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Abstract
Ischemic stroke is the major contributor to morbidity and mortality in people with diabetes mellitus. In ischemic stroke 
patients, neuroinflammation is now understood to be one of the main underlying mechanisms for cerebral damage and recov-
ery delay. It has been well-established that toll-like receptor 4 (TLR4) signaling pathway plays a key role in neuroinflam-
mation. Emerging research over the last decade has revealed that, compared to ischemic stroke without diabetes mellitus, 
ischemic stroke with diabetes mellitus significantly upregulates TLR4-mediated neuroinflammation, increasing the risk of 
cerebral and neuronal damage as well as neurofunctional recovery delay. This review aims to discuss how ischemic stroke 
with diabetes mellitus amplifies TLR4-mediated neuroinflammation and its consequences. Additionally covered in this 
review is the potential application of TLR4 antagonists in the management of diabetic ischemic stroke.
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Introduction

Stroke is a serious condition that impairs social, familial, and 
individual well-being on a global level. As of 2019, stroke 
is the second leading cause of death worldwide [1]. Stroke 
can be classified into two types: ischemic stroke and hemor-
rhagic stroke, accounting for ~ 85% and ~ 15% of all cases, 
respectively [2]. Diabetes, obesity, hypertension, sedentary 
lifestyle, smoking, dyslipidemia, and cardiac conditions such 
as atrial fibrillation are the major modifiable risk factors for 
ischemic stroke [3].

Diabetes and diabetes-related risk factors are well known 
to develop pathological deteriorations in the blood vessels 
of the human body, leading to various subtypes of ischemic 
stroke if the brain blood vessels are pathologically impacted 
by the condition, with the middle cerebral arteries being the 
most commonly affected [4]. People with diabetes have a 
nearly 2-fold greater chance of experiencing an ischemic 
stroke compared to those without the disease [5]. Ischemic 
stroke can also result in glucose metabolism disorders, 

which can, in turn, exacerbate the brain damage and delay 
brain functional recovery [6]. In comparison to ischemic 
stroke patients without diabetes, those with uncontrolled 
high blood sugar levels had worse acute stroke outcomes, as 
well as a higher risk of mortality and stroke recurrence [7].

To date, tissue plasminogen activator is the only medica-
tion approved for the treatment of ischemic stroke, and it 
must be administered within 4.5 h of the stroke onset [8, 9]. 
However, the administration of tissue plasminogen activator 
after the ischemic stroke may raise the chance of intracer-
ebral hemorrhage [10]. As an alternative to tissue plasmi-
nogen activator, mechanical thrombectomy, which removes 
the thrombus occluded in large arteries, has been used to 
treat ischemic stroke [11]. Mechanical thrombectomy, on 
the other hand, is not an option for ischemic stroke patients 
who have small artery or multiple arteries occlusions, as 
well as inadequate collateral circulation. Although tissue 
plasminogen activator and mechanical thrombectomy are 
both effective first-line treatments for ischemic stroke, it is 
crucial to remember that neither treatment specifically tar-
gets the cellular injury mechanisms due to ischemic stroke; 
rather, both only aim to improve cerebral blood flow in 
stroke patients. Thus, an understanding of the molecular 
mechanisms involved in the pathophysiology of the ischemic 
stroke concomitant with diabetes (hereafter referred to as 
“diabetic stroke”) could make a significant contribution to 
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the development of potential therapeutics to lessen neuronal 
death and damage after the diabetic stroke patients.

Growing evidence shows that the innate immune system 
initiates the protracted inflammatory cascade that is the 
primary etiology of cerebral damage and brain functional 
recovery delay in diabetic stroke [12–14]. As a part of the 
innate neuroimmune system, pattern recognition receptors 
(PRRs) such as toll-like receptors (TLRs) have been shown 
to play a significant role in the development of neuroin-
flammation [15]. Over the past ten years, a number of stud-
ies have demonstrated that the TLR4 signaling pathway is 
crucial for the pathogenesis of neuroinflammation and sub-
sequent brain pathologies [16, 17]. Although the evidence 
linking TLR4-mediated neuroinflammation to cerebral dam-
age and brain functional recovery delay in diabetic stroke 
patients is still limited, pre-clinical studies have shown that 
TLR4-mediated neuroinflammation significantly contributes 
to the escalation of cerebral damage and brain functional 
recovery delay following a diabetic stroke [18, 19]. This 
review intends not only to provide an overview of recent 
findings on TLR4-mediated neuroinflammatory process 
but also to discuss how TLR4-mediated neuroinflammatory 
process exacerbates the cerebral damage and delays brain 
functional recovery in the diabetic stroke.

