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Abstract During the past decade nitric oxide hassonancelFN Interferon -IL Interleukin -LPS
emerged as an important mediator of physiological abhighopolysaccharide MBP Myelin basic protein MS
pathophysiological processes. Elevated nitric oxide bidultiple sclerosis NF Nuclear factor NOSNitric oxide
synthesis has been associated with nonspecific immusythase RT-PCRReverse-transcriptase polymerase
mediated cellular cytotoxicity and the pathogenesis diain reaction TGF Transforming growth factorTNF
chronic, inflammatory autoimmune diseases includifigimor necrosis facter
rheumatoid arthritis, insulin-dependent diabetes, inflam-
matory bowel disease, and mutiple sclerosis. Recent ewi
dence suggests, however, that nitric oxide is also ilntroduction
munoregulatory and suppresses the function of activated
proinflammatory macrophages and T lymphocytes iNultiple sclerosis (MS) is an autoimmune, inflammato-
volved in these diseases. This article reviews the rolergf demyelinating disease in which myelin and the my-
nitric oxide in the biology of central nervous system glialin-producing cells, oligodendrocytes, are destroyed.
cells (astrocytes and microglia) as it pertains to tMyelin, the multilayered membrane surrounding the ax-
pathogenesis of multiple sclerosis in humans and experi; is an active participant in nervous system function,
mental allergic encephalitis, the animal model of thésxd nerve conduction slows when myelin is disrupted. In
disease. Although nitric oxide has been clearly implica#tS plaque tissue oligodendrocytes appear to be dying in
ed as a potential mediator of microglia-dependent pringnecrotic fashion: they are hypertrophied, with swollen
ry demyelination, a hallmark of multiple sclerosis, studiuclei and disrupted plasma and mitochondrial mem-
ies with nitric oxide synthase inhibitors in the encephabranes. The prevalence of actively phagocytosing cells in
tis model have been equivocal. These data are criticalg plaques suggests destruction of myelin by activated
reviewed in the context of what is know from clinicainacrophages and suggests that free radicals of oxygen
research on the nitric oxide pathway in multiple sclerand nitrogen are at work in this pathology.
sis. Specific recommendations for future preclinical ani- It is clear that nitric oxide (NOe) is able to modulate
mal model research and clinical research on the nitifie induction of the immune response, permeability of
oxide pathway in patients are suggested. These studiesblood-brain barrier, trafficking of cells to the central
are necessary to further define the role of nitric oxide nervous system, and local responses in the inflammatory
the pathology of multiple sclerosis and to fully explommilieu. In this regard it might be predicted that NOe
the potential for nitric oxide synthase inhibitors as novebuld be both beneficial and harmful in an autoimmune
therapeutics for this disease. disease such as MS. This brief review explores both the
. . . . ) . hypothetical and the scientifically demonstrated relation-
Key words Multiple sclerosis - Nitric oxide - Microglia - ship between NO- and plaque formation in the CNS of
Astrocytes - Demyelination MS brains, with a discussion of the intervening steps in-

Abbreviations BDV Borna disease VirusGSE volving cytokines, adhesions molecules, and vascular
Cerebrospinal fluid EAE Experimental allergic changes at the blood-brain barrier. The contributrion

encephalomyelitis EPRElectron paramagnetic ends with a summary of the evidence in MS, in the ani-

mal model experimental allergic encephalomyelitis
J.F. Parkinson - B. Mitrovic - J. E. Merri[l{) (EAE), and in an in vitro model of oligodendrocyte dam-
Department of Immunology, Berlex Biosciences, age and death, for the presence and possible function of
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cific antibodies to either the ligand or receptor, soluble
receptors, or receptor antagonists ameliorates the disease
. . . . [20]. Physical or functional elimination of macrophages
It is clear that proinflammatory cytokines such as inte, EAE-susceptible animals prevents disease induc-

feron (IEN)y, interleukin (IL) 1, and tumor necrosis facyiqn 121] Pretreatment of EAE animals before disease
tor (TNF) a or ligands for the Fc receptor and complqrg

Cytokines in MS and EAE

. . nduction with anti-inflammatory cytokines such as IL-
ment receptor (C3biR) can activate macrophages ang, | 10 inhibits the disease [22—24] while IL-4 en-

glia to produce free radicals of oxygen and nitrogen Wi, ces the disease in one model [22]. IL-13 inhibits both
the rodent [1]. While proinflammatory cytokines do nQljnica| and histological signs in EAE and may do so
dlre(;:tly aﬁtlvateh adult h“ﬂ(afl‘ macrlqphzges ang gliaffiough its capacity to downregulate IL-1, TRE-and

produce NO-, they most likely amplify NO+ productionq. production by macrophages and microglia [23]. In a

incurred by additional membrane perturbations or t Eparate approach to inhibiting EAE, Khoury et al. [25]

cross-linking of cell surface molecules other than cylpzs e qemonstrated that myelin basic protein (MBP) in-
kine receptors [2-4]. In this regard proinflammatory,ceq oral tolerance is associated with the upregulation
cytokines could play a role in NOe production in the pesf TGF, IL-4, and prostaglandin E. Both MHCII and

ripheral immune system as well as in the CNS. . TNF-a production, elevated before the oral tolerance, are
It is very clear now from a variety of studies exami ownregulated in these myelin-fed animals.

ing proinflammatory cytokines at the protein and/or mR~" 046 st dies provide evidence for an association be-

