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Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition 
receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved 
sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene muta-
tions of NOD2 lead to the development of autoimmune diseases such as Crohn’s disease and Blau syndrome. Recently, 
NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, 
the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly 
discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.
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Introduction

Innate immune response serves as the first-line immuno-
logical defense, in which innate immune receptors identify 
pathogen-associated molecular patterns (PAMPs) and rap-
idly activate the downstream signaling pathway to elimi-
nate pathogens and infected cells. Remarkably, nucleotide-
binding oligomerization domain containing 2 (NOD2), a 
well-known and initially designated innate immune receptor 
in nucleotide binding oligomerization domain-like recep-
tors (NLRs) family, also functions as a pattern recognition 
receptor (PRR) that recognizes PAMPs and endogenous 
substances generated by damaged tissues in innate immune 
system [1]. The structural domain of NOD2 is composed  
of a C-terminal leucine-rich repeat (LRR) domain, a cen- 

tral nucleotide-binding domain (NBD), and two N-terminal 
caspase recruitment domains (CARD), compared to NOD1, 
which only has one CARD (Fig. 1). NOD2 is an intracellular 
protein localized in the cytoplasm and widely expressed in 
immune cells like macrophage, monocyte, and microglia. 
It is also present in endothelial, skeletal muscle, and cancer 
cells, as well as decidual cells, which is vital for pregnancy 
maintenance [2] (Fig. 2).

Muramyl dipeptide (MDP), the component structure 
of Gram-negative and Gram-positive bacteria, is the spe-
cific exogenous ligand of NOD2 and triggers the signaling 
activities mediated by NOD2 as an exogenous molecule [3]. 
NOD2 senses MDP via the LRR domain, recruits receptor-
interacting serine/threonine-protein kinase 2 (RIP2), and 
mediates transcriptional activation of the nuclear factor 
kappa B (NF-κB) family, leading to the release of inflamma-
tory cytokines [4]. Other signaling pathways such as mito-
gen-activated protein kinase (MAPK) signaling, autophagy 
activation via interaction with autophagy-related protein 
16-1 (ATG16L1), and type I interferon (IFN) signaling are 
also activated by NOD2 (Fig. 3). Apart from PAMPs in the 
innate immune response, the intrinsic substances, known 
as the damage-associated molecular patterns (DAMPs), are 
suspected to be endogenous pathogenic factors in chronic 
non-infectious inflammatory diseases. DAMPs, acting as 
endogenous ligands, activate NOD2 by binding to different 
molecules in three inherent domains, thereby positively or 
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negatively triggering the NOD2 downstream signaling path-
ways [5] (Table 1). Nonetheless, an abnormal innate immune 
response causes damage to tissues and organs. For instance, 
gene mutations of NOD2 can lead to Crohn’s disease (CD), 
Blau syndrome asthma, and other immune-related inflam-
matory diseases [6, 7]. Therefore, NOD2 is a crucial gene 
associated with many inflammatory disorders. Previous 
reviews have mainly focused on the function of NOD2 in 
infectious diseases. However, perspectives on the role of 
NOD2 in chronic non-communicable diseases (CNCDs) 
remain to be systematically elaborated.

CNCDs, which primarily include cardiovascular disor-
ders, neuropsychiatric diseases, diabetes, cancer, and obe-
sity, are the leading cause of poor health, disability, and 
death with expensive and long treatment [8]. Due to its com-
plex pathogenesis and high healthcare expenditures, it has 
attracted increasing attention from researchers and govern-
ment managers worldwide. To date, it has been reported that 
numerous factors may be associated with CNCDs, includ-
ing chronic innate inflammation [9]. NOD2 has also been 
demonstrated to be involved in the pathological process of 
cardiovascular diseases like atherosclerosis [1]. Hence, in 
this review, we have described the opinion on functions and 

molecular mechanisms of NOD2 in CNCDs, in order to pro-
vide new investigation for the highlighted areas.

