
&p.1:Abstract Interferon-regulatory factors (IRFs) are a re-
lated family of proteins originally identified by their
ability to bind a DNA sequence found in the β-interferon
gene and many interferon-stimulated genes. Two well-
studied members of this family, IRF-1 and IRF-2, have
antagonistic roles in interferon-β gene regulation: IRF-1
activates this gene, and IRF-2 represses the activation by
IRF-1. IRF-1 and IRF-2 have more recently been linked
to growth control by displaying tumor suppressor and

oncogenic activities, respectively. A possible explanation
for the oncogenic activity of IRF-2 is the discovery that
IRF-2 can activate a histone gene that is functionally
coupled to cell cycle progression. This first report of na-
tive IRF-2 playing the role of activator of a gene essen-
tial for growth may lead to the discovery of a more gen-
eral involvement of interferon regulatory factors in medi-
ating growth control.
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Abbreviations CATChloramphenicol acetyl transferase ·
CCECell cycle element · EMSAElectrophoretic
mobility shift assay · HiNF Histone nuclear factor ·
ICSBPIFN consensus sequence binding protein · IFN
Interferon · IL Interleukin · IRF IFN-regulatory factor ·
ISGF IFN-stimulated gene factor · ISREIFN stimulated
response element · OASOligoadenylate synthetase ·
PKRDouble-stranded RNA-activated protein kinase ·
PRDPositive regulatory domain · STATSignal
transducer and activator of transcription&bdy:

Introduction

Interferons (IFNs) are a family of cytokines involved in
the antiviral response and play an important role in cell
growth and differentiation (reviewed in [1]). In particu-
lar, IFNs function as negative growth factors in many
normal and transformed cell types [1]. Viral infections
can induce the type I IFN (IFN-α and IFN-β) genes
whose products can in turn induce a group of IFN induc-
ible genes (Table 1), some of which are presumably re-
sponsible for the antiproliferative and antiviral effects of
IFNs. IFNs are also induced to some extent by growth
factors, which suggests that they are participants in a
feedback loop mechanism of growth control [17–21].

The IFN-β gene has been widely studied as a model
gene to dissect the IFN response and to understand tran-
scriptional induction and repression (see review by Mania-
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tis et al. [22]). IFN-β mRNA levels increase over 2000-
fold within hours of virus infection and then rapidly de-
crease. Following this transient increase in IFN-β mRNA
the IFN-β protein is secreted and binds a specific cell sur-
face receptor, thus initiating a signal transduction cascade
that leads to the activation of a large number of genes.

The induction of the IFN-β gene has been shown to oc-
cur at the transcriptional level, and the positive and nega-
tive regulatory elements required for this on/off switch are
located within 200-bp immediately upstream of the start
site of transcription [23–30]. The mechanism of viral in-
duction is thought to involve the inactivation or displace-
ment of cellular repressor proteins and the production of
virus inducible cellular factors that bind to the positive
regulatory elements. Several protein factors have been
identified that interact with these cis-acting sequences, in-
cluding ATF-2, NF-κB, HMGI(Y), positive regulatory do-
main (PRD) binding factors, and the IFN-regulatory factor
(IRF) family of proteins [15, 16, 22, 31–36].

The interferon regulatory factor family
of proteins: primary regulators of the IFN response
or functional redundancies?

IRF-1 and IRF-2

IRF-1 was the first member of the IRF family to be iso-
lated and characterized [15]. IRF-1 binds to PRD I and
PRD III of the IFN-β gene. Point mutations that reduce
IRF-1 binding significantly reduce the level of induction
by virus, suggesting a role for this binding activity in
IFN induction [15, 37]. Recombinant IRF-1 has been
shown to stimulate transcription of promoters containing
multimerized PRD I binding sites as well as the endoge-
nous IFN-α and IFN-β genes in transient transfection as-
says [16, 38]. IRF-1 is nearly identical (except for three

amino acids) to an independently cloned protein desig-
nated IFN-stimulated gene factor (ISGF) 2, which is re-
ported to bind the IFN-β promoter but is not a primary
activator of endogenous IFN-β [39].

IRF-1 is maintained at nearly undetectable levels in
unstimulated cells but is itself induced by IFN and by vi-
ral infection, which suggests a role for IRF-1 in the viral
induction of IFN-β [15, 39, 40]. However, no new pro-
tein synthesis is required for viral induction of IFN tran-
scription, as evidenced by the insensitivity of this pro-
cess to cycloheximide [1]. The induction of IRF-1 by vi-
rus is dependent on new protein synthesis and therefore
sensitive to cycloheximide, implying that IRF-1 is not
absolutely required for the viral induction of IFN-β [39].
Nevertheless, IRF-1 does appear to play a role in IFN-β
transcription as the presence of IRF-1 augments the level
of viral induction of IFN [39].