NA levels in MS patients’ blood plasma, cerebrospingleen activated macrophages and microglia and their cy-

fluid (CSF), brain tissue, and cultured blood leukocytes,: : : o
that among other proinflammatory cytokines, IFNL- #kine products with the inflammatory loci in both MS

X 4 and EAE CNS tissue. In the case of EAE it is clear from
1, an((jj J:NNFG‘ are elevated (reV|de_vved In I[S, 6_12]|)\)|gNthe studies cited that the clinical and histological find-
aan y rises seem to predict a relapse in MS, afgys are dependent on the macrophage as an effector cell.

the number of circulating IFly-positive blood cells cor- tparafore the next PSR ;

: s guestion is: how do the cytokines
relates \.N'th moderate to severe d|sqb|l|ty [10-13]. ILvkhich are incriminated in lesion formation regulate
is constitutively produced by MS patients’ lymphocytegq.-

in vitro in the absence of stimulation, suggesting in vivo
activation [8]. Indeed, in clinical trials treatment of MS
patients with IFNy exacerbated the disease [14, 1 : : .
while treatment with IFN3 improved patients’ clinical %ytokme regulation of NO
scores [16]. It is believed that IFBlmay benefit MS pa-
tients by inhibiting IFNy inducible major histocompati-
bility antigen class Il (MHCII) genes, among others [17
Interestingly, the mRNAs for transforming growth factyis| cells and cell lines in vitro. Much of the regulation

TGF) B and IL-4, cytokines which can be both pro- angk \ . production in macrophages and glia r?as been

anti-inflammatory, are also elevated in MS patientsy jieq in the rodent. In humans such cells are clearly
blood cells as determined by in situ hybridization [10]. {;ined on to produce the type II, or inducible, NOS-2

As has been postulated for MS, EAE is a €D4ell ;
! . ', , i nd NOe when certain cell surface receptors are cross-
dependent, Thl-mediated disease in which MHCII is eFﬁﬂ(ed, these include CD4, a non-CD4 bF:ndlng site for

vated on macrophages and microglia. Early (even pf@y.1 cp23 and CD69 [2—4, 26]. The role of ¢ ;
s ; -1, . -4, 26]. ytokines
clinically) in EAE, IL-2, IL-2R, and IFNy are all elevat- j, 5,3 menting NO- induction in human glia and macro-

ed, while IL-4 and TNFa appear at the height of C"nica"_lr%ages in vitro may be very different from that in rodent
t

Table 1 summarizes numerous studies from the literature
hich examine NOe+ formation and nitric oxide synthase
NOS) enzyme expression in primary rodent and human

disease in the brains and spinal cords of these animalgs’in vitro and even different from effects in vivo in
[18]. The presence of IL-10 in brain tissue is correlatggd 1,1 disease [26, 27].

with recovery from disease [19]. Interference with TNI?'-
o or IL-1 function in vivo in EAE animals by use of spe-

Table 1 NOS isoform expression in rodent and human glial cell cul:tires

Cell type, species Isoform Stimuli References
Primary rat astrocytes NOS-1 Glutamate, norepinephrine, NMDA, dexamethasone 124-125
Primary rat astrocytes NOS-2 LPS, S-B00 126-132

Primary rat microglia NOS-2 LPS, IFN-TNF-q, IL-2, B-amyloid 28, 130, 133-135
Rat C6 glioma cells NOS-2 LPS, IFN-TNF-q, IL-13 126, 136-139
Primary mouse astrocytes NOS-2 IFINH-13 140-141

Primary mouse microglia NOS-2 LPS, IFN- 142-144

Mouse microglial cell lines NOS-2 LPS, IF-TNF-0, zymosan 145

Primary human astrocytes NOS-2 LPS, IFNFNF-a, IL-13 115-117, 119, 146
Primary human microglia NOS-2 LPS, IFNTNF-a, IL-13 115-117, 147

Human astrocytoma cells NOS-2 LPS, INNFNF-, IL-1 148-151
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NOe inducers: IFNy, TNF-a, and IL-1b from fetal brain tissue [26, 30] (Fig. 1), but not from

neonatal or adult brain-derived glial cells ([1, 26] and
IFN-y is a strong inducer of NOS-2 and NOe- in rat glithis laboratory’s unpublished observations). Stevenson et
and macrophages, and this production is synergistically [31] have shown that IL-12, probably through the in-
increased in the presence of THFer lipopolysaccha- duction of TNFe and IL-1B, induces NOe. IL-6 has no
ride (LPS; reviewed in [1, 27-29]). About half of theffect on NO- induction [32—34] nor does IfNalone
LPS-induced, but not IFN-induced, NOe+ is mediated[35—-37]. Nevertheless, mouse macrophages primed by
through TNFe [28]. IFN-y and IL-1b, but not LPS, aresuboptimal doses of LPS are triggered by I[Fk pro-
inducers of NOS-2 and NOe- in human glial cells derivetice NO- [37, 38].

