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Abstract 
UVB exposure accelerates skin aging and pigmentation. Melatonin effectively regulates tyrosinase (TYR) activity and 
aging. The purpose of this study was to determine the association between premature senescence and pigmentation, and the 
mechanism of melanin synthesis effected by melatonin. Primary melanocytes were extracted and identified from the male 
foreskin. To inhibit TYR expression, primary melanocytes were transduced with the lentivirus pLKD-CMV-EGFP-2A-
Puro-U6-TYR. The wild-type TYR (+/+) and TYR (–/–) or TYR (+/–) knockout C57BL/6 J mice were used to determine the role 
of TYR on melanin synthesis in vivo. Results showed that UVB-induced melanin synthesis is dependent on TYR in primary 
melanocytes and mice. Furthermore, in primary melanocytes pretreated with Nutlin-3 or PFT-α to up or downregulate p53, 
results showed that premature senescence and melanin synthesis increased in primary melanocytes after UVB irradiation at 
80 mJ/cm2, and further increased after being treated with Nutlin-3, while significantly decreased with PFT-α. In addition, 
melatonin inhibited UVB-induced premature senescence associated with inactivation of p53 and phosphorylation of p53 
on Ser15 (ser-15), a decrease of melanin synthesis accompanied by reduced TYR expression. Moreover, skin erythema and 
pigmentation induced by UVB were reduced in the dorsal and ear skin of mice topically pretreated with 2.5% melatonin. 
These indicate that melatonin inhibits UVB-induced senescence-associated pigmentation via the p53-TYR pathway in pri-
mary melanocytes and prevents pigmentation obviously in the dorsal and ear skin of C57BL/6 J mice after UVB irradiation.

Key messages 
• P53 links UVB irradiation-induced senescence and 

senescence-associated pigmentation and regulates TYR 
in primary melanocytes after UVB irradiation.

• Melatonin inhibits senescence-associated pigmentation 
through the p53-TYR pathway in primary melanocytes.

•  Melatonin prevents skin erythema and melanin pigmen-
tation induced by UVB irradiation in the dorsal and ear 
skin of C57BL/6J mice.
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Introduction

The skin is a physical barrier that protects the inner parts 
of the body from the surrounding physical, chemical, and 
biological environments and helps to resist adverse agents 
[1]. The human skin is repeatedly exposed to ultravio-
let (UV) irradiation, with affects skin cell survival and 
activity and leads to skin damage, inflammation, aging, 
and skin pigmentation [2]. Furthermore, skin exposed to 
UV irradiation can affect the overall stability of individu-
als by activating the central neuroendocrine system [3]. 
Melanin is a skin pigment that as the first line of defense 
blocks UV irradiation and dissipates UV as heat prevent-
ing any harm. It is generated in melanin-producing cells 
known as melanocytes [4]. Melanocytes mainly exist at 
the epidermal and dermal junction, accounting for about 
10% of basal epidermal cells, and producing protective 
melanin [5]. Tyrosine is the starting material for melanin 
production, and tyrosinase is used for converting precur-
sor tyrosine to DOPA and, subsequently, melanin [6]. 
UVB can penetrate the epidermis, cause DNA damage, 
and promote the accumulation of reactive oxygen species 
(ROS) in the melanocytes [7]. Melanocytes coordinate 
the repair of UVB-induced DNA damage by blocking the 
cell cycle. Cell division stops, and premature senescence 
(PS) was induced when repairs are ineffective or DNA 
damage persists [8]. Premature senescence has specific 
physiological alterations, such as reduced cell prolifera-
tion, larger cell volume, a higher lysosome quantity of 
lysosomes, and senescence-associated gene upregulation. 
PS can be triggered by several factors, such as oxidative 
stress and DNA damage [9]. As a tumor suppressor, p53 
maintains the intact genome by modulating cell apoptosis 
and arresting growth during DNA damage response. Upon 
irradiation, the mutant gene products within ataxia telangi-
ectasia and ATM stabilizes and activates the p53 through 
phosphorylation in positions ser-15, ser-20, and ser-46 [10, 
11]. The phosphorylation of p53 in positions ser-15 and 
ser-20 can enhance p53 accumulation and activate DNA 
repair. However, the phosphorylation of p53 in position 
ser-46 tightly regulates cell apoptosis post-DNA damage 
[12]. Kang identified three significant pathways regulating 
senescence. The p16 and p53-mediated pathways induced 
PS by regulating the cell cycle [13].

