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Abstract The pancreati® cell is the major source ofpromoter and activate insulin gene transcription have
circulating insulin in adult mammals. In the multistepeen isolated. Some of these factors are restricted in
process of insulin synthesis it is initiation of transcrigheir expression pattern, but so far no tralgell-specif-
tion that restricts insulin synthesis to fieell since all ic transcriptional activator has been found. Since differ-
subsequent steps can be performed by other cell tygag. transcription factors synergize to activate insulin
Many of the transcription factors that bind to the insul@ene transcription, cell-specific transcription of insulin is
probably realized through the interactions of a unique set
of regulatory proteins in thp cell. The same transcrip-
tion factors that regulate insulin gene transcription in the
adult 3 cell are involved in determining cell differentia-
tion during pancreatic development. The endocrine and
exocrine pancreas form from the gut endoderm as a dor-
sal and a ventral bud which later fuse to build a single
organ. The homeodomain protein PDX-1, an insulin
gene transcription factor, is uniformly expressed in the
early pancreatic bud, and null mutation of PDX-1 in
mice results in a failure of the pancreatic bud to grow
and differentiate. Other transcription factors, such as the
helix-loop-helix protein Beta-2 and the homeodomain
protein Nkx 6.1, show a restricted pattern of expression
' during embryogenesis and in the mature islet. Those pro-
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meostasis. Decreased insulin secretion or impaired indGF2) genes [9]. The human insulin gene contains three
lin action leads to one of the major world health probxons and two introns. The final spliced mRNA tran-
lems, diabetes mellitus. Diabetes mellitus causes eatyipt is 446 bp in length and codes for the preproinsulin
death and prolonged ill health from severe complicatiopsptide. The structure of the insulin gene has been re-
including kidney, cardiovascular, and eye disease. Bearkably well conserved throughout evolution. Most an-
cause of its central role in metabolic control, tight regimals have a single copy of the insulin gene, with the ex-
lation of insulin production and release is critical. ception of rat and mouse which carry a duplication of the
In adult mammals insulin production is limited fo gene [10].
cells, which account for the majority of the islet cells. Evolutionary conservation of the insulin gene extends
The islets of Langerhans are unique in that each of thethe promoter sequence, which is critically important
four phenotypically distinct cell types produces a distinfdr insulin expression, as it determines the transcription
hormone.a, 8, and pancreatic polypeptide (PP) cells setart site for RNA polymerase and regulates the rate of
crete glucagon, somatostatin, and PP, respectively. Witmscription initiation [11]. The promoter consists of all
the possible exception of very low level expression in thee 3 flanking DNA necessary for appropriate initiation
central nervous system [1], tRecell is the only tissue in of transcription. The exact &nd of the promoter is not
adults that synthesizes preproinsulin mRNA, but amgell defined, but it is known that sequences at least 4 kb
cell, if altered to allow transcription of the insulin genejpstream contribute to the regulation of transcription
can produce proinsulin [2, 3]. Other endocrine cells, sifd2, 13]. The insulin gene promoter and the transcription
ilarly altered, can even process, package, and secretefangors binding to this region largely determine cell-spe-
ture insulin in a regulated fashion [4]. Since rbroells cific expression of the insulin gene in tRecell of the
can perform all subsequent steps, it is initiation of trapancreas.
scription that restricts insulin production to fheell. When isolated from the remainder of the gene and
The combined efforts of a number of laboratoridked to a reporter gene, such as the bacterial gene for
have provided important clues regarding the control cfloramphenicol acetyl-transferase (CAT), 400 bp of the
insulin gene transcription. Several models have been grsulin promoter direct expression of CAT exclusively to
posed to explain the mechanisms focell specific ex- thef cell [14, 15].
pression of the insulin gene. However, little is known The promoter also functions in a distinctly cell-type
thus far about the developmental processes that leadgecific manner in transgenic mice. By linking the rat in-
differentiation of islet precursor cells into matfreells. sulin 1l promoter to the coding sequence for the simian
We are just beginning to understand that the key tratrus 40 large T-antigen, Hanahan [16] developed a
scriptional regulators of the insulin gene in matfre transgenic mouse line in which the insulin promoter di-
cells are also involved in producing the differentiatagcted expression of this viral oncogene. These animals
phenotype during development. With the advances in éqpress T antigen exclusively in th@icells and develop
let cell transplantation as a potential treatment of diatesulin-producing islet cell tumors, demonstrating the
tes mellitus, interest in the factors controlling pancreatiell-specific function of the insulin promoter in vivo.
growth and differentiation has been renewed. What are the mechanisms that allow expression of the
insulin gene exclusively in th@ cell and prevent tran-
scription in any other cell type? The insulin gene promo-
Insulin gene expression ter contains multiple sequence elements that act as rec-
ognition sites for DNA binding proteins. Figure 1 shows
A cDNA copy of the preproinsulin mRNA was firsthe relative positions of some of tbis-acting elements
cloned by Ullrich and colleagues [5] from a rat isletlong the insulin promoter and some of the transcription
cDNA library. Since then, insulin genomic and cDNAactors that bind to these elements. The nuclgi oélls
clones have been isolated from a variety of animal spentain numerous distinct protein complexes that bind
cies from human to sponges [6-8]. The human insufipecific sequences within the insulin promoter. Some of
gene is located on chromosome 11p15.5, between thehgse complexes are restricte3toells or a small subset
rosine hydroxylase (TH) and insulin-like growth factor-8f cell types. However, accumulating evidence suggests
that no single protein complex alone accounts for cell-