NOe+ modulators: IL-13, TG, IL-4, and IL-10

Since it is clear that certain cytokines block EAE, and
that NO- is involved in EAE (see below), it is of interest
to know whether blockade of NOe« by these same cyto-
kines accounts for their inhibition of EAE. Doyle et al.
[39] report that IL-13 suppresses NOe production but not
respiratory burst and oxygen radicals in murine macro-
phages; this cytokine also suppresses Bi\NBkhough to

a lesser extent. Such a finding suggests a mechanism for
the inhibition of development of EAE by IL-13 [23]. It
also demonstrates the independence of oxygen and nitro-
gen free radical production in these cells. This is an im-
portant observation given that ON©@ay cause greater
damage in cells and tissues than NO-, but that bgth O
and NOe need not be inhibited at the same time for an ef-
fect by an anti-inflammatory cytokine. In cultures of ro-
dent macrophages and microglia it is almost universally
accepted that TGB-inhibits NOS-2 and NOe through
several mechanisms [28, 40—45]. These include inhibition
of transcription and translation of NOS-2, decreased sta-
bility of NOS-2 mRNA, increased degradation of NOS-2
protein, and stimulation of arginase, thereby depleting the
enzyme substratearginine [42—-44, 46, 47].

The effects of IL-4 and IL-10 on NOe production are
not as straightforward as the aforementioned cytokines.
The capacity of IL-4 and IL-10 to inhibit NOS-2 and
NOe appears to depend on pretreatment of the cells being
stimulated with IFNy; activated cells are not as easily or
not at all inhibited by IL-4 and IL-10 [48-59]. The
mechanism for this inhibition has been variously sug-
gested as through the reduction of TNNH53, 60, 61],
inhibition of the activation of protein kinase (58], or
induction of arginase [62]. These cytokines may synerg-
ize with each other or with TGB-[45, 50]. Still other
studies have found modest or no inhibition of NOe [1,
63] or an increase in NOe by IL-10 [47].

Depending on the state of activation of human mono-
c cytes/macrophages, IL-4 may up- or downregulate NOe.

IL-4 can directly induce NOS-2 and NOe production in
Fig. 1A—C Human fetal glial cells stained for NOSA.Polyclo- resting monocyt(.es from normal he:él.lthy human donors
naﬁ rabbit anti-human hgpatocyte NOS-2 antibody (1:1(¥0; gift §§4-67]. This activation can be amplified by pretreatment
Dr. David Geller, University of Pittsburgh) was used to stain se#ith IFN-y [65]. In spontaneously high NOe producer
ond-trimester human fetal microglia and astrocytes which wemgonocytes, especially those from allergy patients, IL-4

300 U/ml human recombinant IL-1B. The stimulated human glia ol - -
as inA, stained with normal rabbit serum at 1:1@0Human glia NO- in murine splenocytes [68]. The production of elevat-

which have not been induced with cytokines stained with anti-#ed NO« in allergy patients and the ability of IL-4 to induce
man hepatocyte NOS-2 asAv: NOe indirectly in peripheral blood mononuclear cells is
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probably related to the fact that cross-linking of the mokesponse in addition to cytokines or indirectly as the re-
cule CD23, the low-affinity IgE Fc receptor €Ril), by sult of its effects on cytokines? Mutant mice in which the
IgE or anti-FeR antibody leads to NOe [4, 69-71]. IL-ANOS-2 gene is defective, and which have been infected
induces IgE production as well as an increase in solubiéh Leishmania majohave a significantly stronger Thl
CD23 [69, 70]. Interestingly, high levels of IL-4 and NOype of immune response than wild-type mice [91], sug-
may ultimately feedback negatively, possibly through thesting that NOe- inhibits T cell responses, leading to de-
elevation of cAMP, on both IgE production and NQayed type hypersensitivity. NOs may inhibit T cell pro-
[69—71] which may explain the IL-4 inhibition of “spontaliferation [92], either through suppression of IFN93]
neously” produced NOe- from allergy patients [64]. or induction of prostaglandin,94]. NOe induces apop-

In cells which have not been stimulated by cytokinéssis of thymocytes and may do so as well in the CNS
or LPS, a brief rise in intracellular cAMP leads to a sm@@5]. Clearly the accessibility of NOe to intramolecular
but significant direct induction of NOS-2, as well as leadites explains its diverse effects on ion channels, tyrosine
ing to the amplification of NOS-2 and NO- by subsequekinases, phosphatases, and transcription factors, any of
cross-linking of CD23 [72]. However, in cells stimulatedhich may mechanistically account for alterations in the
by TNF-a, IL-1[3, or LPS, prolonged elevation of cCAMPjmmune response (reviewed in [96]). NO+ has also been
via adenyl cyclase activators (e.g., prostaglandjy Eshown to inhibit leukocyte adhesion and migration by its
phosphodiesterase inhibitors [adrenergic agonists, in-interference with CD11/CD18 (leukocyte functional anti-
hibits NOe production [1, 73, 74]. Phosphodiesterase ien 1) expression [97]. NOe also downregulates MHCII
hibitors such as pentoxifylline, isobutyl-methylxanthinexpression in macrophages, thereby inhibiting antigen
and iloprost variously inhibit TNI&- production, cytotox- presentation [98]. In other words, early in the disease
icity, and G~ production in addition to NOe productionprocess in MS or EAE NOe might actually protect
[74—77], possibly through the inhibition of nuclear factagainst autoimmune events initiated in the peripheral
(NF) kB which is involved in NO+ and TNE-induction blood.