NOD2 in inflammatory bowel diseases

Inflammatory bowel diseases (IBD), including ulcerative 
colitis and CD, are chronic, lifelong, and relapsing disor-
ders of the gastrointestinal tract. Inflammation of CD occurs 
throughout the gastrointestinal tract, in contrast to ulcera-
tive colitis which restrict inflammation to the colon. So far, 
IBD can only be alleviated with medication, not cured [25]. 
Although the etiology and pathophysiology of IBD are not 
yet completely understood, a number of factors, including 
genetic, epigenetic, environmental, microbiota, and immune 
system dysregulation, are implicated [26]. NOD2 is the first 
identified and well-documented gene in the 200 genetic risk 
loci associated with IBD [25]. A frameshift variant and two 
missense variants located in the leucine-rich repeat domain 
of NOD2 (Gly908Arg, Leu1007fsinsC, and Arg702Trp) 
have been shown to predominately increase susceptibil-
ity to CD development instead of ulcerative colitis [27]. 
Regardless of the homozygous or compound heterozygous 
types of NOD2 variants in individuals, they are apparently 
associated with a higher likelihood of developing CD than 
normal NOD2 gene type [28]. The incidence of CD is only 

Fig. 1  Domain structures of NOD1 and NOD2. A NOD1 structure. 
B NOD2 structure. NACHT (NAIP (neuronal apoptosis inhibitor pro-
tein)), C2TA (MHC class 2 transcription activator), HET-E (incom-
patibility locus protein from Podospora anserina) and TP1 (telomer-
ase-associated protein), CARD (caspase recruitment domain), LRR 
(leucine-rich repeat), and NOD (nucleotide-binding oligomerization 
domain containing)

Fig. 2  NOD2 is expressed in different types of cells

Fig. 3  Signaling pathways mediated by NOD2. NOD2 medi-
ates NF-κB, MAPK, and IFN signaling pathways, as well as the 
autophagy activation. CARD (caspase recruitment domain), LRR 
(leucine-rich repeat), NOD (nucleotide-binding oligomerization 
domain containing), ATG16L1 (autophagy-related protein 16-1), LC3 
(light chain 3), RIP2 (receptor-interacting serine/threonine-protein 
kinase 2), NF-κB (nuclear factor kappa B), DAMPs (damage-associ-
ated molecular patterns), MAPK (mitogen-activated protein kinase), 
IFN (type I interferon), IκBα (NF-κB inhibitor α), IKK (inhibitor of 
NF-κB), IRF (interferon response factor), ERK (extracellular signal-
regulated kinase), JNK (c-Jun N-terminal kinases), TRAF3 (TNF 
receptor-associated factor 3), and TBK1 (tank-binding-kinase 1)
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slightly increased (2- to fourfold) in individuals with only 
one NOD2 variant, whereas the risk is 15- to 40-fold higher 
in those who carry two or more NOD2 mutations [29]. As 
for the three general mutations of NOD2 in CD, the risk 
of occurrence is much higher for Leu1007fsinsC than for 
Arg702Trp and Gly908Arg [28]. In addition to the three 
frequent variants of NOD2 gene in CD patients, pro268Ser, 
IVS8 + 158, and many other polymorphisms in NOD2 have 
also been reported to be related to CD [30–33]. Simultane-
ously, the prevalence of CD resulting from NOD2 mutations 
may exhibit variation among diverse ethnic groups [34]. A 
clinical trial that explored the relationship between IBD and 
NOD2 gene polymorphisms in the Indian population indi-
cated that NOD2 mutations were not related to CD, but two 
variants (rs2066842 and rs2066843) were weakly associated 
with UC [35]. Actually, most NOD2 variants in the clinic do 
not develop CD, and there are many other factors involved 
in the onset of CD, such as the environment. This is veri-
fied by  NOD2−/− and Leu1007fsinsC homozygous of NOD2 
variant knock-out mice presenting no spontaneous intestinal 
inflammation [36].

The underlying mechanisms of action of NOD2 in IBD 
are still unclear. In general, the bacterial peptidoglycan 
(PGN)-conserved patterns in cytosol are detected by the 
intracellular pattern recognition receptor NOD2, which 
then triggers the host immunological response. However, 
the shortened NOD2 protein lacks its sensitivity to MDP 

