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&p.1:Abstract During the past decade nitric oxide has
emerged as an important mediator of physiological and
pathophysiological processes. Elevated nitric oxide bio-
synthesis has been associated with nonspecific immune-
mediated cellular cytotoxicity and the pathogenesis of
chronic, inflammatory autoimmune diseases including
rheumatoid arthritis, insulin-dependent diabetes, inflam-
matory bowel disease, and mutiple sclerosis. Recent evi-
dence suggests, however, that nitric oxide is also im-
munoregulatory and suppresses the function of activated
proinflammatory macrophages and T lymphocytes in-
volved in these diseases. This article reviews the role of
nitric oxide in the biology of central nervous system glial
cells (astrocytes and microglia) as it pertains to the
pathogenesis of multiple sclerosis in humans and experi-
mental allergic encephalitis, the animal model of this
disease. Although nitric oxide has been clearly implicat-
ed as a potential mediator of microglia-dependent prima-
ry demyelination, a hallmark of multiple sclerosis, stud-
ies with nitric oxide synthase inhibitors in the encephali-
tis model have been equivocal. These data are critically
reviewed in the context of what is know from clinical
research on the nitric oxide pathway in multiple sclero-
sis. Specific recommendations for future preclinical ani-
mal model research and clinical research on the nitric
oxide pathway in patients are suggested. These studies
are necessary to further define the role of nitric oxide in
the pathology of multiple sclerosis and to fully explore
the potential for nitric oxide synthase inhibitors as novel
therapeutics for this disease.
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Introduction

Multiple sclerosis (MS) is an autoimmune, inflammato-
ry, demyelinating disease in which myelin and the my-
elin-producing cells, oligodendrocytes, are destroyed.
Myelin, the multilayered membrane surrounding the ax-
on, is an active participant in nervous system function,
and nerve conduction slows when myelin is disrupted. In
MS plaque tissue oligodendrocytes appear to be dying in
a necrotic fashion: they are hypertrophied, with swollen
nuclei and disrupted plasma and mitochondrial mem-
branes. The prevalence of actively phagocytosing cells in
the plaques suggests destruction of myelin by activated
macrophages and suggests that free radicals of oxygen
and nitrogen are at work in this pathology.

It is clear that nitric oxide (NO•) is able to modulate
the induction of the immune response, permeability of
the blood-brain barrier, trafficking of cells to the central
nervous system, and local responses in the inflammatory
milieu. In this regard it might be predicted that NO•
could be both beneficial and harmful in an autoimmune
disease such as MS. This brief review explores both the
hypothetical and the scientifically demonstrated relation-
ship between NO• and plaque formation in the CNS of
MS brains, with a discussion of the intervening steps in-
volving cytokines, adhesions molecules, and vascular
changes at the blood-brain barrier. The contributrion
ends with a summary of the evidence in MS, in the ani-
mal model experimental allergic encephalomyelitis
(EAE), and in an in vitro model of oligodendrocyte dam-
age and death, for the presence and possible function of
NO• in preventing and/or perpetuating the disease pro-
cess.
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Cytokines in MS and EAE

It is clear that proinflammatory cytokines such as inter-
feron (IFN) γ, interleukin (IL) 1, and tumor necrosis fac-
tor (TNF) α or ligands for the Fc receptor and comple-
ment receptor (C3biR) can activate macrophages and
glia to produce free radicals of oxygen and nitrogen in
the rodent [1]. While proinflammatory cytokines do not
directly activate adult human macrophages and glia to
produce NO•, they most likely amplify NO• production
incurred by additional membrane perturbations or the
cross-linking of cell surface molecules other than cyto-
kine receptors [2–4]. In this regard proinflammatory
cytokines could play a role in NO• production in the pe-
ripheral immune system as well as in the CNS.

It is very clear now from a variety of studies examin-
ing proinflammatory cytokines at the protein and/or mR-
NA levels in MS patients’ blood plasma, cerebrospinal
fluid (CSF), brain tissue, and cultured blood leukocytes
that among other proinflammatory cytokines, IFN-γ, IL-
1, and TNF-α are elevated (reviewed in [5, 6–12]). TNF-
α and IFN-γ rises seem to predict a relapse in MS, and
the number of circulating IFN-γ positive blood cells cor-
relates with moderate to severe disability [10–13]. IL-1
is constitutively produced by MS patients’ lymphocytes
in vitro in the absence of stimulation, suggesting in vivo
activation [8]. Indeed, in clinical trials treatment of MS
patients with IFN-γ exacerbated the disease [14, 15]
while treatment with IFN-β improved patients’ clinical
scores [16]. It is believed that IFN-β may benefit MS pa-
tients by inhibiting IFN-γ inducible major histocompati-
bility antigen class II (MHCII) genes, among others [17].
Interestingly, the mRNAs for transforming growth factor
TGF) β and IL-4, cytokines which can be both pro- and
anti-inflammatory, are also elevated in MS patients’
blood cells as determined by in situ hybridization [10].