[78]. Data supporting a role for both TNFand NO- in
EAE are therefore complemented by studies demonstrat
ing that the phosphodiesterase inhibitors pentoxifyllifvidence for NO » production in experimental models
and rolipram inhibit EAE in rodents and primates, moef MS and encephalitis
likely through the inhibition of cytokines, inflammation,
demyelination, and NOe [79-81]. Although the potential role of NOs and NOS-2 in the
pathogenesis of inflammatory disease has been appreci-
ated since the late 1980s, it is only recently that signifi-
NO « regulation of cytokines cant progress has been made in studying the role of NOe
in the pathogenesis of experimental animal models of
In some autoimmune diseases, including MS, a perniciddS and other neuroimmunological disorders. MacMic-
proinflammatory cycle may account for the clinical andng et al. [99] first reported elevated spontaneous NOe
histopathological chronicity. In this regard it is quite notand Q- release ex vivo by both peripheral and CNS-de-
worthy that NO« and/or ONOQirectly upregulates pro-rived neutrophils and mononuclear cells isolated from
duction of IL-13, TNF-, IL-8, and hydrogen peroxide inLewis rats with acute guinea pig spinal cord homoge-
macrophages. Nitrogen radicals also indirectly enhamzge-induced EAE. The release of both free radicals was
cytokine induction of TNF [82—88]. This induction is augmented by incubation of these cells with encephalito-
mediated at the transcriptional level possibly through thenic T cells, probably via the release of the proinflam-
induction of NkB [82, 83, 86]. Lander et al. [83] suggeshatory cytokines TNF, IL-1f3, and IL-2. An important
that NOe, through enhancement of GTPase activity andagpect of this study was the observation that both periph-
protein mediated events, stimulates the translocationeddl and CNS-derived cells produced NOe, suggesting
NFkB to the nucleus. Nevertheless, in some cases NO«that the inflammatory cells responsible for mediating
hibits LPS-induced ILf3 and TNFe in macrophages [87, EAE in this model are likely to be activated prior to en-
88]. In endothelial cells NOe inhibits KB translocation tering the CNS.
by stabilizing the complex of NB and its inhibitor by = Koprowski et al. [100] used NOS-2-specific oligonu-
preventing degradation of the inhibitor [89, 90]. Thesteotide primers and reverse-transcriptase polymerase
cases illustrate the complexity of the effects of free radiain reaction (RT-PCR) to evaluate NOS-2 induction in
cals in signal-transducing events in the macrophage at tfié brains of rodents with both encephalitic viral diseas-
ferent stages of activation and point to the danger in ges-and EAE. Intraocular injection of herpes simplex vi-
eralizing NOe effects on NdB in all cells. rus type 1 was associated with NOS-2 mRNA expression
in all six mice with clinical signs of encephalitis 5 and 6
days p.i., although not all animals showed histological
Other effects of NO * on the immune system signs of inflammatory cell infiltrates. In rats infected
with Borna disease virus (BDV) NOS-2 mRNA induc-
Is it possible that NOe protects against autoimmune dimn was observed to be highest on day 26 p.i., at a time
ease? Might NOe- regulate other aspects of the immumeen animals had severe neurological symptoms associ-
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ated with perivascular necrosis. The correlation of NOf®le of NO- in the pathogenesis of MS, which is a chron-
2 mRNA induction and disease symptoms was not, haw-disease.
ever, absolute. Similarly equivocal results were obtainedTaken together, the results of the above studies show
in mice treated with rabies virus, all seven of which ethat NOS-2 mRNA and protein (and presumably enzyme
hibited severe clinical symptoms, but only three of sevaativity) are induced in rodent EAE models of MS and
NOS-2 mRNA induction. In guinea pig MBP-inducedodent models of virally mediated inflammatory enceph-
acute Lewis rat EAE NOS-2 mRNA induction was evalitis. The potential for prolonged, high-output NOe bio-
dent prior to (days 5 and 9), during (day 13), and af®mthesis as a mediator of oligodendrocyte and neuronal
(day 19) clinical symptoms. We have obtained a vetgll death in these models is thus clear but asks the ques-
similar time course for NOS-2 mRNA induction in Lewtion as to how much NO- is actually produced in these
is rat EAE (Garcia-Merino, Medberry, and Parkinsomodels and is it sufficient to mediate cytotoxicity. A par-
unpublished observations). tial answer to this question has recently been provided
To date no definitive analysis has been reported in @y Hooper et al. [103] using a novel method for spin
EAE model for the kinetics of NOS-2 mRNA inductiortrapping NOe in vivo. The method involves infusion of
and NOS-2 protein expression in conjunction with in sianimals with diethyldithiocarbamate and ferrous sul-
hybridization and immunohistochemistry to identiffate/sodium citrate [104] for 30 min in vivo to trap NOe,
NOS-2 mRNA and protein localization at the celluldollowed by rapid tissue isolation and freezing in liquid
level. Such a study has been reported for the encephaliticogen prior to EPR analysis. In adoptive T cell trans-
BDV model in Lewis rats and provides useful informder Lewis rat EAE large amounts of NOe (20—3¥)