owing to the three prevalent mutations of Leu1007fsinsC, 
Arg702Trp, and Gly908Arg in the LRR domain. This in 
turn disrupts the activation of NF-κB signaling pathways and 
prevents monocytes from triggering the numerous cytokine 
responses [37]. Concurrently, the modified protein of NOD2 
loses the function of transferring to the plasma membrane 
to recruit ATG16L, which then hinders autophagy and bac-
terial clearance. Arg702Trp and Gly908Arg, in contrast to 
Leu1007fsinsC, interfere with MDP recognition by NOD2 
without altering the intracellular location of the protein [38]. 
Additionally, NOD2 plays an important role in regulating the 
gut microbiota. Studies have shown that there are significant 
differences in the composition of the intestinal microbiome 
between  NOD2−/− and  NOD2+ mice, in particular, NOD2-
deficient mice tend to experience dysbiosis in the flora 
microflora of the terminal ileum [39, 40]. Consequently, 
NOD2 mutations result in low diversity and imbalance in 
the microbiome, leading to mucosal barrier dysfunction and 
chronic inflammation in turn, both of which increase sus-
ceptibility to developing IBD [41, 42]. Furthermore, Paneth 
cells localized in the small intestinal crypt are essential for 
the generation of antimicrobial peptides (AMPs) through 
secreting anti-bacterial compounds. Nevertheless, mutations 
of NOD2 in Paneth cells cause insufficient α-defensins in 
the ileum of CD patients, suppressing the elimination of 
internalized bacteria [43, 44]. Conversely, the intestinal 
flora can also influence the pathological process of CD. 

Table 1  Common endogenous interaction partners of NOD2

ATG16L1 autophagy-related protein 16-1, CARD caspase recruitment domain, FRMPD2 FERM and PDZ domain-containing 2, NLRP nucleo-
tide-binding oligomerization domain-like receptor family pyrin domain-containing 3, RIP2 receptor-interacting serine/threonine-protein kinase 
2, HSP heat shock protein, PP2A phosphoprotein phosphatase-2A, TRIM tripartite motif-containing, TRAF TNF receptor-associated factor

Molecule Interaction 
domain

Effect Reference

ATG16L1 CARD Inducing autophagy Homer et al. [10]
CARD8 NOD Suppressing the NF-κB signaling von Kampen et al. [11]
CARD9 NOD Triggering the p38 signal pathway Parkhouse et al. [12]
Caspase-1 CARD Improving IL-1β release Babamale and Chen [13]
FRMPD2 LRR Activating NF-κB signaling pathway Lipinski et al. [14]
NLRP1 CARD Improving caspase-1-dependent IL-1β release Hsu et al. [15]
NLRP3 CARD Requirement of IL-1β processing Wagner et al. [16]
NLRP12 CARD Inhibiting the proteasome

Degradation of NOD2
Normand et al. [17]

RIP2 CARD Mediating the NF-κB signaling pathway Maharana et al. [18]
HSP70 Enhancing the NF-κB signaling pathway Mohanan and Grimes [19]
HSP90 Enhancing the NF-κB signaling pathway Lee et al. [20]
PP2A Inhibiting NOD2-dependent autophagy by PP2A phosphatase activity Homer et al. [21]
TRIM22 NOD Involved in the K63-linked polyubiquitination of NOD2 Zhang et al. [22] 
TRIM27 NOD Promoting NOD2 degradation via RIPK2-dependent K48 polyubiquitination Zurek et al. [23]
TRAF4 Amino acids 

260–301 of 
NOD2

Restricting NOD2-mediated NF-κB activation Marinis et al. [24]
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Firmicutes-derived DL-endopeptidase decreases in CD 
patients but shows a negative association with colitis. It has 
been found to produce NOD2 ligands in the intestine, and its 
deficiency can aggravate CD pathogenesis through NOD2 
signaling [45]. Different from the typical three gene muta-
tions in NOD2, a new research found that patients with the 
NOD2 R444C variant in the NACHT domain are more sen-
sitive to bacterial PGN fragments. This variant also readily 
activated NF-κB and proinflammatory cytokine production 
through its interaction with ZDHHC5 which can restrain 
S-palmitoylation-regulated autophagic degradation of NOD2 
[46]. Therefore, the NOD2-R444C variant may be a poten-
tial target IBD therapy in the future.