Melatonin, an indolic hormone, can be produced from 
the pineal gland, synthesized in the human skin, and has 
several functions [14, 15]. Melatonin and its metabolites 
limit oxidative stress by scavenging toxic ROS, inhibit-
ing ROS generation, and stimulating the production of 
antioxidant enzymes [16, 17]. Additionally, melatonin 
also has anti-inflammatory [18] and anti-apoptotic effects 
[19, 20]. Melatonin and its corresponding metabolites can 

regulate the skin and facilitate the development of potent 
anti-aging molecules [21]. They also strongly influence 
melatonin production and regulate tyrosinase activity [22]. 
Therefore, we determined the key factors of senescence-
associated pigmentation and the underlying mechanism in 
premature senescence and senescence-associated pigmen-
tation in the melanocytes after UVB irradiation.

Materials and methods

Cell culture

Human immortalized keratinocytes (HaCaT) were purchased 
from the Cell Resource Center of the Institute of Basic 
Medical Sciences, Peking Union Medical College Hospital 
(IBMS, CAMS/PUMC). The primary melanocytes (MC) 
were cultured from adult healthy male foreskin tissues in our 
laboratory, and the second to fourth generations of cultured 
primary melanocytes were used in subsequent experiments.

Primary melanocytes were acquired from five men who 
had routine circumcisions performed at Chaoyang Hospital 
and the PLA Rocket Force Characteristic Medical Center in 
Beijing, China. Adult male foreskin samples were disinfected 
with 70% ethanol for disinfection and washed with phosphate-
buffered saline (PBS) solution. After the fat and subcutaneous 
tissue were removed, the prepuce tissue was cut into 3 mm 
wide strips. After digesting the prepuce in 4 °C refrigerators 
for 18 h with 0.25% trypsin solution, the epidermis and der-
mis were separated with a blade. Primary melanocytes were 
isolated from the prepuce’s middle layer and cultured in the 
M254-medium (Gibco, USA) with 1% penicillin–streptomycin 
(Beyotime Biotechnology, Shanghai, China) and 1% human 
melanocyte growth supplement-2 (HMGS-2, Gibco, USA) at 
5%  CO2 and 37 °C. HMGS-2 contains essential substances for 
melanocyte growth but inhibits keratinocytes and fibroblasts. 
Keratinocytes and fibroblasts were gradually removed from the 
wall after replacing the culture medium 2–3 times. Similarly, 
the HaCaT cells were cultivated in the MEM/EBSS (Hyclone, 
South Logan, UT, USA) containing 1% penicillin–streptomy-
cin and 10% fetal bovine serum (FBS, Hyclone, South Logan, 
UT, USA) at 5%  CO2 and 37 °C.

Animals

The 8-week-old TYR (–/–) and TYR (+/–) knockout C57BL/6 J 
mice were obtained from the GemPharmatech Company 
(Jiangsu, China) and the age-matched wild-type TYR (+/+) 
C57BL/6 J mice from the Charles River Laboratory Animal 
Center (Beijing, China). The Experimental Animal Wel-
fare Committee of the National Institute for Radiological 
Protection (NIRP, act no. 2021–009) of the Chinese Center 
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for Disease Control and Prevention (China CDC) approved 
our animal experiment protocols. The study was conducted 
following the Chinese regulations for animal experimenta-
tion (Ministry of Agriculture, act no. 2001–464, 29 May 
2001). We used wild-type TYR (+/+), TYR (–/–), and TYR (+/–) 
C57BL/6 J mice, three of each type, to explore the effects 
of TYR on melanin synthesis. In addition, 12 wild-type TYR 
(+/+) C57BL/6 J mice were randomized into non-treated, 
UVB, UVB + Vaseline, and UVB + 2.5% MT groups, 3 ani-
mals per group (n = 3), to determine the role of melatonin 
in UVB-induced skin morphological changes and melanin 
synthesis.