tion [101]. The mRNA for NOS-2 was not present iwere observed in the spinal cord on 4 and 5 days after T
brains of normal rats but was increasingly expressedcall transfer, correlating with hind limb paralysis on day
days 14, 17, and 21 postinfection. Maximal NOS-2 mR-and general paralysis on day 5. Although elevated NOs
NA expression at day 21 occurred when neurologidaVels were detected in brain, they were substantially less
signs of seizures, convulsions, and tremors were evidéhan in spinal cord, consistent with the ascending course
TNF-a mRNA expression, which would be predicted tof this disease with the spinal cord as the primary site of
precede NOS-2 mRNA expression, was maximal at dagion development. The same study examined BDV and
17 and significantly decreased at day 21. In situ hybridbies models to direct inflammation to the brain. In both
ization revealed that NOS-2 mRNA colocalized withiral diseases NOe production in the brain was highest at
BDV RNA in basolateral parts of the cortex and the hifhe time of onset of neurological symptoms: |11 on
pocampus but not other infected brain areas. The maatay 20 in BDV and 12—-3AM on days 5-7 in rabies.
phage marker ED-1 and NOS-2 antibody were used toThe importance of these observations with NOe spin
show colocalization of NOS-2 with macrophage cells traps in vivo is threefold. First, they establish that CNS
perivascular regions of the hippocampus. Not all EDtissues in both viral and T cell mediated encephalitis are
positive cells, however, were NOS-2 positive. exposed for prolonged periods to very high levels of
The reactivity of NOe with heme and nonheme iroNOe, which is known to mediate cellular cytotoxicity in
(Fe) centers to form electron paramagnetic resonamc@umber of in vitro model systems. If anything, the
(EPR) detectable Fe-NO complexes is well known asgin-trap technique used would grossly underestimate
formed the basis of an elegant study by Lin et al. [L0B amount of NOe« produced in vivo. Second, they estab-
of endogenous NOe formation in MBP-specific T cellish that high-output NOe synthesis localizes to the site
mediated adoptive transfer EAE. Definitive EPR specté inflammatory disease, i.e., predominantly spinal cord
of Fe-NO complexes of iron-sulfur proteins with a cham EAE and brain in rabies and BDV. Third, they confirm
acteristic g=2.04 signal were observed in all ten spirald extend the utility of a new technique to directly de-
cord samples from female SJL/J mice with EAE. Notéermine the efficacy of therapeutic agents directed at in-
bly, the size of the g=2.04 signal was higher in all mitgbiting NO+ production in the CNS, such as NOS inhib-
with EAE (intensity index 1.8-5.0) than in controls (initors or inhibitors of NOS-2 induction (see below).
tensity index 0—1.4) and was correlated with clinical dis-
ease in all cases. No evidence for the formation of ERR
detectable Fe-NO complexes was detected in periph®@$ inhibitors in EAE
tissues such as spleen, liver, and blood of the affected an-
imals. In contrast to acute EAE in Lewis rats, which tyg-he studies described above provide a strong rationale
ically exhibit an acute monophasic disease, the SJfdd testing the potential efficacy of NOS inhibitors in
EAE model in this study exhibited a chronic relapsingreating EAE. The first reported study of an NOS inhibi-
remitting disease course with animals exhibiting clinicidr in EAE was by Cross et al. [105] using MBP-specific
symptoms for prolonged periods after T cell transfér.cell adoptive transfer in SJL/J mice. Aminoguanidine,
The observation that EPR-detectable NO« adducts coalfhirly selective but weak inhibitor of NOS-2, was used
be detected in spinal cords of animals with EAE #&dr the study at high doses: 100 and 200 mg/kg s.c. or
14-75 days posttransfer strongly supports the contentfl® mg/kg i.p. daily, with treatment starting on the day
that NOe is an important mediator of chronic inflammaf T cell transfer. These doses and routes of administra-
tion. This is important when considering the potentiibn of aminoguanidine were selected based on in vivo
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inhibition of NOS-2 in a systemic model of LPS-induciﬁ . . .
endotoxemia in the same mouse strain. A substantidljfure studies on the role NO + in the pathogenesis
lower mean maximum clinical score was observed at 4f0FAE and other encephalitic diseases
and 200 but not at 100 mg/kg in aminoguanidine-treated
animals than in those receiving placebo. A delay in diBhe studies reviewed above clearly show that substantial
ease onset was observed only at 400 mg/kg. Histologigedgress has been made towards identifying NO+ as a po-
analysis of spinal cords from EAE mice revealed a rential toxic mediator in inflammatory encephalitic dis-
duction in inflammation, demyelination, and axonal neases. However, much research is still required to con-
crosis, which reached significance at the highest das#idate the concept that NOs is central to disease patho-
only. The potential for nonspecific effects of aminoguagenesis, and that blocking NOS-2, either by direct en-
idine on the immune system was tested by assessingzijrae inhibitors or by indirect antagonists of enzyme in-
effect of aminoguanidine on proliferation of MBP-speduction, would be an effective means for treatment.