General aspect of TLR4 signaling pathway 
in neuroinflammation

TLR4, the first mammalian toll-like receptor identified, is 
traditionally an innate immune receptor that is primarily 
found on neuroimmune cells like microglia and astrocytes, in 
addition to neurons, oligodendrocytes, and blood-brain bar-
rier (BBB) endothelial cells [20]. Being an immune receptor, 
TLR4 functions as a PRR with its vital co-receptor, myeloid 
differentiation factor 2, recognizing the pathogen-associated 
molecular pattern like lipopolysaccharide, and then releasing 
the inflammatory cytokines to kill the invading pathogens 
[21]. Additionally, the damage-associated molecular pat-
tern (DAMP), such as heat shock protein and high mobility 
group box 1 (HMGB1), can also prompt the TLR4 signaling 
pathway to be activated [22]. Once the ligands bind to the 
TLR4, the intracellular adaptor molecules are recruited: toll-
interleukin-1 receptor domain-containing adaptor protein-
inducing interferon (TRIF), TRIF-related adaptor molecule 
(TRAM), myeloid differentiation primary response protein 
88 (MyD88), and MyD88-adaptor-like (MAL) protein, 
resulting in MyD88 dependent and independent intracellu-
lar pathways activation and inflammatory cytokines release, 
leading to neuroinflammation [17, 21].

Neuroinflammation typically emerges as a beneficial 
protective immune response, but if this immune response 
is unregulated and prolonged over a certain period, it can 

become harmful. Pre-clinical and clinical studies have both 
shown that persistent TLR4-mediated neuroinflammation 
is a major contributor to a variety of brain pathologies and 
cerebral damage [16–18, 20, 23].

Diabetes as a risk factor for stroke

Diabetes mellitus is caused by a loss of functional pancreatic 
islet beta-cell mass. According to the American Diabetes 
Association, type 1 diabetes is a chronic autoimmune disease 
characterized by the absolute insulin deficiency as a con-
sequence of loss of pancreatic islet beta-cells, while type 2 
diabetes is characterized by the progressively impaired pan-
creatic islet beta-cells usually in the presence of pre-existing 
insulin resistance [24]. An estimated 136 million adults, or 
19.5% of the adult population aged 65 to 99, were diagnosed 
with diabetes in 2019. This figure is expected to rise to 195 
million by 2030, and 276.2 million by 2045 [25]. Type 1 
diabetes affects 5–10% of those diagnosed [26], while type 
2 diabetes accounts for 90% of all cases [27].

Type 1 diabetes is the most prevalent form of diabetes in 
children under the age of 15, with a peak incidence rate at 
the age of 12–14 [28]. There are two types of type 1 diabe-
tes: pre-symptomatic type 1 diabetes characterized by lower 
β-cell mass without symptoms, and symptomatic type 1 
diabetes characterized by hyperglycemia symptoms includ-
ing hunger, thirst, polyuria, and weight loss). Furthermore, 
type 1 diabetes can be divided into three stages: stage 1 
is characterized by the presence of autoantibodies but not 
hyperglycemia; stage 2 is characterized by the presence of 
both autoantibodies and hyperglycemia; and stage 3 is char-
acterized by hyperglycemic symptoms, which is a form of 
symptomatic type 1 diabetes [29].

Type 2 diabetes, which is far more common than type 1 
diabetes (accounting for 90% of all cases), is characterized 
by dysregulation of protein, lipid, and carbohydrate metabo-
lism, and triggered by insulin resistance, impaired insulin 
secretion, or a combination of the two [30]. The pathophysi-
ology of type 2 diabetes mellitus is significantly influenced 
by adipose tissue, as the majority of affected individuals 
have central visceral adiposity and obesity. Type 2 diabetes 
has a wide range of underlying pathophysiology, clinical 
presentation, and disease progression, and atypical symp-
toms can complicate type 2 diabetes classification [30].