As has been postulated for MS, EAE is a CD4+ T cell
dependent, Th1-mediated disease in which MHCII is ele-
vated on macrophages and microglia. Early (even pre-
clinically) in EAE, IL-2, IL-2R, and IFN-γ are all elevat-
ed, while IL-4 and TNF-α appear at the height of clinical
disease in the brains and spinal cords of these animals
[18]. The presence of IL-10 in brain tissue is correlated
with recovery from disease [19]. Interference with TNF-
α or IL-1 function in vivo in EAE animals by use of spe-

cific antibodies to either the ligand or receptor, soluble
receptors, or receptor antagonists ameliorates the disease
[20]. Physical or functional elimination of macrophages
from EAE-susceptible animals prevents disease induc-
tion [21]. Pretreatment of EAE animals before disease
induction with anti-inflammatory cytokines such as IL-
13 or IL-10 inhibits the disease [22–24] while IL-4 en-
hances the disease in one model [22]. IL-13 inhibits both
clinical and histological signs in EAE and may do so
through its capacity to downregulate IL-1, TNF-α, and
NO• production by macrophages and microglia [23]. In a
separate approach to inhibiting EAE, Khoury et al. [25]
have demonstrated that myelin basic protein (MBP) in-
duced oral tolerance is associated with the upregulation
of TGF-β, IL-4, and prostaglandin E. Both MHCII and
TNF-α production, elevated before the oral tolerance, are
downregulated in these myelin-fed animals.

These studies provide evidence for an association be-
tween activated macrophages and microglia and their cy-
tokine products with the inflammatory loci in both MS
and EAE CNS tissue. In the case of EAE it is clear from
the studies cited that the clinical and histological find-
ings are dependent on the macrophage as an effector cell.
Therefore the next question is: how do the cytokines
which are incriminated in lesion formation regulate
NO•?

Cytokine regulation of NO•

Table 1 summarizes numerous studies from the literature
which examine NO• formation and nitric oxide synthase
(NOS) enzyme expression in primary rodent and human
glial cells and cell lines in vitro. Much of the regulation
of NO• production in macrophages and glia has been
studied in the rodent. In humans such cells are clearly
turned on to produce the type II, or inducible, NOS-2
and NO• when certain cell surface receptors are cross-
linked; these include CD4, a non-CD4 binding site for
HIV-1, CD23, and CD69 [2–4, 26]. The role of cytokines
in augmenting NO• induction in human glia and macro-
phages in vitro may be very different from that in rodent
cells in vitro and even different from effects in vivo in
human disease [26, 27].

Table 1 NOS isoform expression in rodent and human glial cell cultures&/tbl.c:&tbl.b:

Cell type, species Isoform Stimuli References

Primary rat astrocytes NOS-1 Glutamate, norepinephrine, NMDA, dexamethasone 124–125
Primary rat astrocytes NOS-2 LPS, S-100β 126–132
Primary rat microglia NOS-2 LPS, IFN-γ, TNF-α, IL-2, β-amyloid 28, 130, 133–135
Rat C6 glioma cells NOS-2 LPS, IFN-γ, TNF-α, IL-1β 126, 136–139
Primary mouse astrocytes NOS-2 IFN-γ, IL-1β 140–141
Primary mouse microglia NOS-2 LPS, IFN-γ 142–144
Mouse microglial cell lines NOS-2 LPS, IFN-γ, TNF-α, zymosan 145
Primary human astrocytes NOS-2 LPS, IFN-γ, TNF-α, IL-1β 115–117, 119, 146
Primary human microglia NOS-2 LPS, IFN-γ, TNF-α, IL-1β 115–117, 147
Human astrocytoma cells NOS-2 LPS, IFN-γ, TNF-α, IL-1β 148–151

&/tbl.b:
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Fig. 1A–C Human fetal glial cells stained for NOS-2. A Polyclo-
nal rabbit anti-human hepatocyte NOS-2 antibody (1:100; gift of
Dr. David Geller, University of Pittsburgh) was used to stain sec-
ond-trimester human fetal microglia and astrocytes which were
stimulated for 72 h with 500 U/ml human recombinant IFN-γ and
300 U/ml human recombinant IL-1b. B The stimulated human glia
as in A, stained with normal rabbit serum at 1:100. C Human glia
which have not been induced with cytokines stained with anti-hu-
man hepatocyte NOS-2 as in A &/fig.c:

NO• inducers: IFN-γ, TNF-α, and IL-1b

IFN-γ is a strong inducer of NOS-2 and NO• in rat glia
and macrophages, and this production is synergistically
increased in the presence of TNF-α or lipopolysaccha-
ride (LPS; reviewed in [1, 27–29]). About half of the
LPS-induced, but not IFN-γ induced, NO• is mediated
through TNF-α [28]. IFN-γ and IL-1b, but not LPS, are
inducers of NOS-2 and NO• in human glial cells derived

from fetal brain tissue [26, 30] (Fig. 1), but not from
neonatal or adult brain-derived glial cells ([1, 26] and
this laboratory’s unpublished observations). Stevenson et
al. [31] have shown that IL-12, probably through the in-
duction of TNF-α and IL-1β, induces NO•. IL-6 has no
effect on NO• induction [32–34] nor does IFN-β alone
[35–37]. Nevertheless, mouse macrophages primed by
suboptimal doses of LPS are triggered by IFN-β to pro-
duce NO• [37, 38].