NOD2 in cardiovascular diseases

Cardiovascular diseases (CVDs), one of the most prevalent 
CNCDs globally, have lead to an increase in morbidity and 
mortality, as well as overall healthcare expenses [47]. Ath-
erosclerosis, a chronic disease of the arteries characterized 
by high blood cholesterol levels and vascular inflammation, 
is considered a major cause of CVDs. NOD2 is involved in 
the development and pathological process of atherosclerosis 
by exacerbating vascular inflammation and enhancing the 
area of lipid accumulation and necrosis in mice [48]. Liu 
et al. found that NOD2 is abundantly expressed in athero-
sclerosis plaques, regulating the gene and protein expression 
of COX-2 and prostaglandin E2 (PGE2) in the metabolism 
of arachidonic acid [1]. Besides, NOD2 induces the p38 
signaling pathway in MAPK upon stimulation by IL-1β or 
tumor necrosis factor alpha (TNF-α) in macrophages, which 
represent a significant cell population of the innate immune 
system in atherosclerotic lesions. To date, there is one report 
showing that plaque lipid deposition and inflammatory infil-
tration in atherosclerotic plaques are associated with NOD2, 
the deficiency of which disrupts intestinal cholesterol levels, 
microbiota composition, and oxLDL uptake by macrophages 
[49]. Kwon et al. elucidated that NOD2 is expressed in vas-
cular smooth muscle cells (VSMCs) and involved in vascu-
lar homeostasis through regulating the proliferation, migra-
tion, and CHOP (C/EBP homologous protein) expression of 
VSMCs, leading to the formation of advanced atheroscle-
rotic lesions [50]. Additionally, endothelial cells which are 
the primary component of the heart and the vascular system 
have many pivotal functions in CVDs and serve as a crucial 
link between the cardiovascular system and the immune sys-
tem. Endothelial dysfunction contributes to the progression 
of diverse cardiovascular events, especially the hypertension, 
atherosclerosis, and myocardial ischemia [51, 52]. Although 
NOD2 is weakly expressed in human endothelial cells, it is 
rapidly overexpressed and migrates to the cytomembrane 
from the cytoplasm upon stimulation by MDP, then inducing 

NF-κB dependent transcriptional activity [53]. Our previous 
studies also have demonstrated that NOD2 triggers oxida-
tive stress through the COX-2/NOX4/ROS pathway in MDP-
treated human umbilical vein endothelial cells and promotes 
ET-1 and VCAM-1 gene expression [54, 55].

Although multiple studies have confirmed that NOD2 
activation is related to the pathogenesis of heart diseases, 
there may be different opinions about the role of NOD2 in 
the myocardium. Liu et al. reported that myocardial ischemia 
reperfusion (I/R) damage is exacerbated by NOD2-mediated 
cardiomyocyte apoptosis and inflammation through JNK, 
p38 MAPK, and NF-κB signaling pathways [56]. NOD2 
deficiency ameliorates not only the cardiac damage caused 
by myocardial infarction [57] but also the blood reperfu-
sion injury via reduction of proinflammatory mediator levels 
and inflammatory cell infiltration after myocardial I/R [58]. 
However, along with research development, it has emerged 
different reports on NOD2 function in the heart. Zong et al. 
indicated that NOD2 could protect against pressure over-
load-induced heart disease by attenuating cardiac hypertro-
phy and fibrosis in the TLR4, MAPKs, NF-κB, and TGF-β/
Smad signaling pathways [59]. Therefore, more research on 
the mechanism of NOD2 in myocardial disease should be 
investigated based on diverse opinions (Fig. 4).

With respect to gene polymorphism, it has been reported 
that the Crohn’s disease-associated NOD2/CARD15 poly-
morphisms like Arg702Trp, Gly908Arg, and Leu1007fsinsC 
are not involved in the risk of cardiovascular disease in the 
Danish general population [60]. However, NOD2 polymor-
phisms may influence the occurrence and development of 
coronary heart disease in the Caucasian population [61]. The 
Leu1007fsinsC polymorphism of NOD2 increases the risk of 
coronary atherosclerosis and instability of coronary artery 
plaque, while mutations in the GLY908ARG region have a 
protective effect on coronary artery stenosis [61]. Based on 
these reports of gene polymorphism in CVDs, more funda-
mental experimental evidence is still required.