Shortly after IRF-1 was discovered, a highly related
protein was isolated by cross-hybridization with IRF-1
cDNA. This protein, designated IRF-2, is homologous to
IRF-1 at its amino-terminus and binds PRD I with the
same affinity as IRF-1 [16]. IRF-2 was later shown to be
identical to ISGF1 and PRD I BFc, two constitutive fac-
tors that bind the IFN-β promoter [41, 42]. As with IRF-
1, IRF-2 is inducible by virus and IFN, albeit with a
slower rate of induction than IRF-1, but has a function
distinct from that of IRF-1 [16]. In transient transfection
experiments IRF-2 alone has no effect on the IFN-β pro-
moter, but it can antagonize the IRF-1 mediated activa-
tion of this promoter [16].

In unstimulated cells IRF-2 protein levels are approx-
imately tenfold higher than IRF-1, due in part to the
much longer half life of IRF-2 protein (8 h versus
30 min for IRF-1) [43]. In response to IFN there is a
transient increase in IRF-1 levels, suggesting that one
level of control of the IFN promoter is the competition
between IRF-1 and IRF-2 [43]. Another level of control
may involve the IFN-inducible and cycloheximide-in-
sensitive processing of IRF-2 to a truncated form. This
truncated protein, characterized by several groups and
designated PRD I BFi, TH3, or In 4, no longer antago-
nizes IRF-1 activation of IFN-β, and in some reports
high levels of this factor parallel IFN-β induction [42,
44–46].

Interrelationships of IRFs
and cellular signaling mechanisms

Other members of the IRF family (Table 2), based on
their homology to IRF-1, include ISGF3γ, the DNA
binding protein of the signal transducer and activator of
transcription (STAT) 1, 2 complex, which is a primary
regulator of IFN-γ stimulated genes, and IFN consensus
sequence binding protein (ICSBP), an IFN inducible pro-
tein that binds an element in MHC class I genes [48, 49].
These proteins share homology with the IRFs in their
amino-termini and bind similar recognition sequences,
although ISGF3γ binds only IFN-stimulated genes and

Table 1 Interferon responsive gene productsa&/tbl.c:&tbl.b:

Gene product Function Reference

HLA class I, II MHC antigens 2, 3
2′-5′ OAS Antiproliferative 4
RNase L Antiproliferative 4
PKR Antiproliferative 4
Guanylate binding protein Guanylate binding 5
ISG54 Unknown 6
ISG15 Unknown 7
56 kDa protein Unknown 8
6–16 Unknown 9
9–27 Unknown 9
IP-10 Cytokine 10
Complement factor D Humoral immunity 11
β2-Microglobulin Associated with 12

MHC class I
Mx (mouse) Antiviral 13
Inducible nitric oxide synthetase Antiviral 14
IRF-1 Tumor suppressor 15
IRF-2 Oncogene 16

a All gene products are human unless otherwise noted&/tbl.b:



pressive effect in two ways: (a) by silencing nearby acti-
vator proteins and (b) by competing with IRF-1 for its
cognate site. The reported latent activation domain of
IRF-2 also suggests that there may be some biological
situations in which IRF-2 acts as a transcriptional activa-
tor.

Role of IRFs in proliferation: a feedback loop
of growth control?

As mentioned above, IFNs are known regulators of cell
growth and differentiation, showing antiproliferative ac-
tivity in many cell types [1]. The IFNs exert their activi-
ties by inducing a number of proteins (Table 1), some of
which appear to be regulators of growth control. These
include a double-stranded RNA-activated protein kinase
(PKR), RNaseL, IRF-1, and IRF-2 [4, 15, 16].

IRF-1 has been shown to be regulated by a number of
cytokines in addition to IFN-α, IFN-β, and IFN-γ, [e.g.,
prolactin, tumor necrosis factor, leukemia inhibitory fac-
tor, interleukin (IL) 1 and 6] which would imply a gener-
al role for IRF-1 in growth control [15, 40, 57, 58]. Con-
sistent with this hypothesis is that IRF-1 itself displays
antiproliferative properties both in vivo and in vitro [58,
59]. IRF-2 in turn is regulated in part by IRF-1, suggest-
ing a feedback loop of gene regulation [60, 61].