NO• modulators: IL-13, TGF-β, IL-4, and IL-10

Since it is clear that certain cytokines block EAE, and
that NO• is involved in EAE (see below), it is of interest
to know whether blockade of NO• by these same cyto-
kines accounts for their inhibition of EAE. Doyle et al.
[39] report that IL-13 suppresses NO• production but not
respiratory burst and oxygen radicals in murine macro-
phages; this cytokine also suppresses TNF-α, although to
a lesser extent. Such a finding suggests a mechanism for
the inhibition of development of EAE by IL-13 [23]. It
also demonstrates the independence of oxygen and nitro-
gen free radical production in these cells. This is an im-
portant observation given that ONOO– may cause greater
damage in cells and tissues than NO•, but that both O2

–•
and NO• need not be inhibited at the same time for an ef-
fect by an anti-inflammatory cytokine. In cultures of ro-
dent macrophages and microglia it is almost universally
accepted that TGF-β inhibits NOS-2 and NO• through
several mechanisms [28, 40–45]. These include inhibition
of transcription and translation of NOS-2, decreased sta-
bility of NOS-2 mRNA, increased degradation of NOS-2
protein, and stimulation of arginase, thereby depleting the
enzyme substrate L-arginine [42–44, 46, 47].

The effects of IL-4 and IL-10 on NO• production are
not as straightforward as the aforementioned cytokines.
The capacity of IL-4 and IL-10 to inhibit NOS-2 and
NO• appears to depend on pretreatment of the cells being
stimulated with IFN-γ; activated cells are not as easily or
not at all inhibited by IL-4 and IL-10 [48–59]. The
mechanism for this inhibition has been variously sug-
gested as through the reduction of TNF-α [53, 60, 61],
inhibition of the activation of protein kinase Cε [58], or
induction of arginase [62]. These cytokines may synerg-
ize with each other or with TGF-β [45, 50]. Still other
studies have found modest or no inhibition of NO• [1,
63] or an increase in NO• by IL-10 [47].

Depending on the state of activation of human mono-
cytes/macrophages, IL-4 may up- or downregulate NO•.
IL-4 can directly induce NOS-2 and NO• production in
resting monocytes from normal healthy human donors
[64–67]. This activation can be amplified by pretreatment
with IFN-γ [65]. In spontaneously high NO• producer
monocytes, especially those from allergy patients, IL-4
abrogates NO• [64]. IL-4 has also been shown to induce
NO• in murine splenocytes [68]. The production of elevat-
ed NO• in allergy patients and the ability of IL-4 to induce
NO• indirectly in peripheral blood mononuclear cells is



probably related to the fact that cross-linking of the mole-
cule CD23, the low-affinity IgE Fc receptor (FcεRII), by
IgE or anti-FcεR antibody leads to NO• [4, 69–71]. IL-4
induces IgE production as well as an increase in soluble
CD23 [69, 70]. Interestingly, high levels of IL-4 and NO•
may ultimately feedback negatively, possibly through the
elevation of cAMP, on both IgE production and NO•
[69–71] which may explain the IL-4 inhibition of “sponta-
neously” produced NO• from allergy patients [64].

In cells which have not been stimulated by cytokines
or LPS, a brief rise in intracellular cAMP leads to a small
but significant direct induction of NOS-2, as well as lead-
ing to the amplification of NOS-2 and NO• by subsequent
cross-linking of CD23 [72]. However, in cells stimulated
by TNF-α, IL-1β, or LPS, prolonged elevation of cAMP,
via adenyl cyclase activators (e.g., prostaglandin E2),
phosphodiesterase inhibitors or β-adrenergic agonists, in-
hibits NO• production [1, 73, 74]. Phosphodiesterase in-
hibitors such as pentoxifylline, isobutyl-methylxanthine,
and iloprost variously inhibit TNF-α production, cytotox-
icity, and O2

–• production in addition to NO• production
[74–77], possibly through the inhibition of nuclear factor
(NF) κB which is involved in NO• and TNF-α induction
[78]. Data supporting a role for both TNF-α and NO• in
EAE are therefore complemented by studies demonstrat-
ing that the phosphodiesterase inhibitors pentoxifylline
and rolipram inhibit EAE in rodents and primates, most
likely through the inhibition of cytokines, inflammation,
demyelination, and NO• [79–81].

NO• regulation of cytokines

In some autoimmune diseases, including MS, a pernicious
proinflammatory cycle may account for the clinical and
histopathological chronicity. In this regard it is quite note-
worthy that NO• and/or ONOO– directly upregulates pro-
duction of IL-1β, TNF-α, IL-8, and hydrogen peroxide in
macrophages. Nitrogen radicals also indirectly enhance
cytokine induction of TNF-α [82–88]. This induction is
mediated at the transcriptional level possibly through the
induction of NFκB [82, 83, 86]. Lander et al. [83] suggest
that NO•, through enhancement of GTPase activity and G
protein mediated events, stimulates the translocation of
NFκB to the nucleus. Nevertheless, in some cases NO• in-
hibits LPS-induced IL-1β and TNF-α in macrophages [87,
88]. In endothelial cells NO• inhibits NFκB translocation
by stabilizing the complex of NFκB and its inhibitor by
preventing degradation of the inhibitor [89, 90]. These
cases illustrate the complexity of the effects of free radi-
cals in signal-transducing events in the macrophage at dif-
ferent stages of activation and point to the danger in gen-
eralizing NO• effects on NFκB in all cells.