cific T cells in response to MBP or concanavalin A. Al- To date there is still a lack of definitive data on the ki-
though no effect of aminoguanidine was observed npatics of NOS-2 induction in any EAE model and its cor-
MBP-treated cells, an effect on concanavalin-treateslation with disease onset/recovery and localization.
cells was observed in one experiment. Specifically, further studies are required to (a) define the
We have observed very similar results with high-dopeecise kinetics and cellular localization of NOS-2 mR-
aminoguanidine treatment (200-400 mg/kg per day) NA induction prior to, during, and after development of
both MBP-peptide induced and T cell adoptive transfelinical signs; (b) test the correlation of the kinetics of
EAE in PLJ/SJL F1 female mice. At both doses of amifOS-2 mRNA induction with immunohistochemical lo-
noguanidine significant inhibition of disease incidencealization of NOS-2 protein, enzyme activity, and NOe
maximal severity, duration, and cumulative score wef@mation specifically due to NOS-2 and not other NOS
observed and were associated with decreases in the nigoferms; (c) and compare NOS-2 mRNA, protein, and
ber of inflammatory foci in both the meninges and panzyme activity in acute EAE models with monophasic
renchyma (Brenner, Parkinson, Perez, and Steinman, disease versus chronic relapsing/remitting EAE.
published results). The importance of analyzing the precise cellular local-
NOS inhibitors have also been studied in Lewis refation of NOS-2 expression in these disease models can-
EAE and experimental allergic neuritis [106]. Fauar- not be stressed too highly, since this is likely to lead to a
ginine analog NOS inhibitors were testédmonometh- better understanding of the potential role of NOe- in dis-
yl-L-arginine (100 mg/kg p.o. daily)N-nitro-L-arginine ease pathogenesis. The cell types that seem most relevant
(87.5 mg/kg p.o.), aminoguanidine (50 and 200 mg/itg the study of EAE are resident CNS microglia, blood-
i.p.) andN-nitro-L-arginine methyl ester (150 mg/kg i.p.)borne macrophages that enter the CNS, perivascular mac-
Ammonium acetate was used as a control. In experimesphages, T cells, and endothelial cells. With the excep-
tal allergic neuritis a modest protective effect on diseas®n of perivascular macrophages, all these cell types have
score, compound muscle action potential, demyelinatityeen shown to have a cytokine-inducible NOS-2, at least
and inflammation was seen flfrmonomethyle-arginine in vitro. As summarized in Fig. 2, high-output NOe bio-
only. N-Nitro-L-arginine methyl ester had a modest effesynthesis could play a number of roles in the pathogene-
on clinical score only, and neither aminoguanidineMor sis of EAE. Activated resident microglia and blood-borne
nitro-L-arginine had any effect on any parameter studiedacrophages could contribute to primary demyelination
In EAE no beneficial effect of any compound was olhrough NO+ mediated killing of oligodendrocytes. Due
served. Another EAE study in Lewis rats usigitro-L- to their close apposition to the endothelium, induction of
arginine (125 mg/kg twice a day i.p.) aNdmonomethyl- NOS-2 in astrocytes and/or perivascular macrophages
L-arginine (22519/kg once a day by intraventricular incould maintain or even exacerbate loss of blood-brain
jection) showed a modest exacerbation of clinical scobayrrier function [108—109], an aspect of EAE which is
suggesting a protective role for NO«- in this model [107]not often studied. Endothelial cells could use endothelial
The disparity between the aminoguanidine results dbype 3) NOS, or NOS-2 as a compensatory mechanism
tained in Lewis rat EAE and those in SJL/J mouse EAEsIimit cellular traffic across the endothelium via down-
difficult to reconcile. The Lewis rat study did use loweargulation of adhesion molecules or chemokine release.
doses and a different route of administration than tAe additional immunomodulatory role for NOS-2 could
SJL/J study, and these differences may account in partderlocal regulation of the inflammatory response in the
the disparity. An additional shortcoming of both theseNS via NOs mediated apoptosis and/or necrosis of mac-
studies is that neither showed that the administered N@fhages and encephalitogenic T cells.
inhibitor actually inhibited NOS-2 in situ, or that NOs With regard to the use of NOS inhibitors for treatment
production in the affected tissue was actually blockesf. EAE there is clearly a need for much better tools to
Access to these data and more information regarding pleeform these studies. The current generation of sub-
bioavailability of aminoguanidine and other standerd strate-based NOS inhibitors, such as aminoguanidine,
arginine analog NOS inhibitors to the spinal cord of bothethyl+-arginine, andN-nitro-L-arginine, appear to have
rats and mice would help to rationalize these observati@ugrun their utility for testing this concept. Their lack of
and provide direction for future research. both potency and clearly demonstrable CNS bioavailabili-
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Fig. 2 The role of NO in the pathogenesis of MS and EAE. Tistand the role of NOS-2 in EAE pathogenesis? Fortu-
schematic presentation shows three phases in the pathogenesfiﬁiggw transgenic NOS=2 (knockout) mice have recent-
human MS and rodent EAE: adhesion, activation, and demyelina- ' -