IRF knockout mice reveal limited roles for IRF-1
and IRF-2

To examine the relative contributions of IRF family
members to the IFN response and growth control, mice
devoid of IRF-1 or IRF-2 were generated by targeted
gene disruption [62, 63]. IRF-1–/– mice showed normal
development and reproductive behavior and had no obvi-
ous changes in their internal organs. However, some very
discrete phenotypic changes were observed. A severe re-
duction in CD8+ cells was observed in these IRF-1 defi-
cient mice, suggesting that IRF-1 is necessary for proper
T-cell development [62]. Embryonic fibroblasts from
IRF-1–/– mice display a normal level of type I IFN induc-
tion except under certain induction conditions [e.g.,
poly(I):poly(C) mediated induction], suggesting that
there are IRF-1 dependent and independent mechanisms
for IFN induction [62, 63]. In vivo these mice show no
changes in the inducibility of type I IFNs, and no de-
crease in the antiviral activity of the serum is seen in re-
sponse to most viruses (with the exception of encephalo-
myocarditis virus, which causes accelerated mortality in
IRF-1–/– mice) [62–64]. These results corroborate earlier
findings that IRF-1 activity is not required for the induc-
tion of type I IFNs.

The phenotype of IRF-2–/– mice supported a role for
IRF-2 in growth control. These mice displayed physical
susceptibilities, including a relatively high frequency of
premature death and death after parturition [62]. Lym-
phocytic choriomeningitis virus infection leads to death
in IRF-2–/– mice, and they also display abnormal B lym-
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Table 2 Interferon regulatory factor family members&/tbl.c:&tbl.b:

Protein Function Reference

IRF-1 (ISGF2) Activator 15
IRF-2 (ISGF1, PRDI-BFc) Repressor/activator 16, 47
ISGF3γ DNA binding of STAT 48
ICSBP Repressor 49
Pip/LSIRF/ICSAT Repressor/activator 51–53
cIRF-3 (chicken) Unknown 54
Truncated IRF-2 Activator? 42, 44–46

(TH3, PRDI-BFi, In4)

&/tbl.b:

not the IFN-β promoter itself. ISGF3γ is also implicated
in IFN-α mediated induction of IFN-responsive genes,
although recently an ISGF3-independent signaling
mechanism for IFN-α induction of IRF-1 has been de-
scribed [50]. ICSBP is predominantly expressed in cells
of the lymphoid/macrophage lineage and, as IRF-2, can
antagonize transcriptional activation by IRF-1 [49]. An
avian IRF family member has recently been cloned
which is rapidly and transiently induced by double-
stranded RNA. Although the protein product cIRF-3 can
bind an IFN-stimulated response element, no functional
studies have yet been carried out to examine its role in
the IFN response. The newest members of the mammali-
an IRF family are Pip/LSIRF and ICSAT, which are lym-
phoid-specific proteins from mouse and human, respec-
tively [51–53]. These proteins, as ICSBP and IRF-2, can
abrogate the stimulatory effect of IRF-1 or IFN [51–53].
Interestingly, Pip/LSIRF has also been shown to be a
transcriptional activator in the presence of a second pro-
tein, PU.1 [51].

Functional diversity based on selective heterogeneity

The IRF family members are grouped together because
of the high homology of their amino-termini. This region
has been shown to contain the DNA binding domain of
all these proteins. The C-terminal regions are very di-
verse among the IRF family members. The carboxyl half
of IRF-1 contains an activation domain [38]. There is
some debate as to the functional domains of IRF-2. The
IFN-inducible, truncated IRF-2 proteins mentioned
above have in most cases been described as having lost
the ability to repress IRF-1 activation [42, 44–46]. How-
ever, one report suggests that a truncated form of IRF-2
is actually a stronger repressor [55]. These conflicting
results may be explained by the observations of Yama-
moto et al. [47]. They report that the C-terminus of IRF-
2 possesses a repression domain which when fused to a
generic DNA binding domain can repress IRF-1 or other
activators. The deletion of this repression domain con-
verts IRF-2 to an activator of transcription [47]. There-
fore the inducible processing of IRF-2 may lead to dele-
tion of the repression domain and possibly expose a la-
tent activation domain. Under some conditions only the
DNA binding domain of IRF-2 remains after processing,
and this domain has been reported as a potent repressor
of IRF-1 [55, 56]. Consequently IRF-2 may exert its re-
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phopoiesis and hematopoiesis. The role of IRF-2 as a re-
pressive factor in type I IFN gene regulation was con-
firmed as the level of IFN-α and IFN-β mRNAs was
shown to be enhanced in IRF-2 deficient cells which
were induced by a specific virus [62]. However, induc-
tion of IRF-2–/– fibroblasts by dsRNA resulted in no
change in IFN levels, again suggesting multiple path-
ways for IFN gene regulation and/or a functional redun-
dancy between IRF-2 and other factors, possibly ICSBP
or Pip/LSIRF [62]. Furthermore, neither IRF-1 or IRF-2
is essential for the regulation of several type I IFN stimu-
lated genes [e.g., 2′-5′ oligoadenylate synthetase (OAS),
H-2Kb, and PKR], reaffirming the hypothesis that the
IRFs are not primary regulators of these genes [62].