Other effects of NO• on the immune system

Is it possible that NO• protects against autoimmune dis-
ease? Might NO• regulate other aspects of the immune

response in addition to cytokines or indirectly as the re-
sult of its effects on cytokines? Mutant mice in which the
NOS-2 gene is defective, and which have been infected
with Leishmania majorhave a significantly stronger Th1
type of immune response than wild-type mice [91], sug-
gesting that NO• inhibits T cell responses, leading to de-
layed type hypersensitivity. NO• may inhibit T cell pro-
liferation [92], either through suppression of IFN-γ [93]
or induction of prostaglandin E2 [94]. NO• induces apop-
tosis of thymocytes and may do so as well in the CNS
[95]. Clearly the accessibility of NO• to intramolecular
sites explains its diverse effects on ion channels, tyrosine
kinases, phosphatases, and transcription factors, any of
which may mechanistically account for alterations in the
immune response (reviewed in [96]). NO• has also been
shown to inhibit leukocyte adhesion and migration by its
interference with CD11/CD18 (leukocyte functional anti-
gen 1) expression [97]. NO• also downregulates MHCII
expression in macrophages, thereby inhibiting antigen
presentation [98]. In other words, early in the disease
process in MS or EAE NO• might actually protect
against autoimmune events initiated in the peripheral
blood.

Evidence for NO• production in experimental models
of MS and encephalitis

Although the potential role of NO• and NOS-2 in the
pathogenesis of inflammatory disease has been appreci-
ated since the late 1980s, it is only recently that signifi-
cant progress has been made in studying the role of NO•
in the pathogenesis of experimental animal models of
MS and other neuroimmunological disorders. MacMic-
king et al. [99] first reported elevated spontaneous NO•
and O2

–• release ex vivo by both peripheral and CNS-de-
rived neutrophils and mononuclear cells isolated from
Lewis rats with acute guinea pig spinal cord homoge-
nate-induced EAE. The release of both free radicals was
augmented by incubation of these cells with encephalito-
genic T cells, probably via the release of the proinflam-
matory cytokines TNF-α, IL-1β, and IL-2. An important
aspect of this study was the observation that both periph-
eral and CNS-derived cells produced NO•, suggesting
that the inflammatory cells responsible for mediating
EAE in this model are likely to be activated prior to en-
tering the CNS.

Koprowski et al. [100] used NOS-2-specific oligonu-
cleotide primers and reverse-transcriptase polymerase
chain reaction (RT-PCR) to evaluate NOS-2 induction in
the brains of rodents with both encephalitic viral diseas-
es and EAE. Intraocular injection of herpes simplex vi-
rus type 1 was associated with NOS-2 mRNA expression
in all six mice with clinical signs of encephalitis 5 and 6
days p.i., although not all animals showed histological
signs of inflammatory cell infiltrates. In rats infected
with Borna disease virus (BDV) NOS-2 mRNA induc-
tion was observed to be highest on day 26 p.i., at a time
when animals had severe neurological symptoms associ-
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ated with perivascular necrosis. The correlation of NOS-
2 mRNA induction and disease symptoms was not, how-
ever, absolute. Similarly equivocal results were obtained
in mice treated with rabies virus, all seven of which ex-
hibited severe clinical symptoms, but only three of seven
NOS-2 mRNA induction. In guinea pig MBP-induced
acute Lewis rat EAE NOS-2 mRNA induction was evi-
dent prior to (days 5 and 9), during (day 13), and after
(day 19) clinical symptoms. We have obtained a very
similar time course for NOS-2 mRNA induction in Lew-
is rat EAE (Garcia-Merino, Medberry, and Parkinson,
unpublished observations).

To date no definitive analysis has been reported in any
EAE model for the kinetics of NOS-2 mRNA induction
and NOS-2 protein expression in conjunction with in situ
hybridization and immunohistochemistry to identify
NOS-2 mRNA and protein localization at the cellular
level. Such a study has been reported for the encephalitic
BDV model in Lewis rats and provides useful informa-
tion [101]. The mRNA for NOS-2 was not present in
brains of normal rats but was increasingly expressed at
days 14, 17, and 21 postinfection. Maximal NOS-2 mR-
NA expression at day 21 occurred when neurological
signs of seizures, convulsions, and tremors were evident.
TNF-α mRNA expression, which would be predicted to
precede NOS-2 mRNA expression, was maximal at day
17 and significantly decreased at day 21. In situ hybrid-
ization revealed that NOS-2 mRNA colocalized with
BDV RNA in basolateral parts of the cortex and the hip-
pocampus but not other infected brain areas. The macro-
phage marker ED-1 and NOS-2 antibody were used to
show colocalization of NOS-2 with macrophage cells in
perivascular regions of the hippocampus. Not all ED-1
positive cells, however, were NOS-2 positive.

The reactivity of NO• with heme and nonheme iron
(Fe) centers to form electron paramagnetic resonance
(EPR) detectable Fe-NO complexes is well known and
formed the basis of an elegant study by Lin et al. [102]
of endogenous NO• formation in MBP-specific T cell-
mediated adoptive transfer EAE. Definitive EPR spectra
of Fe-NO complexes of iron-sulfur proteins with a char-
acteristic g=2.04 signal were observed in all ten spinal
cord samples from female SJL/J mice with EAE. Nota-
bly, the size of the g=2.04 signal was higher in all mice
with EAE (intensity index 1.8–5.0) than in controls (in-
tensity index 0–1.4) and was correlated with clinical dis-
ease in all cases. No evidence for the formation of EPR-
detectable Fe-NO complexes was detected in peripheral
tissues such as spleen, liver, and blood of the affected an-
imals. In contrast to acute EAE in Lewis rats, which typ-
ically exhibit an acute monophasic disease, the SJL/J
EAE model in this study exhibited a chronic relapsing-
remitting disease course with animals exhibiting clinical
symptoms for prolonged periods after T cell transfer.
The observation that EPR-detectable NO• adducts could
be detected in spinal cords of animals with EAE at
14–75 days posttransfer strongly supports the contention
that NO• is an important mediator of chronic inflamma-
tion. This is important when considering the potential

role of NO• in the pathogenesis of MS, which is a chron-
ic disease.