tion. Extravasation of encephalitic T cell§ @nd circulating mac- ’IS?been ge_nerated [35, 9.1] and are _currently being back-
rophages NI@) from the vessel lumen to the CNS parenchyma @ ossed with mOUS.e strains SUS(_:eptlble to EAE and other
mediated by chemotactic stimuli (not shown) and the expressgpontaneous autoimmune and inflammatory diseases. It
of adhesion moleculessglid circleg on brain endothelial cells js anticipated that data on the effect of the NO'Sghe-

(E). Release of small amounts of nitric oxid&(*) by endothelial ; ; ; ; }
nitric oxide synthaseNOS-3 may act locally as a homeostaticnOtype on EAE will be available in the not too distant fu

mediator () to downregulaté adhesion molecule expression andtfe. Alternatively, as reviewed above, a number of ap-
cell or macrophage activation status. In the parenchyma the peeaches to inhibiting inflammation have been or are be-

lease of the proinflammatory cytokines IFNTNF-0, and IL-13  ing tested for treatment of EAE. These include blocking

(2) results in activation of perivascular macrophag®M@), as- nrginflammatory cytokines such as TNFer IL-1f by
trocytes f\), macrophages and microglia); including expression

of inducible NOS KOS-2. High-output NO- and superoxideUsing €ither neutralizing antibodies, receptor antagonists,
(O,~) release, which can react to form the powerful oxidant pé¥ inhibitors of synthesis (e.g., phosphodiesterase inhibi-
oxynitrite (ONOO), are proposed to mediate nonspecific tissuters), blockade of chemokines such as macrophage in-
damage at two sites. Oxidants released by perivascular magi@mmatory protein & [109] and treatment with anti-in-

phages and astrocytes may exacerbate loss of blood-brain b .
function @) by promoting endothelial dysfunction. Oxidants rg‘fféerhmatory cytokines such as IL-10, T@Fand IL-13.

leased by phagocytic macrophages and microglia may also cBfhough evidence for downregulation of NOS-2 using

tribute to primary demyelinatior via nonspecific damage to thethese approaches exists in vitro, the effects of these treat-

Egysligemee?thh OFf’o&tlé(r?tri]:l ﬁ)f;gs I%Cr)mNOCt)iggz ?H%C(gwﬂiggﬂfaq%rgﬁwr?ent strategies on NOS-2 induction in vivo have yet to

3 ' . e e characterized. Is the efficacy of these agents correlat-

inflammatory response are discussed in the text ed with NOS-2 blockade, or do they work without affect-

ing NOS-2 induction and NOe production? Answers to

ty appears severely to limit their utility for EAE treatthese questions are clearly necessary to define the role of

ment. Their known lack of selectivity renders any efficdNOS-2 and NO- as a central pathological mechanism in

cy results achieved with them in EAE highly suspect BAE.

the absence of any clear pharmacological evidence that

their administration leads to NOS-2 inhibition without in

hibition of neuronal (type 1) NOS or endothelial (type Evidence for NO ¢ induced damage of oligodendrocytes

NOS activity. Although an intense effort has been madm vitro

at the current time there does not appear to have been a

significant advance in the design of potent, selectilre culture the myelin-producing cell, the oligodendro-

NOS-2 inhibitors with sufficient pharmacological profilcyte, is vulnerable to toxicities mediated by complement,

ing in the CNS to achieve a breakthrough in this area. antibodies, cytokines, oxygen free radicals, and nitric ox-
Given the limitations of the current generation afle produced by macrophages [28, 29, 33, 111]. Studies

NOS-2 inhibitors, what can be done to further undgrerformed in this laboratory have demonstrated anyiFN-
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induced, NOe« dependent microglia cell-mediated cytQ-. . .
toxicity of oligodendrocytes [28]. Ameboid rodent mig}"leles“ce for involvement of NO « in the pathology
croglial cells, after treatment with phorbol myristate ac!

S conber 1% Produce micromolar coneenIanioct and ndirect methads for the presence of NO» and
godendrocyte lysis, is inhibited by NOS inhibitors aqg‘e induction of NOS-2 have recently been reported in

anti-TNF< antibodies, thus suggesting that NO- is tH4> Patients. Analysis of CSF from MS patients has

mechanism of macrophage/microglial cell killing of oli$"OWN increased levels of nitrate and nitrite compared

godendrocytes. These in vitro results suggest a dirdé{! noor|n|1al ?on&rols [118]. The same stu?yhrepNoorttsedZin-
role for NO in oligodendrocyte cell loss and primary d&'€ased levels of neopterin, a precursor of the ~ en-
myelination in EAE and MS in vivo. zyme cofactor tetrahydrobiopterin, in CSF from MS pa-

We have also examined the differential effects of jigntsng%reaction of NO- with 8 forms peroxglni- .
tric oxide on primary glial cells in vitro [112]. Cultured!t€: ONOG; a strongransnitrosating agent capable o

enriched for microglia, astrocytes, or oligodendrocyt@iirosating susceptible protein thiols, such as cysteine.
is chemical reaction may result in formation of nitro-

were treated with S-nitrosid-acetyl b,L-penicillamine, . ¢ X . )
an NOe releasing chemical. There was a significant q-amino acids, such as nitrosocysteine, potentially mak-

crease in the function of the ferrosulfur-containing mitd9 them immunogenic. It is therefore of interest that
chondrial enzyme, succinate dehydrogenase, in 0|i§(5gn|f|cantly elevated levels of circulating IgM antibod-
es

dendrocytes and astrocytes treated with S-nittbsme- to a conjugate8-nitroso-cysteine epitope have been
tyl b,L-penicillamine, whereas microglia were unaffec letected in MS sera compared with sera from patients af-
ed. In addition, morphological changes and singl cted with other neurological and autoimmune diseases

stranded DNA breaks occurred in oligodendrocytes But2l: Both of these studies provide indirect evidence for
not in astrocytes and microglia. Oligodendrocytes wef chronic production of elevated NO- levels in MS.
also less easily rescued from the toxic effects of NOs %Work from three different laboratories has shown evi-

: ; for the induction of NOS-2 in the brains of MS pa-
oxyhemoglobin than were astrocytes. A subpopulation $i"c€ .
oligodendrocytes were killed by NO- via a necrotic, noHENtS: Brosnan et al. [120] demonstrated intense NADPH

. aphorase histochemical staining colocalized with glial

apoptotic mechanism [113]. These findings strongly s rillary acidic protein staining of astrocytes, as well as
t that the myelin-producin Il is mor nsitiv > AN
ges e myelin-prod g ce ore se eWlth TNF-a and IL-13, in acute MS lesions. Bo et al.