IRFs and programmed cell death

The embryonic fibroblasts from IRF-1–/– mice were use-
ful in demonstrating a role for IRF-1 in programmed cell
death. Expression of the c-Ha-ras oncogene combined
with a block to cell proliferation caused wild-type cells
but not IRF-1–/– cells to undergo apoptosis [65]. This
characteristic is reminiscent of the tumor suppressor p53
which is required for ras-induced apoptosis [66]. p53 has
also been shown to be involved in DNA damage induced
apoptosis in thymocytes but not mature T-lymphocytes
[67]. However, mature T-cells do require IRF-1 for DNA
damage induced apoptosis, suggesting at least two apo-
ptotic pathways in T-lymphocytes [68]. The IRF-1 medi-
ated pathway may be manifested through induction of
the mammalian cell death gene, Ice (interleukin-1β con-
verting enzyme) [69, 70]. Ice mRNA levels are lower in
IRF-1–/– embryonic fibroblasts than in wild type, and
overexpression of IRF-1 leads to induction of Ice [68].
Furthermore, an IRF element has been found in the pro-
moters of both the mouse and human Ice genes [68].
IRF-1 and p53 also appear to be involved in the DNA
damage-induced activation of the cell-cycle inhibitor
gene p21/WAF1/CIP1[71].

The role of IRFs in cancer: IRF-1 is a tumor suppressor
and IRF-2 has oncogenic potential

IRF-1 mRNA and protein levels oscillate during the NIH
3T3 growth cycle following arrest by serum starvation
and subsequent restoration of serum [72]. The highest
levels of IRF-1 protein and mRNA are seen during
growth arrest, and a smaller peak is seen prior to the on-
set of DNA synthesis. In contrast, IRF-2 mRNA levels
remain constant during the NIH 3T3 cell cycle [72]. Dur-
ing the cell cycle of prolactin-induced lymphocytes IRF-
1 mRNA shows two peaks of activity, in early G1 and la-
ter at the G1/S boundary [73].

To examine the effect of disturbing the IRF-1/IRF-2
ratio IRF-2 was overexpressed in NIH 3T3 cells. These
cells grew to a high cell density, displayed anchorage-in-
dependent growth and caused tumor formation when in-
jected into nude mice [72]. Therefore an oncogenic po-
tential was ascribed to IRF-2. Deletion analysis of IRF-2

demonstrated that the amino-terminal 160 amino acids,
which contain the DNA binding domain, are sufficient
for this oncogenic activity [74]. When IRF-1 is intro-
duced into the IRF-2 expressing NIH 3T3 cells, the tu-
morigenicity is suppressed, with the extent of suppres-
sion dependent on the level of IRF-1 expression [72].
Accordingly, IRF-1 has been designated a tumor sup-
pressor. This activity is not limited to IRF-2 induced
transformation as the introduction of IRF-1 can also sup-
press cellular transformation induced by c-Ha-ras, c-
myc, or fosB [65, 75]. Furthermore, the deletion of the
IRF-1 locus on human chromosome 5 has been implicat-
ed in many types of human leukemias, although one re-
port suggests that the IRF-1 locus is not within the 5q re-
gion consistently lost in these diseases [76, 77]. It may
be that IRF-1 is merely one of numerous tumor suppres-
sors that are located within a small region of chromo-
some 5.

Multiple mechanisms of IRF-2 mediated tumorigenicity

One explanation for the oncogenic activity of IRF-2 is
that overexpression of IRF-2 induces transformation by
antagonizing the antiproliferative properties of IRF-1.
IRF-1 is involved in the activation of many IFN-stimulat-
ed genes in vitro, some of which are implicated in the in-
hibition of cell proliferation (e.g., 2′-5′ OAS, PKR and
lysyl oxidase; Table 3). The observation that the overex-
pression of the N-terminal half of IRF-2 is sufficient to
achieve a transformed phenotype supports the notion that
IRF-2 represses the activity of IRF-1 by simply compet-
ing for the same DNA recognition site on these prolifera-
tion-specific genes [74]. This explanation may be valid
for lysyl oxidase, a putative tumor suppressor, which is
downregulated in IRF-1–/– embryonic fibroblasts and
NIH 3T3 cells overexpressing IRF-2 [80]. However, the
data from IRF-1–/– fibroblasts suggesting that IRF-1 is
not the principal activator of 2′-5′ OAS and PKR do not
support a simple competition model to explain IRF-2 tu-
morigenicity [62, 64, 92].