Taken together, the results of the above studies show
that NOS-2 mRNA and protein (and presumably enzyme
activity) are induced in rodent EAE models of MS and
rodent models of virally mediated inflammatory enceph-
alitis. The potential for prolonged, high-output NO• bio-
synthesis as a mediator of oligodendrocyte and neuronal
cell death in these models is thus clear but asks the ques-
tion as to how much NO• is actually produced in these
models and is it sufficient to mediate cytotoxicity. A par-
tial answer to this question has recently been provided
by Hooper et al. [103] using a novel method for spin
trapping NO• in vivo. The method involves infusion of
animals with diethyldithiocarbamate and ferrous sul-
fate/sodium citrate [104] for 30 min in vivo to trap NO•,
followed by rapid tissue isolation and freezing in liquid
nitrogen prior to EPR analysis. In adoptive T cell trans-
fer Lewis rat EAE large amounts of NO• (20–30µM)
were observed in the spinal cord on 4 and 5 days after T
cell transfer, correlating with hind limb paralysis on day
4 and general paralysis on day 5. Although elevated NO•
levels were detected in brain, they were substantially less
than in spinal cord, consistent with the ascending course
of this disease with the spinal cord as the primary site of
lesion development. The same study examined BDV and
rabies models to direct inflammation to the brain. In both
viral diseases NO• production in the brain was highest at
the time of onset of neurological symptoms: 10µM on
day 20 in BDV and 12–30µM on days 5–7 in rabies.

The importance of these observations with NO• spin
traps in vivo is threefold. First, they establish that CNS
tissues in both viral and T cell mediated encephalitis are
exposed for prolonged periods to very high levels of
NO•, which is known to mediate cellular cytotoxicity in
a number of in vitro model systems. If anything, the
spin-trap technique used would grossly underestimate
the amount of NO• produced in vivo. Second, they estab-
lish that high-output NO• synthesis localizes to the site
of inflammatory disease, i.e., predominantly spinal cord
in EAE and brain in rabies and BDV. Third, they confirm
and extend the utility of a new technique to directly de-
termine the efficacy of therapeutic agents directed at in-
hibiting NO• production in the CNS, such as NOS inhib-
itors or inhibitors of NOS-2 induction (see below).

NOS inhibitors in EAE

The studies described above provide a strong rationale
for testing the potential efficacy of NOS inhibitors in
treating EAE. The first reported study of an NOS inhibi-
tor in EAE was by Cross et al. [105] using MBP-specific
T cell adoptive transfer in SJL/J mice. Aminoguanidine,
a fairly selective but weak inhibitor of NOS-2, was used
for the study at high doses: 100 and 200 mg/kg s.c. or
400 mg/kg i.p. daily, with treatment starting on the day
of T cell transfer. These doses and routes of administra-
tion of aminoguanidine were selected based on in vivo
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inhibition of NOS-2 in a systemic model of LPS-induced
endotoxemia in the same mouse strain. A substantially
lower mean maximum clinical score was observed at 400
and 200 but not at 100 mg/kg in aminoguanidine-treated
animals than in those receiving placebo. A delay in dis-
ease onset was observed only at 400 mg/kg. Histological
analysis of spinal cords from EAE mice revealed a re-
duction in inflammation, demyelination, and axonal ne-
crosis, which reached significance at the highest dose
only. The potential for nonspecific effects of aminoguan-
idine on the immune system was tested by assessing the
effect of aminoguanidine on proliferation of MBP-spe-
cific T cells in response to MBP or concanavalin A. Al-
though no effect of aminoguanidine was observed on
MBP-treated cells, an effect on concanavalin-treated
cells was observed in one experiment.

We have observed very similar results with high-dose
aminoguanidine treatment (200–400 mg/kg per day) in
both MBP-peptide induced and T cell adoptive transfer
EAE in PLJ/SJL F1 female mice. At both doses of ami-
noguanidine significant inhibition of disease incidence,
maximal severity, duration, and cumulative score were
observed and were associated with decreases in the num-
ber of inflammatory foci in both the meninges and pa-
renchyma (Brenner, Parkinson, Perez, and Steinman, un-
published results).

NOS inhibitors have also been studied in Lewis rat
EAE and experimental allergic neuritis [106]. Four L-ar-
ginine analog NOS inhibitors were tested: N-monometh-
yl-L-arginine (100 mg/kg p.o. daily), N-nitro-L-arginine
(87.5 mg/kg p.o.), aminoguanidine (50 and 200 mg/kg
i.p.) and N-nitro-L-arginine methyl ester (150 mg/kg i.p.).
Ammonium acetate was used as a control. In experimen-
tal allergic neuritis a modest protective effect on disease
score, compound muscle action potential, demyelination,
and inflammation was seen for N-monomethyl-L-arginine
only. N-Nitro-L-arginine methyl ester had a modest effect
on clinical score only, and neither aminoguanidine nor N-
nitro-L-arginine had any effect on any parameter studied.
In EAE no beneficial effect of any compound was ob-
served. Another EAE study in Lewis rats using N-nitro-L-
arginine (125 mg/kg twice a day i.p.) and N-monomethyl-
L-arginine (225µg/kg once a day by intraventricular in-
jection) showed a modest exacerbation of clinical score,
suggesting a protective role for NO• in this model [107].