A common outcome of type 1 and type 2 diabetes mel-
litus is hyperglycemia. Long-term hyperglycemia in chronic 
type 1 and type 2 diabetes can lead to severe cerebrovascular 
complications, including strokes [31]. Diabetes was linked to 
hazard ratios of 1.84 for unclassified stroke, 1.56 for hemor-
rhagic stroke, and 2.27 for ischemic stroke, per the Emerging 
Risk Factors Collaboration [32]. A 34% increase in ischemic 
stroke was observed in diabetic subjects (CI 1.11-162) among 
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the over 41,000 patients registered in the Lausanne Stroke 
Registry [33]. A prospective Japanese study found that the 
incidence of all types of ischemic stroke was two to four times 
higher in male and female diabetic subjects, with no correla-
tion to subarachnoid or intraparenchymal hemorrhage [34]. 
Diabetes increases the risk of ischemic stroke-related mor-
bidity, mortality, and brain damage, but it is unclear what 
underlying factors exacerbate the ischemic stroke.

Diabetic stroke, TLR4‑mediated 
neuroinflammation, and cerebral reperfusion

Diabetes is a type of metabolic disease characterized by 
high blood sugar levels. A growing body of evidence sug-
gests that high blood sugar levels in diabetes activate TLR4 
signaling pathway, triggering systemic and brain inflam-
mation [35, 36]. Furthermore, impaired insulin function in 
diabetes enhances lipolysis and free fatty acid release, which 
activates TLR4 signaling, resulting in systemic inflamma-
tion [37]. Also, hyperglycemic-induced oxidative stress in 
diabetes activates TLR4 signaling pathway and initiates the 
oxidative-inflammatory vicious cycle [38]. The risk for suf-
fering from a diabetic stroke rises as a result of the systemic 
metabolic and inflammatory cascades as well as oxidative 
stress, all of which contribute to diabetes-induced vascular 
complications [39].

An ischemic stroke happens when cerebral vasculariza-
tion is decreased or interrupted, causing a disruption in the 
supply of oxygen and glucose to the brain that propagates 
cerebral homeostasis impairments, ultimately leading to 
neuronal injury and death [40, 41]. It has been reported that 
uncontrolled blood sugar level with a history of diabetes 
exacerbates cerebral ischemic injury and leads to poorer 
functional outcomes [7]. In the last decade, a growing body 
of research indicates that the cerebral damage in diabetic 
stroke is reported to be significantly greater than ischemic 
stroke without diabetes due to exacerbated brain inflamma-
tion via TLR4 signaling pathway. Although the underlying 
pathological mechanisms of diabetic stroke are still poorly 
understood, pre-clinical research has shown a strong link 
between diabetic stroke and TLR4-mediated neuroinflam-
mation, which delays brain functional recovery after diabetic 
stroke [12, 18, 19, 42–45].

Ning et al. [42] reported that TLR4 expressions in the 
ischemic brain area of diabetic rats were significantly 
increased after 48 h of ischemic stroke compared to those in 
ischemic stroke with non-diabetic rats. Kurita and colleagues 
discovered that after 7 days of ischemic stroke, TLR4- 
mediated neuroinflammation in ischemic brain area of db/db 
mice was significantly higher than those in ischemic stroke 
with db/+ mice [43]. Similarly, Ye and colleagues demon-
strated that TLR4 expressions were significantly higher in 

ischemic brain area of diabetic rats following 14 days of 
ischemic stroke compared to those of ischemic stroke with 
non-diabetic rats [12]. Pre-clinical studies have shown that 
diabetic stroke is associated with a markedly higher level of 
TLR4-mediated neuroinflammation, which can persist for up 
to 14 days after an ischemic stroke [12, 42, 43]. Short-term 
neuroinflammatory response can be beneficial for removing 
the damaged tissue in ischemic brain, but long-term neu-
roinflammatory response may harm the surrounding tissue 
of ischemic brain [46]. To date, pre-clinical studies have 
been extensively conducted to develop novel therapeutic 
approaches to reduce the TLR4 signaling pathway activity 
after diabetic stroke [13, 44, 45].

Restoring cerebral blood flow to the ischemic brain is 
a crucial first step in the treatment of ischemic stroke [47, 
48]. However, reperfusion itself can harm the ischemic brain 
due to an increase in neuroinflammation and brain oxidative 
stress [44, 49]. Furthermore, high blood glucose level in 
diabetes aggravates cerebral reperfusion injury [50]. This 
review also compiles preclinical research demonstrating 
that cerebral reperfusion after a diabetic stroke significantly 
amplifies TLR4-mediated neuroinflammation compared to 
it does following a normoglycemic stroke.