Another interpretation of the oncogenic properties of
IRF-2 which is not mutually exclusive with that present-
ed above is that IRF-2 is involved in the activation of
genes critical for cell proliferation. This theory is sup-
ported by the slightly abnormal growth phenotype of the
IRF-2–/– mice described above and by the recent observa-
tion that IRF-2 can activate a histone gene which is func-
tionally coupled to cell cycle progression [93].

IRFs and cell cycle regulated histone gene expression:
the missing link?

Multiple histone genes undergo numerous levels
and mechanisms of cell cycle regulation

The histones are a family of proteins that are absolutely
required for the packaging and maintenance of intact
chromosomes. The production of histone proteins is
tightly coupled to the cell cycle, with maximal accumu-
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lations appearing coincidentally with DNA replication
during S phase (for reviews see [94–97]). The replica-
tion-dependent core histones H2A, H2B, H3, H4, and the
linker histone H1 are all members of multigene families
in eukaryotic cells. The expression of most histone genes
is regulated during the cell cycle at both the transcrip-
tional and post transcriptional levels, with histone
mRNA levels increasing approximately tenfold during S
phase. One-third to one-half of this increase is due to en-
hanced transcription and the remainder to processing of
immature mRNAs in the nucleus and increased stability
of histone mRNAs in the cytoplasm [94].

The phenomenon of coordinated up-regulation of the
multiple histone genes during S phase prompted a search
for a responsible common element among the histone
genes. The promoters of replication-dependent histone
genes show a modular organization of regulatory ele-
ments similar to other RNA polymerase II transcribed
genes [98]. These elements include a TATA box and
binding motifs for other general transcription factors
such as ATF and SP1 [98–101]. However, the organiza-
tion of upstream regulatory elements varies widely
among the various classes of histone genes and even
within a particular class of histones. A histone family
specific hexamer is present in most histone gene promot-
ers examined thus far and has been considered a likely
candidate for a cell cycle control element [98]. It is now
known that this region is responsible only for maximal
transcriptional levels and does not appear to be involved
in cell cycle fluctuations [94]. There are also elements
that are common to a particular class of histone genes.
The H1-, H2B-, and H3-specific elements are implicated
in the cell cycle regulation of these genes [102–104].

The fact that each histone gene class has its own regu-
latory elements indicates that the transcriptional control
of the histone genes is a much more complex situation
than was previously imagined. The higher level of com-
plexity may be due to the need for variable histone sub-
type specific expression in different cell types. Further
insights into the details of each subtype specific regula-
tion may elucidate the underlying cause for the coordi-
nated synthesis of all the histone genes. It is suspected
that although each histone subclass has its own DNA ele-
ment and corresponding binding proteins, there is a com-
mon mechanism of regulation of these factors.

Organization of a cell cycle regulated human histone
gene: a paradigm for proliferation specific and S phase
enhanced transcription

Several regions in the 5′ flanking region of the human
H4 histone gene FO108 are involved in protein-DNA in-
teractions that affect the overall transcription of this gene
(Fig. 1) [105]. These regions were identified through
both in vivo and in vitro techniques. In vivo genomic
footprinting and fingerprinting techniques identified two
protected regions: Site I, the distal promoter element, be-
tween positions –130 and –87 bp; and Site II, the proxi-

mal element, between –70 and –20 bp, which includes
the TATA box between –32 and –28 (Fig. 1a) [89]. These
are the only protein-DNA binding sites determined in vi-
vo for a histone H4 gene and therefore are the only inter-
actions with demonstrated biological relevance. Both
Site I and Site II are protected from DNase I throughout
the HeLa cell cycle [89]. However, in vivo footprinting
of terminally differentiated HL-60 cells in which histone
synthesis is completely shut down showed that Site II
alone was no longer occupied [106]. These results sug-
gest that Site II is important for the cell growth related
regulation of histone H4 gene transcription.

Identification of a histone H4 cell cycle promoter element

Promoter elements of the H4 gene FO108 have been fur-
ther dissected through expression studies. Deletion and
site-directed mutants of histone promoter–chlorampheni-
col acetyl transferase (CAT) fusion genes were con-
structed and established as stable cell lines [107]. Tran-
scription levels were analyzed at various stages during
the cell cycle of synchronized HeLa cell cultures. These
studies established that the promoter region of the
FO108 gene (approximately 1 kb of 5′ flanking region),
when fused to the CAT gene, was capable of initiating
CAT gene expression and conferring a two- to threefold
elevation in transcription of the CAT gene during S
phase, comparable to endogenous H4 genes (Fig. 1b)
[107]. A series of 5′ promoter deletions showed that re-
gions far upstream (–1018 to –216) were not involved in
the cell cycle regulation of this gene but had a threefold
effect on the overall level of transcription [107]. Deletion
of nucleotides –215 through –71, which includes Site I,
had a drastic effect on the levels of transcription but no
effect on the cell cycle regulation of this gene (Fig. 1b)
[89, 107]. The most proximal promoter site, Site II, ap-
pears to be sufficient for the enhanced transcription of
this gene during S phase (Fig. 1b). Further deletions of
nucleotides –70 through –41 result in a loss of regulated
transcription of FO108, suggesting that the distal portion
of Site II is critical for the cell cycle regulation of this
gene [107].