The disparity between the aminoguanidine results ob-
tained in Lewis rat EAE and those in SJL/J mouse EAE is
difficult to reconcile. The Lewis rat study did use lower
doses and a different route of administration than the
SJL/J study, and these differences may account in part for
the disparity. An additional shortcoming of both these
studies is that neither showed that the administered NOS
inhibitor actually inhibited NOS-2 in situ, or that NO•
production in the affected tissue was actually blocked.
Access to these data and more information regarding the
bioavailability of aminoguanidine and other standard L-
arginine analog NOS inhibitors to the spinal cord of both
rats and mice would help to rationalize these observations
and provide direction for future research.

Future studies on the role NO• in the pathogenesis
of EAE and other encephalitic diseases

The studies reviewed above clearly show that substantial
progress has been made towards identifying NO• as a po-
tential toxic mediator in inflammatory encephalitic dis-
eases. However, much research is still required to con-
solidate the concept that NO• is central to disease patho-
genesis, and that blocking NOS-2, either by direct en-
zyme inhibitors or by indirect antagonists of enzyme in-
duction, would be an effective means for treatment.

To date there is still a lack of definitive data on the ki-
netics of NOS-2 induction in any EAE model and its cor-
relation with disease onset/recovery and localization.
Specifically, further studies are required to (a) define the
precise kinetics and cellular localization of NOS-2 mR-
NA induction prior to, during, and after development of
clinical signs; (b) test the correlation of the kinetics of
NOS-2 mRNA induction with immunohistochemical lo-
calization of NOS-2 protein, enzyme activity, and NO•
formation specifically due to NOS-2 and not other NOS
isoforms; (c) and compare NOS-2 mRNA, protein, and
enzyme activity in acute EAE models with monophasic
disease versus chronic relapsing/remitting EAE.

The importance of analyzing the precise cellular local-
ization of NOS-2 expression in these disease models can-
not be stressed too highly, since this is likely to lead to a
better understanding of the potential role of NO• in dis-
ease pathogenesis. The cell types that seem most relevant
to the study of EAE are resident CNS microglia, blood-
borne macrophages that enter the CNS, perivascular mac-
rophages, T cells, and endothelial cells. With the excep-
tion of perivascular macrophages, all these cell types have
been shown to have a cytokine-inducible NOS-2, at least
in vitro. As summarized in Fig. 2, high-output NO• bio-
synthesis could play a number of roles in the pathogene-
sis of EAE. Activated resident microglia and blood-borne
macrophages could contribute to primary demyelination
through NO• mediated killing of oligodendrocytes. Due
to their close apposition to the endothelium, induction of
NOS-2 in astrocytes and/or perivascular macrophages
could maintain or even exacerbate loss of blood-brain
barrier function [108–109], an aspect of EAE which is
not often studied. Endothelial cells could use endothelial
(type 3) NOS, or NOS-2 as a compensatory mechanism
to limit cellular traffic across the endothelium via down-
regulation of adhesion molecules or chemokine release.
An additional immunomodulatory role for NOS-2 could
be local regulation of the inflammatory response in the
CNS via NO• mediated apoptosis and/or necrosis of mac-
rophages and encephalitogenic T cells.

With regard to the use of NOS inhibitors for treatment
of EAE there is clearly a need for much better tools to
perform these studies. The current generation of sub-
strate-based NOS inhibitors, such as aminoguanidine, N-
methyl-L-arginine, and N-nitro-L-arginine, appear to have
outrun their utility for testing this concept. Their lack of
both potency and clearly demonstrable CNS bioavailabili-
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ty appears severely to limit their utility for EAE treat-
ment. Their known lack of selectivity renders any effica-
cy results achieved with them in EAE highly suspect in
the absence of any clear pharmacological evidence that
their administration leads to NOS-2 inhibition without in-
hibition of neuronal (type 1) NOS or endothelial (type 3)
NOS activity. Although an intense effort has been made,
at the current time there does not appear to have been a
significant advance in the design of potent, selective
NOS-2 inhibitors with sufficient pharmacological profil-
ing in the CNS to achieve a breakthrough in this area.

Given the limitations of the current generation of
NOS-2 inhibitors, what can be done to further under-

stand the role of NOS-2 in EAE pathogenesis? Fortu-
nately, transgenic NOS-2–/– (knockout) mice have recent-
ly been generated [35, 91] and are currently being back-
crossed with mouse strains susceptible to EAE and other
spontaneous autoimmune and inflammatory diseases. It
is anticipated that data on the effect of the NOS-2–/– phe-
notype on EAE will be available in the not too distant fu-
ture. Alternatively, as reviewed above, a number of ap-
proaches to inhibiting inflammation have been or are be-
ing tested for treatment of EAE. These include blocking
proinflammatory cytokines such as TNF-α or IL-1β by
using either neutralizing antibodies, receptor antagonists,
or inhibitors of synthesis (e.g., phosphodiesterase inhibi-
tors), blockade of chemokines such as macrophage in-
flammatory protein 1α [109] and treatment with anti-in-
flammatory cytokines such as IL-10, TGF-β, and IL-13.
Although evidence for downregulation of NOS-2 using
these approaches exists in vitro, the effects of these treat-
ment strategies on NOS-2 induction in vivo have yet to
be characterized. Is the efficacy of these agents correlat-
ed with NOS-2 blockade, or do they work without affect-
ing NOS-2 induction and NO• production? Answers to
these questions are clearly necessary to define the role of
NOS-2 and NO• as a central pathological mechanism in
EAE.