Role of NOD2 in neurological disease

Mutations of NOD2 (Arg702Trp and Gly908Arg) have been 
linked to a greater susceptibility to Guillain-Barre syndrome, 
an autoimmune disorder that damages the peripheral nerv-
ous system [62]. Stroke and neurodegenerative diseases are 
definitely essential for CNCDs. Reperfusion after cerebral 
ischemic stroke easily leads to more severe damage for a sud-
den blood supply recovery. Typically, NOD2 is expressed in 
inflammatory cells, like macrophages, dendritic cells, micro-
glia, and astrocytes in the brain [63]. Currently, it has been 
shown that NOD2 expression is obviously increased in pri-
mary neurons of cerebral ischemia reperfusion (I/R) injury 
model [64]. Our research team found that NOD2 aggravates 
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the development of cerebral I/R by triggering the TRAF6/
NF-κB/COX-2/MMP-9 inflammatory signaling pathway 
[65]. It also activates NOX2-derived oxidative stress and 
upregulates the levels of proinflammatory cytokines, includ-
ing IL-6, IL-1β, and TNF-α after cerebral I/R injury [66]. 
In terms of neurodegenerative disorders, Parkinson’s and 
Alzheimer’s disease are also treated long-term, which is 
associated with high costs and a lot of attention. Several 
publications suggest that NOD2 gene variants may correlate 
with Parkinson’s susceptibility, as exemplified by the poly-
morphism of c.2 857A> G p.K953E, P268S in the Chinese 
Han population [67]. Nonetheless, Appenzeller et al. dis-
covered 9 SNPs of the NOD2 gene covering common vari-
ations throughout the whole sequence and announced that 
the NOD2 genetic mutation might not show the high sus-
ceptibility of Parkinson’s disease in German patients [68]. 
Whether the difference is due to racial gene diversity or the 
other factors has not yet been identified, further research is 
needed. From the perspective of Parkinson’s mechanism, the 
research is poorly implemented. Cheng et al. demonstrated 
that overexpression of NOD2 accelerates the pathogenesis 
of Parkinson’s disease in mice via NOX2-mediated oxida-
tive stress [69]. Singh et al. indicated that NOD2 acts as a 
substrate of parkin, which is an E3 ubiquitin ligase and a 
Parkinson’s disease-related gene, and is degraded in a pro-
teasome-dependent manner by parkin regulation [70]. NOD2 
is involved in parkin-modulated endoplasmic reticulum (ER) 
stress and inflammation in astrocytes to regulate their neu-
rotropic functions [71]. Whereas, NOD2 may be involved in 

the neuroinflammation related to Alzheimer’s disease and 
benefit disease progression, as evidenced by research that 
showed MDP, the NOD2 receptor ligand, strongly delays 
cognitive decline in both sexes and protects the blood-brain 
barrier in a NOD2-dependent manner [72, 73]. Inflamma-
tion caused by the alteration of intestinal flora accelerates 
the pathological process of Alzheimer’s disease, and NOD2 
is a critical factor in maintaining gut microbiota homeostasis 
[74]. Hence, we speculate that NOD2 may play a more vital 
role in Alzheimer’s disease. However, further studies are 
required to reveal the definitive and potential functions of 
NOD2 in neurodegenerative diseases.

NOD2 in diabetes

Along with living standard improvements, the diabetic popu-
lation has skyrocketed all over the world, generating multiple 
complications from hyperglycemia. A multitude of studies 
have examined the connection between diabetes and vari-
ations in the NOD2 gene. An investigation shows that both 
metabolic syndrome and insulin resistance have no relation-
ship with the NOD2 genetic polymorphism (rs2066842) in 
998 Canadian population aged 20 to 29 years [75]. Consist-
ent with this report, Ozbayer et al. described that no associa-
tion could be found between the rs2066847 variant of NOD2 
and the risk of type 2 diabetes mellitus (T2DM) in patients of 
Turkish origin [76]. On the other hand, mechanism study data 
have confirmed the crucial role of NOD2 in the pathological 

Fig. 4  Essential role of NOD2 in cardiovascular diseases (AA: arachidonic acid; ECs: endothelial cells)
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process of diabetes. The research provides a new perspective 
on the unconventional role of NOD2 in the development of 
human metabolic diseases. It points out that glucose might 
be the novel stimulatory ligand of NOD2 for potential excess 
nutrients [77]. The NOD2 receptor is directly activated by met-
abolic signals such as fatty acids and glucose within cells and 
tissues. Following overexpression and activation of NOD2, its 
downstream inflammatory signals are triggered and interferes 
with other metabolic pathways necessary to preserve metabolic 
balance, including glucose uptake and insulin sensitivity [78]. 
The mRNA level of NOD2 is upregulated in monocytes of 
T2DM patients with insulin resistance or poor glycemic con-
trol [79]. NOD2 has also been confirmed to be more sensitive 
to T1DM development, acts as a mediator in gut microbiota 
alterations, and subsequently regulates the innate and adap-
tive immune inflammatory response [39]. Moreover, diabetes 
increases circulating microbial products due to disrupting the 
imbalance of the gut microbiome and improving intestinal 
permeability [80, 81]. Meanwhile, NOD2 originally regulates 
intestinal homeostasis by restricting bacterial translocation and 
transcellular permeability [7]. These studies all showed that 
there is a strong link between NOD2 and diabetes.