At this stage point mutations were introduced to es-
tablish more precisely which nucleotides in Site II are re-
quired for the regulated transcription of this gene. Nucle-
otides which had been shown in vivo and in vitro to be
protein contact sites were mutated in clusters. Mutations
within an 11-bp element resulted in the abrogation of
cell cycle regulation of human histone H4 gene FO108,
implying that this region is a cell cycle element (CCE)
[107]. This element had been previously defined as a
protein-DNA interaction site, termed the M-box, and the
protein factor involved was designated histone nuclear
factor (HiNF) M [108, 109].
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Histone nuclear factor M is critical
for the cell cycle regulation of histone H4

Three distinct protein-DNA interactions at Site II have
been identified in vitro using nuclear extracts (Fig. 1a).
HiNF-D is a mosaic factor of several proteins and shows
sites of nuclease protection and nucleotide interactions
spanning the entire Site II region [108–110]. Some of the
proteins involved in factor D binding have recently been
identified and consist of cdc2, cyclin A, a retinoblastoma
protein family member, and CDP/cut, which is the DNA
binding moiety [111, 112]. The two other protein-DNA
interactions at Site II, HiNF-M and HiNF-P (which may
be identical to H4TF-2) make contacts within the HiNF-
D binding region but appear to be distinct entities [108,
109, 113]. HiNF-M therefore acts within an element that
supports interactions with cell cycle regulatory factors
and phosphorylation signaling pathways.

The importance of HiNF-M has been confirmed by
binding studies with mutated Site II fragments. Frag-
ments containing point mutations which abolish cell cy-

cle regulation could no longer interact with HinF-M or
HiNF-P but were still bound by HiNF-D, although the
binding was reduced [107]. Point mutations which abol-
ished HiNF-P binding alone had no effect on cell cycle
regulation. This suggests that cell cycle regulation of his-
tone H4 is related to HiNF-M binding at Site II. Recent
observations from our laboratory indicate that binding
site mutations that affect any of the Site II factors alone
have very little effect on the cell cycle regulation of his-
tone H4, suggesting a complex level of control involving
multiple factors. Unraveling of this complicated situation
may require studies involving the withdrawal of the vari-
ous Site II factors.

IRF-2 is the cell cycle element binding factor
and a key regulator of histone H4

HiNF-M, the CCE binding factor, was purified from He-
La cell nuclear extracts and found to be a protein with an
apparent molecular weight of 48 kDa. Microsequencing
of four internal peptides of HiNF-M showed identity
with IRF-2 [93]. Upon examination of the HiNF-M bind-
ing site, the CCE, it was discovered to be highly homolo-
gous to the IFN-stimulated response element (ISRE) and
the IRF consensus element determined by oligonucle-

Fig. 1 A Schematic diagram of the FO108 H4 histone gene pro-
moter showing locations of regulatory sequences and sites of pro-
tein/DNA interactions (for review see [97, 105]). B Summary of
deletion/mutation analysis studies to identify the cell cycle ele-
ment of histone H4 described in [107]&/fig.c:
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Table 3 IRF binding sites in cell growth related genesa&/tbl.c:&tbl.b:

Gene Sequence Reference

IRF-2 ATTTTCATTTTC 60, 61
2′-5′ OAS GGTTTCGTTTC 78
PKR (mouse) TGTTTCGTTTTC 79
Lysyl oxidase (mouse) ATTTTCACTTTG 80
Ice ACTTTCAGTTTC 81
IL-4 GGTTTCATTTC 82
IL-5 CATTTCCATTTC 83
IL-7 receptor CTCTTCCATTTC 84
p53 GCTTTGCGTTTG 85
E-cadherin (mouse) GGTTTCCGTTTTG 86
H4/a CTTTTCAGTCTC 87
H4.A (distal) TATTTCGGTTTG 88
H4.A (proximal) TCTTTCAGGTTCT 88
H4/h GCTTTCAGTCTTC 87
H4-FO108 GCTTTCGGTTTTC 89
H4-AST (mouse) GCTTTCAGTTTTC 90
H1.2 (HB1) TAATTCTGTTTC 91
H1.2 (HB2) ACTTTCTGTTTT 91

a All genes are human unless otherwise noted
&/tbl.b:

otide binding site selection (Fig. 2) [107, 114, 115].
HiNF-M has been shown to bind the ISRE, and recombi-
nant IRF-1 and IRF-2 can bind the CCE in an electro-
phoretic mobility shift assay (EMSA) [93]. Specific anti-
bodies to IRF-2, and not IRF-1, are immunoreactive with
the HiNF-M complex [93]. This result in itself does not
preclude a role for IRF-1 in histone gene regulation as
IRF-1 is not readily detectable by EMSA in uninduced
cells [15].