Evidence for NO• induced damage of oligodendrocytes
in vitro

In culture the myelin-producing cell, the oligodendro-
cyte, is vulnerable to toxicities mediated by complement,
antibodies, cytokines, oxygen free radicals, and nitric ox-
ide produced by macrophages [28, 29, 33, 111]. Studies
performed in this laboratory have demonstrated an IFN-γ

Fig. 2 The role of NO in the pathogenesis of MS and EAE. The
schematic presentation shows three phases in the pathogenesis of
human MS and rodent EAE: adhesion, activation, and demyelina-
tion. Extravasation of encephalitic T cells (T) and circulating mac-
rophages (MØ) from the vessel lumen to the CNS parenchyma is
mediated by chemotactic stimuli (not shown) and the expression
of adhesion molecules (solid circles) on brain endothelial cells
(E). Release of small amounts of nitric oxide (NO•) by endothelial
nitric oxide synthase (NOS-3) may act locally as a homeostatic
mediator (1) to downregulate adhesion molecule expression and T
cell or macrophage activation status. In the parenchyma the re-
lease of the proinflammatory cytokines IFN-γ, TNF-α, and IL-1β
(2) results in activation of perivascular macrophages (PVMØ), as-
trocytes (A), macrophages and microglia (m), including expression
of inducible NOS (NOS-2). High-output NO• and superoxide
(O2

–•) release, which can react to form the powerful oxidant per-
oxynitrite (ONOO–), are proposed to mediate nonspecific tissue
damage at two sites. Oxidants released by perivascular macro-
phages and astrocytes may exacerbate loss of blood-brain barrier
function (3) by promoting endothelial dysfunction. Oxidants re-
leased by phagocytic macrophages and microglia may also con-
tribute to primary demyelination (4) via nonspecific damage to the
myelin sheath of axons and promoting direct oligodendrocyte
(OL) cell death. Potential roles for NOS-2 in downregulating the
inflammatory response are discussed in the text&/fig.c:
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induced, NO• dependent microglia cell-mediated cyto-
toxicity of oligodendrocytes [28]. Ameboid rodent mi-
croglial cells, after treatment with phorbol myristate ace-
tate, LPS, and/or IFN-γ, produce micromolar concentra-
tions of NO• within 24 h. NO• production, as well as oli-
godendrocyte lysis, is inhibited by NOS inhibitors and
anti-TNF-α antibodies, thus suggesting that NO• is the
mechanism of macrophage/microglial cell killing of oli-
godendrocytes. These in vitro results suggest a direct
role for NO• in oligodendrocyte cell loss and primary de-
myelination in EAE and MS in vivo.

We have also examined the differential effects of ni-
tric oxide on primary glial cells in vitro [112]. Cultures
enriched for microglia, astrocytes, or oligodendrocytes
were treated with S-nitroso-N-acetyl D,L-penicillamine,
an NO• releasing chemical. There was a significant de-
crease in the function of the ferrosulfur-containing mito-
chondrial enzyme, succinate dehydrogenase, in oligo-
dendrocytes and astrocytes treated with S-nitroso-N-ace-
tyl D,L-penicillamine, whereas microglia were unaffect-
ed. In addition, morphological changes and single-
stranded DNA breaks occurred in oligodendrocytes but
not in astrocytes and microglia. Oligodendrocytes were
also less easily rescued from the toxic effects of NO• by
oxyhemoglobin than were astrocytes. A subpopulation of
oligodendrocytes were killed by NO• via a necrotic, non-
apoptotic mechanism [113]. These findings strongly sug-
gest that the myelin-producing cell is more sensitive to
NO• than the other two glial cell types.

Several laboratories have examined in vitro production
of NO• by human blood macrophages and microglia.
While some reports have failed to detect NO• synthesis in
macrophages stimulated with LPS and cytokines such as
IFN-γ or IL-1β alone, other studies have demonstrated
that human macrophages are capable of producing micro-
molar concentrations of NO• upon cross-linking of cell
surface molecules other than cytokine receptors [114]. In-
terestingly, human and rodent macrophages differ not on-
ly in stimulus required for NO• induction but also the
time required to detect NO• in cell culture supernatants.
IFN-γ, IL-1β, and TNF-α induce production of micromo-
lar concentrations of NO• by rodent macrophages and do
so within 24 h. Human macrophages require 3–5 days af-
ter stimulation before NO• is detectable [114].

Human glial cells have been reported to produce NO•
but can be distinguished from human blood macrophages
in that LPS can stimulate NO• production in malignant as-
trocytoma cell lines. The best inducer of NO• production
in normal human fetal astrocytes is IL-1β alone or in com-
bination with other cytokines such as IFN-γ [115]. LPS is
not a good inducer in these cells. Colasanti et al. [115]
have reported induction of NOS-2 mRNA by LPS and
IFN-γ in human microglial cells as determined by using
RT-PCR and Southern analysis. We have also demonstrat-
ed the production of NOS-2 and NO• in cultures of fetal
human microglia and astrocytes. Glia from adult brain tis-
sue also produce NO• but not in response to cytokines
alone, suggesting differential developmental regulation of
NOS-2 ([116, 117] and manuscript in preparation).