) T . . . specific expression. It is more likely that the specific
Fig. 1 A composite insulin promoter with its knoveis-acting el- b P y P

ements and binding factors. The boxes represent the DNA gg_mblnatlon of trans'crlptlon' factors in ﬂ.ﬁ cell IS
guence element€ircle (above the promotertloned binding pro- Unique, and that their interactions are required to activate

teins transcription of the insulin gene.
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Table 1 Transcription factors

expressed in islet cel's Class Transcription Tissue distribution Insulin promoter

factor binding site

bHLH E12/E47 Ubiquitous E box
HEB Ubiquitous E box
Beta-2 Islet, brain E box
Beta-3 Islet, lung, kidney, brain

Homeodomain PDX-1 Islet, duodenum A box
Cdx-3 Islet, intestine, testis A box
HNFla Islet, liver A box
Nkx 6.1 B cell
Nkx 2.2 Islet, pancreas, brain
alx3 Islet, pancreas, testis
Pax-6 Embryo: islet, CNS, eye, nose
Prox 1 Embryo: pancreas, liver, heart, CNS
Hox11 Embryo: pancreas, spleen, CNS

LIM homeodomain Lmx-1 Islet, limb bud A box
Isl-1 Islet, motor neurons A box
Lim1 Islet, pancreas, brain, liver, testis

Zinc finger Pur-1 Ubiquitous G1 element

E box elements

sue-restricted class B bHLH protein members function

as potent transcriptional activators of tissue-specific

Two sequence elements, E1 and E2, within the rat insigenes. The cell-restricted class B members of bHLH pro-
| promoter are crucial for transcriptional activity of théeins play an important role in specifying cell fate in a
whole promoter. Mutation of either of the two elementariety of different tissues [39, 40].
results in a 90% loss of promoter activity when transfec- Despite intensive efforts by several laboratories to
ted into a hamster insulinoma tumor cell line. A doubisolate cDNAs encoding putative islet-specific bHLH
mutation of the two elements effectively abolishes traproteins, conventional expression screening strategies
scription [17]. These two elements coincide with idenfproved to be unsuccessful. Recently Naya et al. [41] suc-
cal 8 basepair sequence motifs GCCATCTG at —105 arakded in cloning an islet-specific class B bHLH factor,
—231 bp of the rat insulin | promoter. The more proxim&drmed Beta-2, from a hamster insulinoma tumor cell
motif is well conserved within the insulin promoter ofDNA library by using a modified yeast two-hybrid se-
various mammals [11, 18], and its importance has alsation method. Beta-2 proved to be the same as the neu-
been demonstrated for the rat insulin 1l [19, 20] and thed factor NeuroD [42]. Beta-2 expression is, apart from
human insulin promoters [21, 22]. brain, indeed limited to pancreaficanda cell lines and

This sequence element belongs to the class of regidaa component of the native insulin E box binding com-
tory sites known as E boxes, which contain the consg@tex (Table 1) [41]. Analogous to the induction of mus-
sus CANNTG and are implicated in the tissue-specifite cell differentiation by myogenic bHLH proteins [23],
regulation of genes in a variety of tissues [23-25]. Heta-2 may play an important role in neural and islet cell
boxes bind factors belonging to the basic helix-loop-hgevelopment and differentiation. Construction and analy-
lix (bHLH) family of transcription factors. The HLH mo-sis of mice deficient for Beta-2 will undoubtedly give
tif is defined by two amphipathic helices that act as dialuable insight into the function of this factor in vivo.
merization domains, separated by a nonconserved loop
and adjacent to an aminoterminal basic region necessary
for DNA binding [26, 27]. A elements

The E box sequences bind a specific nuclear protein
complex that is found im cells and pituitary cells asin the rat and human insulin promoter, A-T rich ele-
well as cells but is absent from a variety of non-endenents, termed A elements, are juxtaposed to the E1 and
crine cells. [28-32]. This insulin E box binding complekE2 elements. The human insulin promoter contains an
contains various members of class A bHLH proteinadditional A site upstream of E2. Mutation of the rat in-
E47/E12 [26, 31, 33-35] and HEB [36, 37]. E47 and E%$Rlin | A3/A4 site or the corresponding A3 site in the hu-
are differential RNA splicing products of the same genmaan insulin promoter leads to a 75% loss in promoter ac-
E2A [38]. Class A members of the bHLH proteins argvity, whereas mutation of the Al site only modestly af-
ubiquitously expressed; therefore their presence in feets insulin transcription [17, 43, 44].
insulin E box binding complex does not explain the tis- The A elements all share the core sequence TAAT, a
sue restriction of this protein complex. The bHLH praecognition motif for homeodomain proteins. Homeodo-
teins bind to DNA as dimers, and heterodimers betwemain proteins are a group of transcription factors that,
the ubiquitously expressed class A members and the @istong other functions, specify the body plan and regu-
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late development of higher organisms [45]. They shar®&agative regulation of insulin transcription