Zhang et al. [44] reported that TLR4-mediated neuroin-
flammation is significantly higher after cerebral reperfusion 
for 24 h in diabetic stroke compared to those in ischemic 
stroke without diabetes. Interestingly, after 48 h of cerebral 
reperfusion, TLR4 expressions in ischemic brain area of dia-
betic stroke were significantly increased compared to those 
of ischemic stroke with normoglycemia [45, 51]. A growing 
body of evidence demonstrated that cerebral reperfusion for 
72 h in diabetic stroke significantly increased TLR4-mediated 
neuroinflammation in comparison to ischemic stroke without 
diabetes [18, 19, 52]. The standard therapeutic strategy for 
treating ischemic stroke is prompt blood vessel recanalization; 
however, pre-clinical studies show that reperfusion in diabetic 
stroke amplifies TLR4-mediated neuroinflammation. Table 1 
shows the evidence of TLR4-mediated neuroinflammation in 
experimental diabetic stroke models.

Inflammatory mediators of TLR4‑mediated 
neuroinflammation and secondary 
complications in diabetic stroke

In the early stages of diabetic stroke, the death neurons 
passively secrete DAMPs like HMGB1 into the extracel-
lular space of the nervous system [19, 52], where they are 
then released into the peripheral circulation. Following an 
ischemic stroke, the level of HMGB1 in the peripheral blood 
is markedly increased within 24 h and can rise by as much as 
13 times, reflecting the degree of HMGB1 expression in the 
nervous system [53]. Similarly, Kim et al. [51] demonstrated 
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that serum HMGB1 level was significantly increased in the 
diabetic stroke rodent model. Ischemic stroke-induced extra-
cellular HMGB1 functions as a pro-inflammatory factor, 
activating not only cerebral immune cells such as microglia 
and astrocytes, but also recruiting systemic immune cells in 
the brain via the TLR4 signaling pathway, resulting in brain 
inflammation [54]. In addition, active secretions of HMGB1 
occur when brain immune cells are activated in response 
to an ischemic stroke, aggravating TLR4-mediated brain 
inflammation [9, 55]. Once HMGB1 binds to TLR4 recep-
tor, it activates nuclear factor kappa B (NF-KB) which leads 
to enhance the levels of pro-inflammatory cytokines such 
as tumor necrosis factor alpha (TNF-α) and interleukin 6 
(IL-6), as well as matrix metalloproteinase 9 (MMP-9) [52]. 

Moreover, TLR4 upregulates NLR family pyrin domain con-
taining 3 (NLRP3) inflammasome formation which contrib-
utes to amplifies brain inflammation and provoke neuronal 
cell death in the ischemic brain [44].

In the brain, inflammatory cytokines were already ele-
vated at baseline in diabetic conditions before the ischemic 
event [56]. The inflammatory cytokines produced as a result 
of the ischemic condition and those already present due to 
diabetes intensify brain immune cells activation and TLR4-
mediated neuroinflammation in diabetic stroke [12, 42, 51, 
52]. Experimental and clinical studies have shown that the 
infiltration of systemic immune cells, such as neutrophils, 
lymphocytes, and monocytes, also aggravates neuroinflam-
mation and neuronal cell death in ischemic stroke [57–62]. 

Table 1  Evidence of TLR4-mediated neuroinflammation in experimental diabetic stroke models

HFD high-fat diet, HMGB1 high mobility group box 1, IL-1β interleukin 1 beta, IL-6 interleukin 6, MCAO/R middle cerebral artery occlusion/
reperfusion, mRNA messenger ribonucleic acid, NLRP3 NLR family pyrin domain containing 3, SD rats Sprague-Dawley rats, p-NF-KB 65 phos-
phorylated nuclear factor kappa b 65, TLR4 toll-like receptor 4, TNF-α tumor necrosis factor alpha

Study model Diabetic models Findings on ischemic brain area Reference

Streptozotocin-injected male Wistar rats with MCAO
[Vs. non-diabetic male Wistar rats with MCAO]

Type 1 diabetes ↑TLR4
[after 48 h of MCAO]

[42]

Male db/db mice with MCAO
[Vs. male db/ + mice with MCAO]

Type 2 diabetes ↑TLR4
↑TNF-α
↑IL-1β
↑IL-6
[After 7 days of MCAO]

[43]

Streptozotocin-injected male Wistar rats with MCAO
[Vs. non-diabetic male Wistar rats with MCAO]

Type 1 diabetes ↑TLR4
[after 14 days of MCAO]

[12]

Streptozotocin-injected male Sprague-Dawley rats with 
MCAO/R

[Vs. non-diabetic male Sprague-Dawley rats with 
MCAO/R]