To assess the functional role of the IRFs on histone
gene regulation transient transfections were performed in
several cell types by coexpressing IRF-1 or IRF-2 with
an H4 histone promotor CAT construct. Surprisingly,
both IRF-1 and IRF-2 stimulated transcription of this
promoter but not a promoter containing a mutation in the
HiNF-M/IRF binding site [93]. Unlike the IFN-β and
IFN-stimulated gene promoters, IRF-2 did not repress
the IRF-1 stimulatory effect. Some of the studies were
carried out in IRF-1–/–, IRF-2–/–, or IRF-1–/–/IRF-2–/–

(double-knockout) embryonic fibroblasts. One important
finding with these cells was that endogenous IRF-1 is in-
capable of compensating for the lack of IRF-2 in IRF-
2–/– cells, suggesting that IRF-2 is the key IRF involved
in histone gene regulation [93].

Further evidence for the importance of IRF-2 specifi-
cally in H4 gene regulation was shown in a cell cycle
analysis of the FDC-P1 myeloid stem cell line. Follow-
ing isoleucine deprivation and subsequent cytokine stim-
ulation two distinct, differentially regulated HiNF-M
complexes were observed in an EMSA, and both com-
plexes were immunoreactive with IRF-2 but not IRF-1,
antibodies [93, 116]. The level of the more slowly mi-
grating form of HiNF-M/IRF-2 peaked at the G1/S
boundary. Since previous results indicate that IRF-2
mRNA levels do not change during the cell cycle [72],
this result suggests that a posttranslational modification
of IRF-2 or a variation in partner proteins of IRF-2 is oc-
curring during the cell cycle. Therefore IRF-2 may play
an intrinsic role in the cell cycle control of histone H4
gene regulation. This effect may not be limited to a sin-
gle human histone gene as potential IRF elements can be
found in several mammalian histone genes (Table 3).
This result may represent a key link between IRF-2 and a
gene required for growth, thereby suggesting a mecha-
nism for the oncogenic activity of IRF-2, and may help
elucidate a mechanism for coordinate control of genes at
the G1/S transition. However, a disregulation of histone
H4 has not yet been examined in cells with abnormal

levels of IRF-2; therefore it will be interesting to monitor
the levels of H4 histone in IRF-2–/– and IRF-2 trans-
formed fibroblasts.

Conclusions and perspectives:
pleiotropic regulatory roles of IRFs

The studies discussed above suggest that IFN regulatory
factors are not solely involved in the IFN response and in
fact may not be essential for this activity. Overexpression
of IRF-1 can result in an induction of endogenous type I
IFN mRNA levels while the expression of ISGF2 (which
is nearly identical to IRF-1) does not affect IFN-β mes-
sage [15, 39]. Furthermore, IFN-β mRNA levels increase
with viral induction in the presence of cycloheximide,
which prevents induction of IRF-1 protein [1, 39]. IRF-1
therefore does not appear to be vital for IFN-β induction
and may share redundant functions with another activa-
tion factor(s).

The phenotype of IRF-1–/– mice also suggests that
there are multiple mechanisms of type I IFN induction:
IRF-1 dependent and IRF-1 independent pathways.
Some IFN-stimulated genes are unaffected in IRF-1–/– or
IRF-2–/– mice (2′-5′ OAS, H-2Kb, and PKR) while others
are severely impaired (inducible nitric oxide synthase,
guanylate binding protein, and lysyl oxidase) [62, 64, 80,
92, 117, 118]. The mechanism by which the IFN re-
sponse is induced [i.e., poly(I):poly(C) or virus] can af-
fect the level of response in IRF-1–/– or IRF-2–/– mice,
and different viruses can also lead to different effects
[62, 64]. IRFs are important for the antiviral action of
IFNs against some viruses, but the IFN response is obvi-
ously quite diverse, utilizing multiple pathways through
many target genes. These target genes may be activated
using redundant mechanisms involving the various IRF
family members and/or other unknown activators and re-

Fig. 2 The histone H4 CCE has high homology to IFN regulatory
elements. The ISRE as reported in [114], the IRF element as re-
ported in [115], and the CCE of H4 histone gene FO108 [107]
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pressors that may be expressed when IRF-1 and IRF-2
are unavailable.