common 61 amino acid motif that forms a helix-turn-he- . o o ) )
lix structure, the homeodomain, that binds to DNA and ' addition to transcriptional activation leys-acting ele-

highly conserved among different species. ments inB cells, the concept of negative regulation of in-
B Cell nuclei contain several different protein conulin e€xpression has been explored in gorells. Such

plexes that bind to A sites [21, 46-48]. Several of thd§Pressors of insulin gene transcription may contrlt_)ute to

proteins have been cloned, and all of them are memJ6 Maintenance of tissue specificiBis-acting negative

of the homeodomain class of proteins (Table 1) [48-54jegulatory elements that function in nfneells have
PDX-1, also called IPF-1, IDX-1, or STF-1, binds t§€en identified in the human [72], the rat | [12, 73] and

all of the A sites in the rat and human insulin promotite rat Il insulin promoter [20]. The E1 box in particular
and can activate the insulin promoter in rooells [44, S€€MS to bind factors that repress activity in farells
51, 55] (Odagiri and German, unpublished data). In the’!: )
adult, expression of PDX-1 is largely limited to the pan- The purpose of a negative regulatory element that
creaticB cell and the duodenal epithelium, with occasiofidnctions inf cells is more obscure. Deletion analysis of
al expression in somatostatin producing cells [51, 53, 58] human insulin promoter by Boam et al. [21] have
Another islet cell-specific homeodomain proteirsnown that the region between —279 and —258 bp acts as
Lmx 1.1, has been isolated by our laboratory [48]. Lnfk negative regulator of transcription inf3acell tumor

1.1 belongs to the class of LIM homeodomain proteir{g‘e- Since the same region can also repress transcription
which contain two cystein-histidine rich LIM domainswhen linked to a heterologous promoter [21, 74], the au-

LIM domains have been implicated in protein-protein iAlors postulated a negative regulatory element (NRE) in
teraction [57] and may inhibit binding of the homeoddbe distal part of the human insulin promoter. When
main to DNA [58, 59] or inhibit the transcriptional actiWalker et al. [14] transfected similar truncations of the

vation domain [48]. As with PDX-1, Lmx1.1 can activatfuman insulin promoter i cells tumor lines, they
the insulin promoter in nof-cells [48]. found no rise in transcriptional activity. Also in contrast
Other homeodomain proteins that bind to the A sitk Boam et al. [22], we have noted that deletion of the
show a less tissue-restricted pattern of expression. CAYI3E results in a marked loss of promoter activity in pri-
can be found in intestine and testes [48], and hepatic mary-cultured rat islet cells. To resolve this contradiction
clear transcription factor (HNF)adin liver as well ag3 We constructed a minienhancer that contained five copies

cells [50]. Cdx-3 can also activate the insulin promot@f theé NRE linked to a heterologous promoter. In agree-
in nonf cells. The LIM homeodomain protein Isl-gment with the flr]dlngs of Boam et al., thIS. mlr)lenhanc_:er
binds to the A3 site with significantly lower affinity tharfCtS as a negative regulator of transcription in a variety
Lmx-1.1 and is expressed in a variety of endocrine a®{d cell and nonB cell tumor lines and in primary ndh-
nonendocrine cells and in the central and peripheral rfe§llS- By contrast, the NRE functions as potent activator
vous system [60, 61]. Even though all of these protefdstranscription in primary cultures of rgt cells [75].
were isolated fron cells, their function does not seenf hese conflicting results demonstrate that tumor cells
to be limited to activation of insulin gene transcriptiof@y not always reflect normal islet physiology.

Otherf cell and islet genes, including glucokinase [62],

amylin [63], glucagon [64], and somatostatin [65], comthercis-acting elements

tain similar homeodomain protein recognition sites in

their 5 flanking region. Isl-1 has been shown to activa# least one other element that is well conserved within

transcription of the somatostatin, glucagon, and amytfte insulin promoter of different species may contribute

genes [65-67]. Similar to its effect on the insulin gefie B cell specific transcription of the insulin gene. The

promoter, Cdx-3 can activate the glucagon promoterGd element lies between the A2 and E1 elements, and

non-islet cells [68]. mutation of this element in the context of the rat insulin
Other homeodomain proteins have been cloned frdhpromoter causes a drastic loss of activity [19, 76]. The

B cells, but their ability to bind to the insulin A boxe€1 site binds a unique nuclear complex that is absent

and to transactivate the insulin gene promoter has fiem non-islet cells and even fromcells [31] (Odagiri

been studied to date [54, 69—71]. Expression of someapfl German, unpublished data). However, the proteins

these genes is restricted to a limited number of ceinding to the C1 site have not yet been cloned.

types, such as Nkx 6.1, which has been detected only irseveral other binding sites have been identified. Some

B anda cell lines [54]. of them, such as the Spl site, are not well conserved
The relative contributions of the different homeod@mong species. The importance of others, including the

main proteins t@ cell-specific transcription of the insu-CAMP-regulatory element and the core element, for insu-

lin gene are unclear, but it appears unlikely that one pli#-gene transcription has not been well established.