Type 1 diabetes ↑TLR4 (both ipsilateral contralateral brain areas)
↑NF-KB
↑TNF-α
↑IL-1β
↑TLR4 mRNA
[After 30 min of MCAO followed by 72 h of reperfu-

sion]

[52]

Streptozotocin-injected and HFD-treated male 
C57BL/6 J mice with MCAO/R

[Vs. non-diabetic male C57BL/6 J mice with 
MCAO/R]

Type 2 diabetes ↑TLR4
↑p-NF-KB p65
↑NLRP3
↑IL-1β
[After 1 h of MCAO followed by 24 h of reperfusion]

[44]

Streptozotocin-injected male SD rats with MCAO/R
[Vs. non-diabetic male SD rats with MCAO/R]

Type 1 diabetes ↑TLR4 (+) cells
[After 1 h of MCAO followed by 48 h of reperfusion]

[51]

Streptozotocin-injected and HFD-treated male SD rats 
with MCAO/R

[Vs. non-diabetic male SD rats with MCAO/R]

Type 2 diabetes ↑TLR4 (+) cells
↑NF-KB (+) cells
[After 90 min of MCAO followed by 48 h of reperfu-

sion]

[45]

Streptozotocin-injected and HFD-treated male Wistar 
rats with MCAO/R

[Vs. non-diabetic male Wistar rats with MCAO/R]

Type 2 diabetes ↑TLR4 (brain)
↑TLR4 (Cerebral vasculature)
[After 1 h of MCAO followed by 72 h of reperfusion]

[18]

Streptozotocin-injected and HFD-treated male 
C57BL/6 J mice with MCAO/R

[Vs. non-diabetic male C57BL/6 J mice with 
MCAO/R]

Type 2 diabetes ↑TLR4
↑NF-KB
↑TNF-α
↑IL-1β
↑IL-6
↑HMGB1
[After 1 h of MCAO followed by 72 h of reperfusion]

[19]
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During the early phase of cerebral ischemia, reactive oxygen 
species (ROS) and pro-inflammatory agents like cytokines, 
chemokines, and DAMPs are released by damaged brain 
tissue, and these substances encourage the adherence and 
trans-endothelial transfer of systemic immune cells by 
upregulating the adhesion molecules on cerebral endothelial 
cells as well as systemic immune cells [63].

Following the early stages of ischemic stroke, the infil-
trated systemic immune cells release additional cytokines 
and chemokines, creating the oxidative inflammatory 
vicious cycle that stimulates MMP-9 production [64]. The 
increased MMP-9 level in diabetic stroke intensifies the 
neuroinflammatory process and significantly contributes to 
BBB disruption [12, 42]. Once the BBB has been disrupted, 
the ruptured BBB provides a significant entry point for the 
invasion of peripheral inflammatory cells into the cerebral 
ischemic area [65]. Furthermore, blood serum leaks into the 
brain through the compromised BBB, causing brain oedema, 
an increase in brain water content, a larger infarct size, and 
hemorrhagic transformation of cerebral infarct in diabetic 
stroke, all of which contribute to impaired brain functions 
and neurological deficits [12, 42, 51, 52]. The pathophysiol-
ogy of TLR4-mediated neuroinflammation in diabetic stroke 
and its consequences are illustrated in Fig. 1.

TLR4-mediated neuroinflammation, along with its sec-
ondary complications, thus significantly influences on 
neurofunctional impairments and lowers the chance of sur-
vival in diabetic stroke [18, 19, 42–44, 52]. Furthermore, 

diabetes-related vascular impairments such as arterial stiff-
ness are one of the factors that trigger neuronal death and 
functional recovery delay following an ischemic stroke [66]. 
To date, the results of experimental studies highlight the 
impact of TLR4-mediated neuroinflammation on cerebral 
damage and secondary complications in diabetic stroke [18, 
19, 42–44, 52]. The harmful consequences arise in diabetic 
stroke when proper resolution does not apply. Thus, target-
ing TLR4 piques researchers’ interest as a potential thera-
peutic approach for diabetic stroke.

Potential roles of TLR4 antagonist 
in diabetic stroke

Numerous studies have shown that the TLR4 signaling 
pathway plays an important role in the pathophysiology 
of stroke [67–69]. Kilic and colleagues demonstrated that 
TLR4 knockout mice had the significant reduction in brain 
infarct size during focal cerebral ischemia [70]. In the study 
conducted by Hua and co-workers, systemic administration 
of TAK-242, TLR4 antagonist, after experimental stroke 
significantly reduced cerebral infarct, TLR4-mediated neu-
roinflammation, and improved neurological function [71]. 
Parada et al. [72] found that systemic administration of eri-
toran, TLR4 inhibitor, after cerebral ischemia significantly 
attenuated cerebral infarct size, BBB disruption, neuroin-
flammation, and neurological deficits.