Evidence for involvement of NO• in the pathology
of MS

Direct and indirect methods for the presence of NO• and
the induction of NOS-2 have recently been reported in
MS patients. Analysis of CSF from MS patients has
shown increased levels of nitrate and nitrite compared
with normal controls [118]. The same study reported in-
creased levels of neopterin, a precursor of the NOS-2 en-
zyme cofactor tetrahydrobiopterin, in CSF from MS pa-
tients. The reaction of NO• with O2–• forms peroxyni-
trite, ONOO–, a strong trans-nitrosating agent capable of
nitrosating susceptible protein thiols, such as cysteine.
This chemical reaction may result in formation of nitro-
so-amino acids, such as nitrosocysteine, potentially mak-
ing them immunogenic. It is therefore of interest that
significantly elevated levels of circulating IgM antibod-
ies to a conjugated S-nitroso-cysteine epitope have been
detected in MS sera compared with sera from patients af-
fected with other neurological and autoimmune diseases
[119]. Both of these studies provide indirect evidence for
the chronic production of elevated NO• levels in MS.

Work from three different laboratories has shown evi-
dence for the induction of NOS-2 in the brains of MS pa-
tients. Brosnan et al. [120] demonstrated intense NADPH
diaphorase histochemical staining colocalized with glial
fibrillary acidic protein staining of astrocytes, as well as
with TNF-α and IL-1β, in acute MS lesions. Bo et al.
[121] have also demonstrated NADPH diaphorase histo-
chemical staining in the brains of MS patients. According
to the morphology of the cell and glial fibrillary acidic
protein immunoreactivity, they too concluded that the
majority of NO• producing cells were reactive astrocytes.
They also showed by semiquantitative RT-PCR that the
levels of NOS-2 mRNA were markedly higher in MS
brains than in normal brains. Due to the lack of specifici-
ty of the NADPH diaphorase stain [122], however, nei-
ther of these studies unequivocally elucidated the cellular
source of NOS-2 and hence NO• in MS tissue. Quite re-
cently, Bagasra et al. [123] have demonstrated more di-
rectly the source of NOS-2 mRNA and functionality of
NOS-2 enzyme in MS tissue. The mRNA for NOS-2 was
detectable in all the brains examined from patients with
MS and other neurological diseases but in none of the
control brains. In situ RT-PCR experiments also demon-
strated the presence of NOS-2 mRNA in the cytoplasm of
the cells which expressed the ligand recognized by the
Ricinus communisagglutinin 1, a marker for macro-
phage/microglia. In addition, the presence of nitrosylated
proteins in MS lesions was assessed with an anti-nitroty-
rosine antibody and found to colocalize with NOS-2 mR-
NA and protein in these macrophage/microglial cells.
These observations are very significant since they indi-
cate not only the presence of active NOS-2 enzyme in
macrophage/microglial cells of the MS lesion but also
concomitant O2–• production, the formation of ONOO–,
and subsequent protein nitrosation.



Future studies on the role of NO• in the pathogenesis
of MS

These early studies with human brain tissue and fluids
clearly point to NO• as a potential toxic mediator in the
inflammatory, demyelinating pathology of MS. The his-
topathological studies in human MS brains are in general
agreement with those in rodent EAE, with mounting evi-
dence for the formation of NO• by both astrocytes and
macrophages/microglia. The latter cells appear to be the
major, but not exclusive, site of ONOO– formation, most
likely through interaction of NO• produced by NOS-2
with O2

–• produced by the respiratory burst NADPH-oxi-
dase of these cells. The local production of NO•, O2

–•,
ONOO–, and other oxidizing free radicals via activation
of both these enzyme systems in macrophages/microglia
may contribute directly to oligodendrocyte destruction
and primary demyelination in vivo. This hypothesis is
consistent with an effector function for activated, phago-
cytic macrophages/microglia in MS pathology and an
“innocent bystander” role for the oligodendrocyte. The
potential contribution of astrocyte NOS-2 to MS or even
EAE pathology is far less clear, as is any immunomodu-
latory role on immune cell function.

In order to better understand the role of NO• in the
pathogenesis of MS further studies are clearly needed.
We would suggest: (a) a precise analysis of NOS-2 ex-
pression and cellular localization in the brain with re-
spect to the state of the lesion (active vs. chronic) and
also clinical disease stage (i.e., chronic vs. relapsing-re-
mitting) and (b) a more complete analysis of CSF or oth-
er body fluids of MS patients for NO• metabolites such
as nitrite, nitrate, 3-nitrotyrosine, or nitrosylated proteins
and correlation of these with disease stage (chronic vs.
relapsing-remitting).

The studies suggested above will shed further light on
the role of NO• in the pathogenesis of MS and will likely
provide further support for the development of NOS-2
inhibitors as potential MS therapeutics. The analytical
techniques for NO• related metabolites are constantly be-
ing enhanced. These tools are likely to be of value for
clinical research neurologists with an interest in deter-
mining the effect of current and novel MS treatment reg-
imens on the NOS-2 pathway in vivo and the correlation
of NOS-2 blockade, if any, with clinical outcome.
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