tein alone confers the specificity. Most likely, several

transcription factors contribute to insulin gene transcrigechanisms specifying transcription

tion, and these contributions may change depending on

the stage of development or physiologic setting. The simplistic view of an enhancer as a chain of ele-

ments with transcription factors independently activating
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Fig. 2A, B Two possibilities A
for the way in which eukaryotic

genes are activated.“Bar
code” model of a promoter/en- /\‘
hancer. The gene is activated
by a number of transcription
basal transcriptional
complex

factors that bind to the promo-
TATA-Box

transcription N

binding
ter/enhancerglements A1-A3 protein 1
and independently activate the
basal transcriptional machinery
and allow RNA polymerase to
attach and begin transcription. .
B “Allosteric model” of a pro- activator elements (A)
moter/enhancer. The transcrip-

tion factors that bind to the pro-
moter/enhancer interact with

each other to activate the basal

transcriptional machinev B

promoter - transcription
binding basal transcriptional —anscnpuon .
protein 3, complex

TATA-Box

gene transcription proved to be an insufficient model fomx-1.1 activates minienhancer-driven transcription
explaining the tissue-specific activation of genes. To tldbout 1000-fold [48]. Other LIM homeodomain proteins,
end, no trulyB cell specific transcription factor has beesuch as Isl-1, are not able to activate the minienhancer
identified. PDX-1 is also expressed in the duodenum [S¥nergistically. Recently we were able to show in a yeast
77, 78]. Lmx-1 proteins, which in the pancreas are 1o hybrid system that E47 and Lmx-1 interact directly
stricted tof cells, are expressed in the limb bud duringa the Lim2 domain of Lmx-1.1 and the HLH domain
development and mediate dorsalization of the developinfgE47. Consistent with the transfection experiments, no
limb [79, 80]. Likewise, Isl-1 serves as a marker for m@teraction between E47 and Isl-1 can be observed [84].
tor neurons in the spinal cord [60]. Beta-2, apart fromThese data provide a paradigm for how tissue specificity
and 3 cells, is also expressed in brain and may partiof gene expression may be realized.
pate in the terminal differentiation step during vertebrate The principle of synergy extends to other sequence el-
neuronal development [42]. Why is insulin, or other igments and binding proteins of the insulin promoter. The
let-cell specific genes, not expressed in the duodendmameodomain protein PDX-1 synergizes with E47 in a
motor neurons, or the developing limb bud? similar fashion to Lmx-1.1 [55]. Recently we demon-
Studies on other genes have taught us that cooperativated synergy between the E and A elements in the hu-
effects of several activators with restricted expressioran insulin promoter, indicating that synergistic activa-
patterns determine the subset of genes turned on in a tiort is a conserved mechanism [22]. In the rat insulin Il
en cell type [81, 82]. Therefore the promoter should ng¢ne, binding of the E47/Beta-2 complex requires the
be viewed as a simple sum of independent elements fmaisence of thp cell-specific C1 binding complex to ac-
as a unit of interacting factors that activate transcriptitimate insulin gene transcription [41, 85].
synergistically (Fig. 2). This model aids in explaining the Synergy of two adjacent elements is not the only
exquisite cell-type specificity of the insulin promotemechanism specifying transcription. Homeodomain pro-
since deletion or substitution of any of these factors drésins are known to establish pattern formation during de-
tically reduces promoter activity. velopment. Distinct homeotic genes within a segment
To study synergy of adjacent elements we choseseave a gene regulatory function and act as transcription
small fragment of the rat insulin | promoter that contaifigctors that regulate target genes in a precise spatial and
the E2/A3/4 elements. A small minienhancer containitgmporal pattern. In contrast to their distinct activities in
five copies of the E2/A3/4 element linked to a heteroleivo, however, most homeodomain proteins indiscrimi-
gous minimal promoter functions as a strghgell-spe- nately bind to the consensus TAAT in vitro.Dmosophi-
cific transcriptional enhancer [43, 63, 83]. However, d& melanogastera cofactor, termed extradenticle, has
letion of either one of the elements renders the minidreen shown to promote target gene selection by enhanc-
hancer inactive. The minienhancer is silent in a fibroblasty the DNA binding specificity of certain homeodomain
cell line. Upon cotransfection of either the E1 site bingroteins [81, 86]. Recently Peers et al. [87] demonstrated
ing protein E47 or the A3/4 site binding protein Lmxthat PDX-1 binds cooperatively to DNA with Pbx, the
1.1, little activation of the promotor can be observed imnammalian homologue oé&xtradenticle. Cooperative
fibroblasts. However, combined transfection of E47 abéhding and synergistic activation of transcription was



332

limited to one specific A site within the somatostatimtrinsic signals: what determines the cells that will
promoter and could not be demonstrated for the Al ditecome pancreas?

of the insulin promoter. The results illustrate how target

gene selection may be specified in the endocrine panérgimation and differentiation of the pancreas from gut
as. endoderm requires a series of distinct signals. A particu-

lar set of cells within the gut endoderm may be compe-
tent to develop into pancreatic cells, but growth and dif-
Role of transcription factors ferentiation does not occur without additional extrinsic
in pancreatic development signals from adjacent tissues. On the other hand, other
regions of the gut cannot develop into pancreatic cells,