Considering the chronic complications of diabetic mellitus, 
Shen et al. found that NOD2 exacerbates the process of dia-
betes-induced cardiomyocyte apoptosis and cardiac fibrosis 
[82]. NOD2 silencing significantly upregulates B cell CLL/
lymphoma-2 (BCL-2) expression in diabetic mice and inhib-
its TNF-α, IL-1β, and IL-6 levels in cardiomyocytes [82]. 
NOD2 is likewise found to be overexpressed in the kidney of 
diabetic patients. Mechanismly, renal injury is ameliorated 
in diabetic mice after NOD2 gene knocking down. NOD2 
deletion decreases mesangial expansion, podocyte injury, 
and typical proinflammatory cytokines in diabetic mice [77]. 
Another research showed that NOD2 contributes to the patho-
genesis of diabetic nephropathy via activation of MEK/ERK 
in glomerular vascular endothelial cells (GEnCs) [83]. On 
the basis of numerous evidence, NOD2 definitely accelerates 
the development and pathological process of diabetes. Con-
versely, one study suggested that NOD2 could benefit type 
2 diabetes in the murine model via balancing intestinal meta 
inflammation [84]. Thus, the role and mechanism of NOD2 
in diabetes still need to be further investigated.

NOD2 activation in cancer

With the advancement of medical technology, cancer has 
already been classified as a chronic disease by the WHO 
[85]. Numerous studies implicate a significant correlation 
between NOD2 gene polymorphisms and different types of 
cancer, including hematomas or solid tumors [86–89]. Signifi-
cant progress has been made in studying the mechanisms of 
NOD2-mediated signal pathways in diverse cancers (Table 2), 

especially the colorectal carcinoma [22, 90–96]. NOD2 dele-
tion, which is closely related to colitis, controls the regulation 
of inflammatory signaling pathways and ultimately increases 
the risk of colorectal cancer [91]. This is consistent with the 
conclusion of Udden et al. who found NOD2-mediated pro-
tection against colorectal tumorigenesis via suppressing TLR-
mediated activation of NF-κB pathways [90]. Beside its role in 
the inflammatory response, NOD2 potentially protects against 
colorectal cancer by maintaining intestinal homeostasis. A 
study has shown that knocking out the NOD2 gene breaks the 
balance of gut microbiota, enhances intestinal pathology, and 
aggravates colorectal tumor growth [91]. Given that NOD2 
benefits intestinal tumors through NF-κB inhibition, Zhang 
et al. showed that NOD2 directly binds to TRIM22, reduces the 
phosphorylation of NF-κB and I-κBα, and suppresses NF-κB 
activity in endometrial cancer [22]. Nevertheless, the effects of 
NOD2 reported in studies may be inconsistent even within the 
same type of cancer. Regarding liver cancer, NOD2 has been 
indicated as both a tumor suppressor and a chemotherapeutic 
regulator in hepatocellular carcinoma (HCC) cells by directly 
activating the AMPK pathway [92]. Aside from the classical 
NF-κB, JAK2/STAT3, and MAPK signaling pathways, NOD2 
has also been found to mediate a nucleus autophagy pathway 
to promote hepatocarcinogenesis. It transports into the nucleus 
and binds directly to lamin A/C to accelerate its degradation, 
thereby impairing the repair of damaged DNA and promot-
ing genomic instability [93]. NOD2 is also overexpressed in 
squamous cervical cancer and contributes to carcinogenesis 
by activating NF-κB and ERK signaling pathways as well 
as increasing IL-8 secretion [94]. Furthermore, according to 
proteome profiling analysis, NOD2 may modulate tumorigen-
esis of triple-negative breast cancer by disrupting proliferation 
through MAPK, TNF, and p53 pathways [95]. Despite exten-
sive research on the involvement of NOD2 in tumor initiation 
and development, the benefit or deleterious role of NOD2 in 
cancer is still elusive.

