CD40L-treated mice was
not associated with IFN-γ, suggesting that it is produced
primarily by THp or TH0 cells (Fig. 6), presumably as a
result of specific blockade of TH1 cell differentiation.
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Fig. 4 Effect of CD40L blockade on the proliferation and IL-2
production of MBP-specific splenic T cells. Two groups of
(SJL×PLJ) F1 mice, three mice per group, were treated as in
Fig. 1. Ten days after immunization mice were killed and their
spleens harvested. For proliferation assays splenocytes, 5×105

cells/well, were cultured in 0.2 ml of serum-free medium with or
without 50µg mouse MBP. [3H]Thymidine was added 72 h later,
and radioactivity was measured an additional 16 h later. For IL-2
production splenocytes, 1×106 cells/well, were cultured in 0.2 ml
serum-free medium with or without 50µg of mouse MBP. Culture
supernatants were collected 40 h later, and IL-2 concentration was
determined by ELISA. The experiments were repeated twice with
similar results&/fig.c:

Fig. 5 Effect of CD40L blockade on the proliferation and cyto-
kine production of MBP-specific lymph node T cells. Two groups
of (SJL×PLJ) F1 mice, three mice per group, were treated as in
Fig. 1. Thirty-three days after immunization mice were sacrificed
and their inguinal lymph nodes harvested. For proliferation assays
lymph node cells, 5×105 cells/well, were cultured in 0.2 ml of se-
rum-free medium with or without mouse MBP. [3H]Thymidine
was added 72 h later, and radioactivity was measured an additional
16 h later. For cytokine production lymph node cells, 1×106

cells/well, were cultured in 0.2 ml serum- medium with or without
various concentrations of mouse MBP. Culture supernatants were
collected 40 h later, and cytokine concentration was determined by
ELISA &/fig.c:



Discussion

Although initially identified as a costimulatory molecule
for humoral immunity, evidence is accumulating that
CD40L plays crucial roles in the development of cellular
immune responses. Deficiency in CD40L affects not on-
ly humoral immunity but T cell immune responses as
well [3, 4]. Injection of anti-CD40L mAb suppresses an-
timicrobial infections [7, 8], allograft rejection [6], TH1
cell-mediated hypersensitivity [23], and collagen-in-
duced arthritis [24]. A recent report suggests that CD40L
also plays a role in intrathymic deletion under certain
circumstances [25]. Using a similar system, Gerritse et
al. recently showed that CD40L blockade prevents the
development of EAE in SJL mice immunized with pro-
teolipid protein peptide [13]. The exact mechanisms
whereby CD40L mediates these diverse functions in vivo
are not well understood.

In this report we show that CD40L blockade may not
lead to anergy or deletion of specific cells but to a prefer-
ential blockade of TH1 cell differentiation and selective
activation of TH2 cells. These findings knit together a
number of recent observations concerning the mecha-
nisms of action of anti-CD40L mAb in vivo. On the one
hand, unlike B7 blockade which often leads to specific
immune tolerance [26], CD40L blockade does not ap-
pear to induce tolerance of T cells [20], although
CD40:CD40L interaction also upregulates B7 expression
[5, 10, 11]. On the other hand, CD40L blockade inhibits
IL-12 production, and its in vivo effect can be reversed
by IL-12 injection [23, 27, 28]. We thus propose the fol-
lowing theory to explain the role of anti-CD40L in vivo
(Fig. 6). CD40:CD40L interaction upregulates IL-12
production by monocytes which in turn enhances TH1
pathway while inhibits TH2 pathway of T cell differenti-
ation; blocking CD40L blocks TH1 pathway and allevi-
ates the inhibition of TH2 pathway. This leads to accu-
mulation of TH0 cells (and possibly activated THp cells
as well) and overgrowth of TH2 cells. The end result is
reduced IFN-γ production and increased IL-4 secretion.

As IL-2 can be produced by non-TH1 cells and as dele-
tion does not appear to occur after CD40L blockade, no
suppression of T cell proliferation is evident. As TH1
cells are important for both cellular and humoral immu-
nity, blocking TH1 cell differentiation affects the host’s
ability to combat infections.

This theory argues against the notion that the effect of
anti-CD40L mAb may simply be blocking CD40:CD40L
interaction in vivo with no consequences on the subse-
quent T cell differentiation. To the contrary, it argues that
CD40L plays indispensable roles in the commitment of
precursor T cells to TH1 lineage in vivo. Our observation
that MBP-specific TH2 cells are preferentially activated
in anti-CD40L treated animals may have important rami-
fications for immunotherapy of autoimmune encephalo-
myelitis through CD40L blockade. Although not enceph-
alitogenic, myelin-specific TH2 cells may serve as nega-
tive regulators of encephalitogenic T cells and may help
ameliorate encephalomyelitis in an organ-specific, by-
stander manner [12].

Multiple sclerosis is a chronic inflammatory disease
of the central nervous system characterized by focal lym-
phocyte and macrophage infiltration which leads to de-
myelination and loss of neurological functions. Although
the mechanisms by which this inflammatory process are
initiated and regulated are not well understood, T cells
recognizing myelin antigens may play an important role
[29–31]. In acute multiple sclerosis plaques activated T
cells and macrophages secrete various inflammatory
cytokines and express various surface markers important
for T cell activation. Downregulation of the function of
these T cells by CD40L blockade may be effective in
preventing or ameliorating the disease. Future studies are
therefore needed to test this strategy in multiple sclerosis
patients.
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