Most of the studies on the transcriptional control of isi#hen given the same extrinsic signals [88]. Therefore
hormone expression have focused on the mature ieth intrinsic and extrinsic signals are necessary, but nei-
cell. Our increasing knowledge of the control of expre$ier is sufficient to cause gut endoderm to develop into
sion of cell-type-specific genes in the adult pancreasP@ncreas. Wessells and Cohen [88] showed that by €8.5
contrasted by a limited understanding of the develdp-the mouse the region of the embryonic foregut from
ment of differentiated cells in the pancreas. With the gibich the pancreas develops has acquired the ability to
velopment of powerful new molecular and genetic todiv€ rise to a differentiated pancreas, when explanted
and the availability of thg cell and pancreatic transcrip-and cultured in vitro. Formation of the pancreatic bud

tion factor genes, several questions in pancreatic deVéS observed only when the foregut was cocultured with
opment can now be approached. mesenchyme. These experiments indicate that dorsal gut

endodermal cells are committed towards a pancreatic
fate before the appearance of the first terminal differenti-
Pancreatic morphogenesis ation products. mRNA for pancreatic genes can be de-
tected before the first morphological evidence of pancre-

In the mouse at approximately embryonic day 9.5 (€9.8§, development [94], and it cannot be excluded that the
the dorsal pancreatic bud first appears as a bulge infﬂ;fgre pancreatic endodermal cells are subdivided into an
primitive gut endoderm, near the junction of the foreggpdocrlne and an exocrine compartment even before the
and midgut in the area that will become the duodendid forms. e
[88]. Shortly thereafter the ventral pancreatic bud arises.Préesumably, the fate of the individual endodermal
As the stomach and duodenum rotate, the ventral I§#S is determined by an intrinsic “epigenetic code” es-
and hepatopancreatic orifice move around until th@pllshed by the expression of a distinct set of transcrip-
come into contact, and around e16-17 fuse with the ddfen factors in the cells of the future pancreatic anlage.
sal bud [89]. As the buds grow, they rapidly form nefyn example of how transcription factors define the fu-
folds leading to a highly branched structure. Acini arffire fate of a set of cells comes from flies, where expres-
ducts become clearly distinguishable as histologicaf{Pn of the homeodomain protein engrailed in one half of
distinct structures by about e14.5 in the mouse. EVdls Wing imaginal disk determines a future posterior fate
though endocrine cells can be detected in the formigthese cells and renders them unresponsive to the se-
pancreas from the earliest stages (see below), islets, Wi#fed protein hedgehog [95, 96]. The factors that estab-
the characteristic distribution of insulin-expressing cefi§h the “epigenetic code” of the gut endoderm, however,
in the center and non-insulin-producing cells in the pat€ unknown. HNF-3x, B, andy are members of the
riphery, do not form until the end of gestation, at abo{gkhead pl_omam family pf transcription factors and were
e18.5 in the mouse [90]. Neogenesis of islets contindist identified as transcriptional regulators of hepatocyte
throughout neonatal life but ceases shortly after weangRfCific genes [97, 98]. During development they show a
[91, 92]. Thereafter no additional islets form, and islBgSted pattern of expression in the definitive endoderm,
cells do not exhibit appreciable growth during adult lifgdggesting that HNF-3 proteins are involved in pattering
[93]. Between birth and weaning, insulin gene expred- the primitive gut endoderm [99-101]. None of the
sion in theP cell increases, and the ability to sense glfilNF-3 class proteins, however, is expressed exclusively
cose and to regulate insulin secretion becomes estAphe future pancreatic region of the foregut, indicating
lished. that additional factors may be required to establish pre-
While this sequence of pancreatic development Rgtterning of the endoderm. Any of the pancreatic or gut
well established (Fig. 3), the signals that drive these d&nscription factors are potential candidates for this in-
velopmental events remain a mystery. Progress has JE&3iC signal, although it seems likely that a unique set
hampered by the lack of a suitable model system tR&factors is required.
would allow in vitro manipulations and monitoring of
subsequent developmental decisions. We list below fh@rinsic signals: what initiates pancreatic
{(_ey questions in pancreatic development and differentigrq formation?
ion.

The extrinsic signals that initiate outgrowth of the pan-
creatic bud from the endoderm are unknown, and it is
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Fig. 3 Scheme of the develop- Dates Anatomy Cell Types Events
ing mouse pancreas8.5 The
endodermal region that gives
rise to the future pancreas car- S
ries the “epigenetic code” to e8.5 , eaaa intrinsically prepatterned
become pancreas9.5-e10.5  m—

The dorsal and ventral pancre-
atic bud form. Mesenchymal
cells (ight gray) accumulate
around the dorsal gut epitheli-
um. e9.5—-e14.5Exocrine and
endocrine pancreas differenti-
ate. Epitheliomesenchymal in-
teractions promote growth and
differentiation of the pancreatic
anlage. Acini and ducts are his-
tologically differentiated by
e14.5 in the mouse; amylase
becomes detectable by immu-
nostaining at the same time.
Early endocrine cells are asso- e9.5-e14.5
ciated with the pancreatic