Discussion

CNCDs represent the greatest health challenge worldwide 
as they have a long-lasting condition and are inextricably 
linked to the cause of premature deaths [97]. Thereafter, they 
bring a large economic and therapeutic burden on the family 
and society in China [98]. For prophylaxis and treatment, it 
is extremely meaningful to gain the pathogenesis insights 
of chronic illnesses. Chronic illnesses are always accompa-
nied by chronic inflammation. And NOD2 receptor plays a 
fundamental role in the host immune response via mediating 
various inflammatory signaling pathways. Therefore, under-
standing the molecular mechanism of NOD2 in CNCDs is 
significant for the development of effective therapeutic tar-
gets in the long-term diseases.
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Genetically, NOD2 mutations are associated with an 
increased susceptibility to considerable CNCDs (Table 3). In 
mechanism, it mediates the production of various proinflam-
matory cytokines, oxidative stress, and apoptosis through 
MAPK and the canonical NF-κB signaling pathway, which 
depends on the scaffolding kinase RIP2 [99, 100]. Nowa-
days, it is recognized as an autophagy inducer that straightly 
initiates autophagy by recruiting the host ATG16L1 [101]. 
Particularly, the upstream event of NOD2 activation in 
CNCDs remains to be discussed. NOD2 is a special detector 
for the stimulation of PAMPs and DAMPs in innate immune 
response. Actually, there is a report suggesting that the pep-
tidoglycan component, which abundantly exists in vulner-
able plaques of atherosclerotic, is in accordance with the 
DNA phylotypes of the gut microbiota [48]. The gut micro-
biota does contribute to the development of CVDs such as 
atherosclerosis, hypertension, and myocardial infarction via 
induction of an inflammatory response, or regulation of host 
lipid metabolism [102]. It functions as a “metabolic organ” 
to modulate glucose and protein metabolism [103]. Further, 
diabetes increases the possibility of microbial products 
entering the circulation system, then improving intestinal 
permeability [77]. Therefore, we speculate that the pepti-
doglycan component that activates NOD2 in CNDCs may 
originate from the intestinal flora. In turn, CNDCs perhaps 
increase the probability of bacteria transferring into the cir-
culatory system. Parallelly, bacteria belonging to the oral 
cavity are also observed in the atherosclerotic plaques [102], 
indicating that periodontal disease or poor dental hygiene 
increases the occurrence of CVDs [104]. Lately, metabolic 
diseases that excess nutrients like glucose and fatty acids 
are supposed to be the endogenous ligands as DAMPs to 
stimulate NOD2 [40]. Moreover, Dong et al. surmised that 
DAMPs generated from the chemotherapy straightly acti-
vated NOD2-mediated inflammatory signaling pathways in 
anti-tumor treatment [96].

As our advanced understanding of NOD2 in CNCDs, 
it has emerged as a potential therapeutic drug target for 
diseases. Daillere et  al. showed that NOD2-mediated 
inflammatory response reduces the anticancer efficacy of 

cyclophosphamide and inhibits the cancer immunosurveil-
lance, suggesting that NOD2 may be recognized as a new 
immune checkpoint [105]. In addition, NOD2 disrupts the 
TME remodeling following paclitaxel chemotherapy by pro-
moting the production of inflammatory factors, chemokines, 
and the recruitment of myeloid suppressor cells (MDSCs). 
This further impairs the therapeutic effect of chemotherapy 
drugs and then accelerates tumor invasion and metastasis 
[96]. Dong et al. also proposed a NOD2 antagonist as an 
antitumor drug to inhibit tumor growth and metastasis in 
combination with chemotherapeutic agents, providing a 
new idea and strategy for tumor immunotherapy. Presently, 
Zhong et al. found that NOD2 is expressed in platelets [106]. 
Activation of NOD2 releases numerous inflammatory fac-
tors to activate platelets through the MAPK pathway. The 
expression of P2Y12, which plays a central role in the pro-
cess of platelet agglutination, is upregulated by NOD2 to 
promote platelet aggregation [106]. This mechanism further 
explains the essential role of NOD2 in cardiovascular and 
cerebrovascular disorders, as well as other CNCDs, in which 
NOD2 may serve as a new target for antiplatelet drugs.

Beyond that, NOD1, another earliest identified receptor 
in NLRs in the intracellular cytosol, has similar domains 
and functions to NOD2 in maintaining immune homeo-
stasis. Compared to the NOD2 structure, it is encoded by 
CARD4 genes and includes only a single CARD domain. 
NOD1 regularly serves as a sensor for Gram-negative bac-
teria and specifically distinguishes diaminopimelic acid, a 
specific muropeptide (G-d-glutamyl-meso-diaminopimelic 
acid, iE-DAP) derived from bacterial peptidoglycans [107], 
while NOD2 responds to MDP from all bacterial pepti-
doglycans [3]. Although NOD1 has a ubiquitous distribu-
tion, NOD2 is predominantly expressed in innate immune 
cells. Due to the functional similarities between NOD1 
and NOD2, NOD1 generally recognizes the iE-DAP and 
binds this ligand directly to the LRR domain. Subsequently, 
it also undertakes oligomerization and recruits the down-
stream interacting protein RIP2 to activate the NF-κB and 
MAPK pathways, leading to the secretion of proinflam-
matory cytokines and chemokines. Similar in function to 