The role of IRFs in growth control is becoming clear-
er. Overexpression of IRF-2 in NIH 3T3 cells leads to an
oncogenic phenotype, and coexpression of IRF-1 sup-
presses the tumorigenicity of IRF-2 [72]. IRF-1 has been
mapped to human chromosome 5q31.1, a region that is
frequently deleted in certain leukemias and myelodys-
plastic syndromes [76]. Other evidence for the impor-
tance of IRFs in cell growth is the result from IRF
knockout mice that lymphopoiesis and hematopoiesis are
impaired in IRF-1–/– and IRF-2–/– mice, respectively
[62].

Recent evidence suggests a role for IRF-1 in pro-
grammed cell death as IRF-1 appears to be necessary for
Ha-ras oncogene-induced apoptosis [65]. IRF-1 has also
been implicated in DNA damage-induced apoptosis in
mature T lymphocytes [68]. This phenomenon may be
related to the reported induction of the mammalian cell
death gene, Ice, by IRF-1 [68].

The regulation of genes directly involved with growth
may be the mechanism by which IRFs affect growth con-
trol. It is known that IRF-1 activates PKR which possess-
es tumor suppressor activity (although IFN-β induction
of this gene is unaffected in IRF-1–/– cells, suggesting re-
dundant forms of regulation of PKR) [62, 119]. Another
putative antiproliferative gene is lysyl oxidase, which
may be the best candidate thus far as a target of IRF-1
[80]. IRF-2 may antagonize these activities and/or be in-
volved in the activation of genes required for growth.
There are potential IRF binding sites in many other
genes involved in growth control (Table 3), some of
which have antiproliferative activity, and some of which
are necessary for growth. One set of the latter category
are the histone genes.

Histone proteins are required for the ordered assem-
bly of DNA into chromatin and are therefore essential
for cell growth. Maintenance of intact chromosomes is
such a critical function of the cell, that there are likely
numerous mechanisms of maintaining proper histone
production, and this control may vary in different cell
types. Maintaining multiple copies of the various histone
genes which are regulated by different means is one
mechanism which the cell has utilized to ensure
chromatin integrity. Coordinate control of the various
histone classes may be regulated through a common
mechanism. For example, HiNF-D binds the promoters
of histones H4, H3, and H1 [111, 120]. Subtype regula-
tion appears to involve multiple, specific factors that
have limited scope. This mechanism ensures that the lack
of any one particular factor would not be fatal to the cell.
Many histone H4 genes have potential IRF-2 binding
sites (Table 3), and IRF-2 is likely important for their
regulation. However, since IRF-2–/– mice are viable,
there must be alternative mechanisms of histone H4 pro-
duction. It may be that these mice have some minor de-
fects that are related to the lack of adequate histone H4.

These diverse types of regulation the cell employs are
often achieved through posttranslational modifications

such as phosphorylation and protein/protein interactions.
IRF-1 is a phosphoprotein, but the role of this phosphor-
ylation is not known [39, 43]. Members of the IRF fami-
ly have been shown to interact with other proteins, in-
cluding TFIIB and other IRFs [121–123]. In some cases
these interactions can change the nature of a protein
from an activator to a repressor. The IRF-2-like repress-
ing protein Pip can activate certain promoters in the pres-
ence of PU.1 [51]. This phenomenon is also well docu-
mented for other transcription factors such as YY1,
RAP-1, and Dorsal [124–126]. The role of phosphoryla-
tion or protein/protein interactions in IRF-2 activity has
not been examined, but the close proximity within Site II
of CDP/cut, a retinoblastoma protein related protein, cy-
clin A, and cdc2 (in the HiNF-D complex) provides po-
tential mechanisms for cell cycle regulated protein/pro-
tein interactions or modification of IRF-2 by the cdc2 ki-
nase activity [111]. This arrangement is not unique to
histone H4 as the IRF-2/CDP motif is seen in other
genes such as gp91phox, a differentiation-specific gene of
myelomonocytic cells [112, 127]. Interestingly, it has
very recently been shown that IRF-2 transactivates
gp91phox promoter activity, again reminiscent of the his-
tone H4 promoter [128].

In conclusion, the IRFs are multifunctional proteins
involved in the IFN response, apoptosis, growth control,
and possibly differentiation. The role of IRFs in these
processes may not always be a primary one, but they are
likely important for subtle responses by the cell in vari-
ous situations. They are another example of the many re-
dundant mechanisms which the cell has to maintain via-
bility under diverse conditions, and further definition of
the function of IRFs will help elucidate these mecha-
nisms.
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