ducts, but islets have not yet

formed.e9.5-P]1 The islet cell

types differentiate; islets be-

come morphologically distinct

from the exocrine tissue by

e€18.5.P1-P21 The islet cells

mature during the first 3 weeks

of life. Ins, Insulin; Glu, gluca-

gor €9.5-P1

€9.5-e10.5

formation of the pancreatic buds;
accumulation of mesenchyme

differentiation of exocrine
versus endocrine pancreas

differentiation of islet cell types
islet formation

islet cell maturation
glucose sensing

P1-P21

Insulin

still unresolved which tissue provides the extrinsic signaleatic duct is controversial: either prior to or simulta-
for initiation of bud formation. Two sources of an extrimmeous with bud formation [88, 89, 94] or immediately
sic signal have been proposed: the notochord and fiblkowing bud formation [105]. Determination of exact
pancreatic mesenchyme. The notochord is known totlming, however, is important. Mesenchyme induces pan-
the source for other extrinsic signals in patterning of theeatic growth and differentiation in culture (see below)
developing embryo: it induces patterning of the mesand therefore could be the inducer of bud formation if it
derm and the neural tube; both events are most likedypresent at the appropriate time. The identification of
mediated by the protein sonic hedgehog [102—104]. Efetors that are required for bud formation will help to
ly dorsal gut endoderm is in direct contact with the notanswer this question.
chord, leading to the hypothesis that the inductive signal
for bud formation arises from the notochord [105]. To
date, the hypothesis that notochord produces an indDdferentiation: what are the signals for differentiation
tive signal for outgrowth of the pancreatic anlage stitito endocrine, exocrine and ductal cells?
lacks support by experimental evidence, and a mesen-
chymal origin of such signal cannot be excluded. Growth and cytodifferentiation of the pancreas is a clas-
At the same stage that the notochord abuts the dossalexample of mesenchymal-epithelial interaction [106].
gut endoderm the lateral sides of the gut are surrounékahcreatic mesenchyme is made of loose cells of meso-
by mesenchyme. When the notochord separates fromdkemal origin. By stimulating growth and differentiation
dorsal gut at around e9 the mesenchyme starts to aafudndifferentiated epithelium mesenchyme induces the
mulate on the dorsal site of the gut. The exact timinginoftial steps of organogenesis in a number of tissues, in-
mesenchyme accumulation in the area of the dorsal pelnding salivary gland, lung, and kidney. When grown in
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culture, pancreatic epithelial rudiments fail to proliferatea
and differentiate in the absence of mesenchyme [107]. It
is not clear whether the factors produced by mesenchy-
me are diffusable or require cell-cell contact [106, 108].
The identity of these mesenchymal factors remains elu-
sive. Sanvito et al. [109] showed that epithelial growth Q
factor promotes ductal development, and that transform-
ing growth facto31 promotes development of the endo-
crine cells in pancreatic bud cultures. However, it is un-
known whether these proteins are expressed in the mes-
enchyme surrounding the developing pancreas; therefore
their function for pancreatic growth in vivo remains to be

a-cell

B-cell

S-cell

PP-cell

OIONGAG)
B® O

determined. , . ) ) .
. .. . . undifferentiated earliest developing  mature islet
Differentiation of_ the three major pancreatl_c cell endothelial cell  endocrine islet cells cell types
types, ductal, exocrine and endocrine, may be induced cells

by different factors. Gittes and coworkers [108] separat-
ed pancreatic epithelium of 11-day mouse embryos from
its surrounding mesenchyme and cultured it under varig
ous conditions. When cultured under the renal capsule, Q > @ oecell
the rudiments gave rise to mature islets only; in a base-

ment membrane rich gel ductal structures formed; acinar @

structures, however, developed only in the presence of B-cell

mesenchyme. The results indicate that multiple factors /

are required for the various steps of pancreatic cytodif-

ferentiation. The identification of the transcription fac- O —> —_— 8-cell
tors required for differentiation will help in understand-

ing the timing and ultimately the signals that induce dif- \

ferentiation. PP-cell

: P ; ; undifferentiated  precursor mature islet
Differentiation: what determines the lineage endothelial cell cell cell types
of islet cells?

Fig. 4A, B Schematic diagram of the pancreatic islet cell lineage.
Although many authors have developed models abOUt,nglvlodel derived from coexpression studies during development.

let cell lineage, mostly based on coexpression studiesTié earliest endocrine cells in the mouse appear at €9.5. It is un-

the different hormones during development, the origin @¢ar whether all endocrine cells originate from an endocrine stem
the four islet cell lineages is still uncertain cell. Early in fetal development endocrine cells coexpress different

oo islet hormones and peptide YYYY). A direct lineage relation-
The appearance of the cell-type-specific hormones Rgg netween the early progenitors coexpressing glucagon and in-

been studied by reverse transcriptase-polymerase chaiim has yet not been established. Mature islet cells coexpress
reaction. Somatostatin mMRNA can be detected befosptide YY only in a small subset of celg.Model derived from
formation of the pancreatic anlage as early as e8; ins§fH ablation studies with diphtheria toxin driven transgenes. Glu-

. on and insulin promoter driven toxin constructs only ablated
and glucagon mRNA expression can be observed fr ir own cell type, while expression of the toxin driven by the PP