Fig. 1  Pathophysiology of TLR4-mediated neuroinflammation in dia-
betic stroke and its consequences. In diabetes, hyperglycemia ampli-
fies systemic inflammation and oxidative stress, both of which induce 
TLR4-mediated neuroinflammation. In addition, diabetes-related met-
abolic changes cause vascular damage that can result in an ischemic 
stroke. Increased level of HMGB1 due to neuronal death in ischemic 
stroke induces TLR4-mediated neuroinflammation which can con-

sequently induce several brain pathologies. Moreover, reperfusion 
injury in ischemic stroke amplifies TLR4-mediated neuroinflamma-
tion and its consequences. In diabetic stroke, diabetes-related sys-
temic pathologies amplify TLR4-mediated neuroinflammation, which 
can lead to numerous brain pathologies and functional recovery delay. 
HMGB1, high mobility group box 1; TLR4, toll-like receptor 4
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To date, evidences regarding the pharmacological inter-
vention of TLR4 antagonists in diabetic stroke are still lim-
ited. Abdul et al. [18] reported that systemic administration 
of TAK242 after diabetic stroke improves BBB integrity and 
neurofunctional outcome. Interestingly, Li and colleagues 
showed that systemic administration of TAK-242 after dia-
betic stroke significantly reduced cerebral infarct, cerebral 
oedema, brain oxidative stress, neuronal apoptosis, neuroin-
flammation, and neurological deficits [73]. The experimen-
tal studies demonstrated that pharmacological interventions 
targeting TLR4 might have a significant positive impact in 
diabetic stroke [18, 73]; however, in order to be effective 
in humans, these interventions should be able to promote 
resolution and an anti-inflammatory phenotype rather than 
completely suppress inflammation.

Clinical translation of diabetic stroke 
treatment: challenges

Although experimental studies have improved our com-
prehension of brain physiology and the pathophysiology 
of diabetic stroke, clinical application of this knowledge is 
challenging and frequently falls short. The primary causes 
are the structural and functional distinctions between the 
human brain and that of experimental animals, as well 
as the metabolic functions. Furthermore, human disease 
cannot be easily compared to experimental animal stroke 
models due to the complexity of human disease patho-
physiology and co-morbidities. Clinical trials are therefore 
eventually depended upon to offer significant insights into 
human diabetes and its treatments. When analyzing data 
from animal studies, researchers need to be aware of these 
limitations and take them into consideration. Moreover, it 
is crucial to reproduce the pathophysiology of the disease 
in lab animals when developing models that resemble dia-
betes. Since damage to pancreatic β-cells can result in both 
types of diabetes, injecting streptozotocin into a particular 
model can kill pancreatic beta cells and mimic type 1 and 
later stages of type 2 diabetes. In addition, the neurobehav-
ioral assessment techniques used in experimental animal 
models provide limited relevance for human neurobehav-
ioral outcomes, making it impossible to compare human 
and animal neurobehavioral outcomes. In order for the 
findings of experimental neuroscience to be applied clini-
cally, it is necessary to develop neurobehavioral assessment 
techniques for experimental animals that can be equally 
relevant to human neurobehavioral functions. However, 
animal models have made a substantial contribution to our 
understanding of the pathophysiology of diabetes, even in 
spite of these limitations.

Conclusion

Diabetes is a well-known high-risk factor for ischemic 
stroke. The experimental studies conducted in the previous 
decade highlight that in diabetic stroke, TLR4-mediated  
brain inflammation due to various inflammatory cell 
responses contributes to significant cerebral damage and 
neurofunctional recovery delay. Although there are cur-
rently few experimental studies that demonstrate the ben-
eficial effects of TLR4 antagonists on diabetic stroke, the 
promising findings will encourage more research focusing 
on the potential benefits of novel TLR4 antagonists or the 
anti-inflammatory phenotypes for the treatment of diabetic 
stroke. In addition, developing the experimental models as 
well as optimizing the neurofunctional assessments in ani-
mals are also necessary for the translation of experimental 
neuroscience to clinical application in diabetic stroke. There 
are still a lot of significant unanswered questions, but the 
useful information gleaned from animal experiments and 
upcoming clinical trials will eventually lead to the develop-
ment of therapies that lessen the impact of diabetic stroke.
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