UVB irradiation

Logarithmic cells incubated with 2 mL of PBS were irradi-
ated with 80 mJ/cm2 of UVB for 46 s at 1.5 mW/cm2 power 
density using a UVB lamp (311–313 nm) (model: SH4B-T 
UV, SIGMA, Shanghai, China). The dose was calibrated 
before irradiation using a TN-2340 ultraviolet intensity 
meter, and the correction coefficient value was 1.16. The 
light source was placed approximately 40 cm away from the 
cell. A uniform (1%) homogenous field of 10 cm × 15 cm 
was prepared for UVB irradiation. Cells were cultivated at 
5%  CO2 and 37 °C.

The mice were anesthetized and depilated to expose 
about 3 cm × 5 cm of the skin on the back. After 30 min 
of pre-treatment with melatonin, the exposed skin on the 
back and ear was irradiated with a 600 mJ/cm2 dose of UVB 
for 130 s at 4 mW/cm2 power density using a UVB lamp 
(311–313 nm), and the changes in the skin on the back and 
ear were observed at 0, 48, and 96 h after irradiation. A 
TN-2340 ultraviolet intensity meter was used to calibrate the 
dose before irradiation, and the correction coefficient value 
was 1.16. The light source was about 15 cm away from the 
skin on the back.

Preparation and treatment of melatonin 
formulations

The Sigma-Aldrich Company (Merck, Darmstadt, Germany) 
supplied melatonin powder. After completely dissolving 
50 mg of melatonin powder in 0.5 mL absolute ethanol, 
PBS was added until the total volume of the solution was 
2.15 mL to obtain the 0.1 mol/L melatonin storage solu-
tion. Diluting the concentrations with PBS yielded the other 
concentrations. The cells were pretreated with a  10−5 mol/ 
L melatonin solution for 12 h before irradiation. The com-
position of the melatonin ointment was given in weight per 
weight (W/W) percentages. First, solution 1 was prepared by 
mixing 100 µL of anhydrous ethanol and 200 µL of Tween-
20 (Solarbio Company, Beijing, China). Then, a 1% mela-
tonin ointment was prepared by adding 1 mg of melatonin 

powder to solution 1, and Vaseline was added to increase 
the total weight of the mixture to 1 g. Also, 2.5% and 5% 
melatonin ointments were prepared using this method and 
the corresponding required percentage of the individual 
components. The exposed back and ear skin of mice was 
evenly and thinly coated with melatonin ointment for 30 min 
before irradiation.

shRNA transfection

The pLKD-CMV-EGFP-2A-Puro-U6-TYR lentivirus vector 
was purchased from OBIO Technology (Shanghai, China) 
and transfected into the primary melanocytes at MOI = 40 
using pLKD-CMV-EGFP-2A-Puro-U6-NC as the negative 
control (NC). A fluorescent microscope was used to detect 
the GFP protein level at 200 × and determine the lentivirus 
transfection efficiency (Thermo Scientific, Waltham, MA, 
USA) after 24 h. Then, the M-PER® Mammalian Protein 
Extraction Reagent (Thermo Scientific, Waltham, MA, 
USA) was used to extract the total protein in the subsequent 
assays. Three duplications of cell samples per group for each 
experiment, and this experiment was repeated three times.