Table 3  NOD2 genetic 
mutations which may lead to 
CNCDs

Diseases Genetic mutations of NOD2

Crohn’s disease L1007fsinsC [27], R702W [27], G908R [27], R311W [31], S431L 
[31], R703C [31], N852S [31], M863 [31], R138Q [32], R38M [32], 
L248R [32], W355stop [32], L550V [32], N825K [32], L1007P [32], 
R1019stop [32], R138Q [33], W157R [33], N289S [33], D291N [33], 
L348V [33], 558delLG [33], A612T [33], A612V [33], R713C [33], 
E843K231 [33]

Cardiovascular diseases L1007fsins [61], G908R [61]
Cancer L1007fsins [86], R702W [86], G908R [86], P268S [85], rs7205423 [87]
Parkinson P268S [64], K953E [64]
Guillain-Barré syndrome R702W [62], G908R [62]
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NOD2, NOD1 is involved in the occurence and progression 
of inflammatory disorders, such as Crohn’s disease and ath-
erosclerosis [49, 108]. In contrary to NOD2, previous studies 
have not found an association between NOD1 gene mutations 
and susceptibility to IBD. In terms of mechanisms, NOD1 
is extensively expressed by a variety of cell types, including 
intestinal epithelial cells, and is important for regulating the 
balance of normal gut microbiota and intestinal pathogens 
in cells. When NOD1 is stimulated by pathogenic bacteria, 
it induces the production of inflammatory chemokines and 
initiates autophagy in both epithelial cells and murine mac-
rophages [109]. NOD1 knock-out mice exhibit aggravating 
intestinal inflammation compared to wild-type mice, in part 
because of rising intestinal permeability [110]. NOD1 is also 
expressed in heart, fibroblasts, and cardiomyocytes and has 
been found to be involved in cardiac function, including ath-
erosclerosis, dilated cardiomyopathy, and I/R injury. iE-DAP 
or DAMP stimulation triggers the NOD1-mediated inflam-
matory response that impairs cardiomyocytes and vascular 
endothelial cells, hastening cardiac failure. NOD1 activation 
also interferes with  Ca2+ homeostasis through the NF-κB 
pathway in cardiomyocytes, which further contributes to the 
development of heart disorders [111]. In light of NOD1 in 
diabetes, it not only promotes metabolic inflammation but 
also influences regular endocrine function, both of which can 
lead to insulin resistance [112, 113]. Additionally, the role of 
NOD1 in different types of cancer is controversial. It is far 
from being elucidated that whether NOD1 activation protects 
the host from these invasive microorganisms or it indeed pro-
motes carcinogenesis. Plenty of research indicate that NOD1 
activation enhances tumor proliferation and migration, as 
well as metastasis by promoting macrophage M2 polariza-
tion and producing an immunosuppressive microenvironment 
[114, 115]. However, NOD1 knockout mice appear to have a 
high susceptibility to the inflammation-related colon tumo-
rigenesis [116]. In support of this conclusion, overexpression 
of NOD1 markedly suppresses tumorigenesis in hepatocel-
lular carcinoma and is consistent with much lower NOD1 
expression in tissue. It is said that NOD1 exerts an antitumor 
effect by inhibiting the SRC-MAPK axis and improving the 
chemosensitivity of hepatocellular carcinoma cells to chemo-
therapy agents [117].

To a large extent, NOD1 and NOD2 play comparable 
roles in chronic diseases and collaborate with each other 
to maintain immune system balance. However, because of 
variations in distribution, expression, and binding structure, 
the concrete mechanisms of NOD1 and NOD2 are distin-
guished. For instance, there is a close correlation between 
Crohn’s disease and mutations in NOD2, but not in NOD1. 
Thereby, more studies are required to reveal the exact mech-
anism of difference between NOD1 and NOD2. Collectively, 
NOD2 is a fundamental member of the innate immune fam-
ily and performs as the first line of defense against external 

invasions. On the contrary, the excessive inflammatory 
response can cause damage to the body. Unlike previous 
reports on the role of NOD2 in infectious disorders, we have 
mainly reviewed the contributions of NOD2 to CNCDs and 
aim to provide new perspectives on therapeutic target for 
CNCDs. Although NOD2 activation triggers the specific 
innate inflammatory or metabolic signaling pathways in 
CNCDs, the positives and negatives of NOD2 in CNCDs are 
still controversial. Therefore, further studies on the mecha-
nism of NOD2 need to be explored in the future.
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