€9, PP from e10, and amylase mRNA from e12 [90, 94jomoter in addition to its own cell type also ablated somatostatin
The first hormones that appear in the primordial panceed insulin expressing cellgs, Insulin; Glu, glucagon;Som so-
as are glucagon and insulin at 9.5, followed by somafatostatinPP, pancreatic polypeptica
statin around e15 and PP at birth [110-112]. During de-
velopment immature endocrine cells coexpress a “pp-
fold” peptide, most likely peptide YY, but only a portiomgenic approach, driving expression of a reporter gene
of the adult islet cells continue to coexpress peptide ¥¥th the promoters of different islet cell hormone genes.
in addition to their principle product [112]. Coexpressiohll these approaches are based on the assumption that a
of insulin and glucagon has been observed in the earlsdsdrt promoter expresses the transgene with the same
endocrine cells, leading to the proposition that these céilésue specificity as the endogenous gene. However,
are precursors for the endocrine cells [113] (Fig. 4aore then 10 years of experience with transgenic ani-
However, coexpression does not prove a lineage relatiorals has taught us that correct expression of a particular
ship, since particular genes may be turned on and géhe often requires elements that are located far up- or
during development. A cell that expresses insulin duridgwnstream of the actual coding region. In addition, in-
early development may later switch off insulin gene etegration of the transgene at random positions in the ge-
pression and never develop into a mafucell. nome may result in an altered expression pattern. There-
To obtain more definite results about cell lineage fdre, the transgenic studies on islet cell lineage need to
the different islet cells, several groups have used a trapes-interpreted with caution. Alpert et al. [113] used the
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rat insulin promoter to drive expression of T-antigen afdanscription factors in pancreatic differentiation
during embryogenesis found coexpression of T-antigen
with all four islet cell hormones. In adult animals T-antiFhe intrinsic capacity of specific cells in the early gut
gen was detected only phcells. The same approach wasndoderm to become pancreas shows that these cells are
taken by Upchurch et al. [112] using the peptide Yphenotypically distinct from the cells in neighboring seg-
promoter. Coexpression of T-antigen with three of tmeents of the gut that lack this capacity. This phenotypic
four islet hormones was found during development kdistinction is presumably determined by the expression
very few islet cells expressed T-antigen in adult micef a unique set of transcription factors. The expression of
Both studies support the idea of islet progenitor cells tlthése transcription factors allows these cells to respond
coexpress different hormones (Fig. 4a). The data alsotimthe signals from the pancreatic mesenchyme or other
dicate that promoter function does not become fully redrrounding tissues that induce pancreatic growth and
stricted to one islet cell type until mature islets haeell differentiation. We are only beginning to understand
formed. the molecular signals and secondary nuclear events that
Diphtheria toxin A chain causes individual ablation dfigger the various steps in pancreatic differentiation.
cells expressing the toxin and has been widely usedUioderstanding these signals should also help us outline
study cell lineage relationships [114]. Its use, howevertle islet cell lineages.
limited by poor penetrance of toxin-encoding transgenes.In adult animals, expression of the homeodomain pro-
Herrera et al. [115] used a transient transgenic approsgin PDX-1 is limited largely to the pancreaficell and
to drive expression of diphtheria toxin by the insulinhe duodenal mucosa [53, 56, 78]; and it is known to
glucagon, or PP promoter. Toxin expression driven bwansactivate the insulin gene promoter [44, 51, 55]. In
the insulin or glucagon promoter only led to ablation ofiouse embryos PDX-1 expression precedes insulin and
the targeted cell type, suggesting that a hormone coglicagon expression and is first detected at €8.5 in the
pressing cell is not required faror B cell development. dorsal gut endoderm. One day later in development
By contrast, the PP promoter driven transgene led t®®@X-1 can be detected in all of the cells of the dorsal
loss not only of PP-expressing cells but also of insuliand ventral pancreatic buds and in the duodenal endo-
and somatostatin-producing cells (Fig. 4b). Unfortunatéerm between them [56]. Because of the timing of its ex-
ly, no prior studies were performed to determine tipeession and because of its location in the future pancre-
specificity of the arbitrarily chosen PP promoter, leadiragic region, PDX-1 was thought to be an intrinsic signal
to the possible explanation that the limited promotdetermining the region of the gut endoderm that would
shows less specificity than the native gene, and functidiezome pancreas [123]. When PDX-1 is removed from
in any islet cell. mice by targeted mutagenesis, the embryos fail to devel-
Without the ability to trace the fate of individual cellep a pancreas [78, 124]. Interestingly, the pancreatic
over time the exact islet cell lineage remains to be deteuds form in PDX-1-deficient mice, but subsequent mor-
mined. phogenesis and differentiation is arrested [78, 105], argu-
ing against a role for PDX-1 in these early patterning
events. The phenotype of the PDX-1 deficient mice dem-
Maturation: what signals maturation of glucose sensingnstrates the requirement for PDX-1 for growth and full
in the islet cells? differentiation of the pancreatic buds. However, despite
the absence of exocrine gene products and islet-like
Unlike adultp cells, insulin secretion is not stimulatedtructures, insulin- and glucagon-positive cells can be
by glucose in fetaP cells, although fetaP cells do re- detected in these early pancreatic rudiments, indicating
spond to other insulin secretagogues. Glucose sensitititgt PDX-1 is not essential for insulin gene transcription
is acquired after birth, and the response to glucose red&5]. The transcription factors that establish the intrin-
es maturity after weaning [116-119]. The matfireell sic signal, or “epigenetic code,” of the future pancreatic
senses glucose through its catabolic products; therforgut endoderm still need to be found, and careful studies
cell glucose sensing depends on the rate of glycolysfghe time and pattern of expression of transcription fac-
and specifically on the rate-limiting step for glycolysis itors present in gut endoderm will reveal potential candi-
the B cell, glucokinase [120, 121]. We do not knowlate genes.
which genes are responsible for the insensitivity of fetal Given the importance of transcription factor interac-
B cells to glucose, but both glucokinase and glucasens in gene expression, other transcription factors must
transporter 2, which allows the uptake of glucose into thkay equally important roles in pancreatic development.
B cell, are expressed in fetal as well as aduitells A more complete picture of the hierarchy of develop-
(Hayes-Jordan, Kalamares, German, unpublished datental signals will not arise until the expression patterns
[122]. The expression pattern of other genes involvedahthese factors during development and the phenotype
glucose metabolism and glucose sensing during islet déthe mice deficient in these factors have been charac-
velopment will help elucidate the mechanism of islet caéirized. Examples of potentially important factors in-
maturation. clude the homeodomain protein Nkx 6.1 that was cloned
from a hamste3 tumor cell library [54]. Similar to
PDX-1, Nkx 6.1 is expressed in the pancreatic bud, but
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onstrated [126]. Their expression pattern during develop-
ment and their role in islet cell differentiation remains to
be studied.