NO- than the other two glial cell types. %‘@1] have also demonstrated NADPH diaphorase histo-
[

Several laboratories have examined in vitro producti . O X . ;
of NO» by human blood macrophages and microg| emical staining in the brains of MS patients. According

While some reports have failed to detect NO- synthesisgnth® morphology of the cell and glial fibrillary acidic

macrophages stimulated with LPS and cytokines suchP&&i€in immunoreactivity, they too concluded that the
IFN-y or IL-18 alone, other studies have demonstrat jority of NOe producing cells were reactive astrocytes.

; ; Iso showed by semiquantitative RT-PCR that the
that human macrophages are capable of producing micrg8€y 2 ) !
molar concentrations of NO+ upon cross-linking of cdffVe!S of NOS-2 mRNA were markedly higher in MS

surface molecules other than cytokine receptors [114]. jj&ins than in normal brains. Due to the lack of specifici-

terestingly, human and rodent macrophages differ not gh.Cf the NADPH diaphorase stain [122], however, nei-
ly in stimulus required for NOs induction but also th er of these studies unequivocally elucidated the cellular

time required to detect NO in cell culture supernatanQUrce Of NOS-2 and hence NO- in MS tissue. Quite re-
IFN-y, IL-1B, and TNFe induce production of micromo- cently, Bagasra et al. [123] have demonstrated more di-

lar concentrations of NOe by rodent macrophages and? tly the source of NOS-2 mRNA and functionality of

so within 24 h. Human macrophages require 3-5 days NS 2 €nzyme in MS tissue. The mRNA for NOS-2 was
ter stimulation before NO is detectable [114]. etectable in all the brains examined from patients with

Human glial cells have been reported to produce n¥Me and other neurological diseases but in none of the

i trol brains. In situ RT-PCR experiments also demon-
but can be distinguished from human blood macrophal g :
in that LPS can stimulate NO- production in malignant arat€d the presence of NOS-2 mRNA in the cytoplasm of

trocytoma cell lines. The best inducer of NO- productid}® Cells which expressed the ligand recognized by the
in normal human fetal astrocytes is IB-dlone or in com- RICINUS communisagglutinin 1, a marker for macro-
bination with other cytokines such as IF§t15]. LPS is Phage/microglia. In addition, the presence of nitrosylated
not a good inducer in these cells. Colasanti et al. [1PEL€INS in MS lesions was assessed with an anti-nitroty-
have reported induction of NOS-2 mRNA by LPS af@>ne antibody and found to colocalize with NOS-2 mR-
IFN-y in human microglial cells as determined by usi and protein in these macrophage/microglial cells.
RT-PCR and Southern analysis. We have also demonstf3gS€ observations are very significant since they indi-
ed the production of NOS-2 and NO» in cultures of fefffl€ not only the presence of active NOS-2 enzyme in
human microglia and astrocytes. Glia from adult brain t{facrophage/microglial cells of the MS lesion but also
sue also produce NO+ but not in response to cytokif@gcomitant @ production, the formation of ONOGO
alone, suggesting differential developmental regulation@{d subsequent protein nitrosation.

NOS-2 ([116, 117] and manuscript in preparation).
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Future studies on the role of NO ¢ in the pathogenesis References

of MS

1.
These early studies with human brain tissue and fluids
clearly point to NOe« as a potential toxic mediator in the
inflammatory, demyelinating pathology of MS. The his- 2.
topathological studies in human MS brains are in general
agreement with those in rodent EAE, with mounting evi-
dence for the formation of NO+ by both astrocytes and
macrophages/microglia. The latter cells appear to be the
major, but not exclusive, site of ONO@rmation, most 3.
likely through interaction of NOe produced by NOS-2
with O, produced by the respiratory burst NADPH-oxi-
dase of these cells. The local production of NOs*O
ONOO:, and other oxidizing free radicals via activation 4.
of both these enzyme systems in macrophages/microglia
may contribute directly to oligodendrocyte destruction
and primary demyelination in vivo. This hypothesis is
consistent with an effector function for activated, phago-
cytic macrophages/microglia in MS pathology and an5.
“innocent bystander” role for the oligodendrocyte. The
potential contribution of astrocyte NOS-2 to MS or eveng
EAE pathology is far less clear, as is any immunomodu-
latory role on immune cell function.

In order to better understand the role of NO- in the’-
pathogenesis of MS further studies are clearly needed.
We would suggest: (a) a precise analysis of NOS-2 ex-
pression and cellular localization in the brain with re-8.
spect to the state of the lesion (active vs. chronic) and
also clinical disease stage (i.e., chronic vs. relapsing—reg
mitting) and (b) a more complete analysis of CSF or oth-"
er body fluids of MS patients for NOs metabolites such
as nitrite, nitrate, 3-nitrotyrosine, or nitrosylated proteins
and correlation of these with disease stage (chronic V&
relapsing-remitting).

The studies suggested above will shed further light on
the role of NO- in the pathogenesis of MS and will likelyl1.
provide further support for the development of NOS-2
inhibitors as potential MS therapeutics. The analytical
techniques for NOe related metabolites are constantly bes.
ing enhanced. These tools are likely to be of value for
clinical research neurologists with an interest in deter-
mining the effect of current and novel MS treatment reg-
imens on the NOS-2 pathway in vivo and the correlation™
of NOS-2 blockade, if any, with clinical outcome.
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