How do we determine which factors mediate each of
the steps in development outlined above? The construc-
tion and analysis of mutant mice deficient for the various
pancreatic transcription factors will provide new insights

Mouse with target locus Transgenic mouse  with into the molecular mechanisms of islet cell development.
flanked by loxP sites Cre gene linked to a Since many of these transcription factors may possess
cell-specific promoter (P)

multiple functions at different time points in develop-
ment, disruption of the genes at defined stages of devel-
opment or in specific tissues of the developing embryo
could provide a powerful tool to tackle those questions.
The most promising approach to realize such conditional
knockouts takes advantage of the bacteriophage Cre/loxP
recombinase system (Fig. 5) [127]. Cre is an enzyme that
excises the DNA between two recognition sequences,
termed loxP. Two independent strains of mice need to be
‘Tissue,ce”_specmc constructed. One strain must be modified by the intro-

expression of Cre duction of two loxP sites flanking the gene of interest.
The second strain carries a transgene that expresses Cre
under the control of an inducible or developmentally reg-
ulated promoter. When these two strains are crossed with

loxP

A each other, progeny are deficient for the gene only in

loxP those cells that expressed Cre during development [128,
129]. Use of the various cell-type-specific promoters of

the pancreatic islet genes to express Cre will provide im-

oxP portant insight into the role of different transcription fac-
o tors in determining islet cell lineage.

Tissue or cell-specific deletion of A at target locus

Fig. 5 Gene targeting using the Cre-loxP recombination syst :
can be used to inactivate a gene in a desired cell type. The m?&@clus'ons

with two loxP sites flanking the target locus A (typically a small ] o
gene or an internal exon which if deleted causes a frameshift milte data reviewed here demonstrate that transcription

tati?hn)dis GonstructedEtéy a”StaS“dahrd h0m0|0%0U3 rtecdom_?;]naff%tors binding to the islet cell specific genes not only
method using mouse cells. Such mice can be mated with pr ; i PO ;
ously constructed transgenic mice which carry an integrated Cgi‘_termlne cell specific gene expression in mature islets

struct consisting of the Cre recombinase gene linked to a tissd! also dictate developmental decisions in the differenti-

specific promoter B). Offspring which contain both the loxP-ation of pancreatic cell lineages. Therefore, our increas-

flanked target locus plus the Cre gene express the Cre gene iriflge knowledge of transcriptional regulation contributes

desired tissue type, and the resulting recombination be.twee“tgj‘eche understanding of the molecular events in develop-

loxP sites in these cells results in tissue-specific inactivation of the . . .

target locus mental decisions. Since 'development of techniques to
study the molecular basis of developmental processes
has progressed rapidly over the past few years, we may

later expression is restricted to the pancre@tazll. In  expect answers to many of the outlined questions within

contrast to PDX-1, Nkx 6.1 is expressed only in a subsetelative short period of time.

of cells in the early pancreatic bud, and early on is re-Our growing understanding of pancreatic develop-

stricted to insulin positive cells, pointing towards a rolment and3 cell differentiation will be applied to the de-

for Nkx 6.1 inf cell differentiation and function (Hayes-velopment of new therapies for diabetes. To datefthe

Jordan and German, unpublished data) [125]. Anotle&ll loss in insulin-dependent diabetes is terminal and

recently cloned protein, the bHLH protein Beta-2, h@snnot be reversed by regeneration of islets. As we learn

also a very restricted expression pattern. In adult tissnere about the function of these transcription factors, we

Beta-2 expression is limited to brain and islet cells [4Xhay apply this knowledge to the engineering of rfew

Its pattern of expression during embryogenesis remagadls in vitro that could be transplanted into patients. Al-

to be studied. Other homeodomain proteins that are &enatively, we may be able to provoBecell regenera-

pressed in the early developing pancreas, but also in ditm from precursor cells by gene therapy approaches.

er parts of the embryo, are Pax-6, Prox-1, and Hox11

(Table 1) [69-71]. Many other transcription factors are

expressed in mature islet cells, and for several of them a

contribution to insulin gene transcription has been dem-
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