Automated capillary electrophoresis Western 
blotting analysis

After cell lysis for 30 min at 4 °C using the RIPA buffer 
(Beyotime Biotechnology, Shanghai, China) containing 
protease and phosphatase inhibitors (Roche, Basel, Swit-
zerland), the cells were centrifuged at 12,000 r/min using the 
cell lysates. The supernatant protein content was determined 
using the Bicinchoninic acid (BCA) kit (Thermo Fisher Sci-
entific, Waltham, MA, USA). After extraction, a 5 × master 
mix with 0.1 × sample buffer was used to dilute cellular pro-
teins using the relevant experimental kit. Then, the primary 
antibody was diluted using antibody diluent II provided in 
the kit. The diluted protein, diluted primary antibody, HRP-
labeled secondary antibody, antibody diluent II, washing 
solution, and luminol-conjugate mix were then poured 
into each well of the plate provided in the kit. Finally, the 
proteins were fractionated, immobilized, and immunologi-
cally detected using the automatic capillary electrophoresis 
Western System (ProteinSimple, San Jose, CA, USA). The 
Compass for SW 4.0 software (ProteinSimple, San Jose, CA, 
USA) was used to quantify and visualize the proteins. The 
antibodies used were mouse anti-p53 (1C12) mAb (#2524S, 
CST, 1 : 50), rabbit anti-phospho-p53 (Ser15) antibody 
(#9284, CST, 1 : 50), the mouse anti-Tyrosinase antibody 
(T311) (sc-20035, Santa Cruz Biotechnology, 1 : 10), and 
mouse anti-β-actin mAb (#3700, CST, 1 : 50). Three dupli-
cations of cell samples per group for each experiment, and 
this experiment was repeated three times.
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Quantitative real‑time PCR (qRT‑PCR)

The TRIzol reagent (Ambion, Austin, TX, USA) was used to 
extract the total RNA, which was later used to prepare cDNA 
using the PrimeScript™ II 1st Strand cDNA Synthesis Kit 
(TaKaRa, Tokyo, Japan) by reverse transcription. After that, 
7500-Fast Real-time PCR (Thermo Company, USA) was 
used to conduct qRT-PCR. The expression of target genes 
was determined using the ∆∆CT approach, with β-actin as 
the reference. The sequences of tyrosinase (TYR) primers 
were 5′-TTG TGA GCT TGC TGT GTC GT-3′ (forward) and 
5′-GTC AGG CTT TTT GGC CCT AC-3′ (reverse).

DOPA staining

The cells were added to each well with 1 mL of 4% para-
formaldehyde (PFA) (Solarbio Company, China) after being 
washed with PBS. They were then fixed on a shaking table 
for 15 min. After that, PBS was used to rinse the cells three 
times for 3 min, and 1 mL of 0.3% TritonX-100 (Sigma 
Company, USA) was added to the cells per well for 30 min 
before washing three times with PBS. The staining group 
cells were mixed with 1 mL of 0.1% concentration L-DOPA 
solution (Sigma Company, USA) per well, preheated at 
37 °C, and incubated for 4 h at 37 °C. The control cells 
were treated with 1 mL of PBS per well and photographed 
at 400 × magnification, and the PBS-incubated cells were 
used as a control. When the cells turned black, this con-
firmed the formation of melanin. The optical density ratio to 
total area (IOD/ARE) of the stained black cells was quanti-
fied using the Image-Pro Plus software (Media Cybernetics, 
USA). Three duplications of cell samples per group for this 
experiment.

Melanin content assay

Seventy two hours after UVB irradiation, we harvested and 
rinsed the cells three times with PBS and added 1 mol/L 
of NaOH. Then, the resultant mixture (100 µL) was added 
to the 96-well plates, followed by incubation at 37 °C for 
60  min. Finally, a microplate reader (Multiskan MK3, 
Thermo Electron Corporation, MA, USA) was used to 
measure the absorbance (OD) value at 492 nm (OD492) to 
determine the melanin content. Three duplications of cell 
samples per group for this experiment.

Measurement of tyrosinase activity

Seventy two hours after cells were seeded into 96-well plates 
and exposed to UVB irradiation, 1% Triton X-100 buffer 
(100 µL) was added to each well and shaken for 15 min. 
After that, 0.1% 3, 4-Dihydroxy-L-phenylalanine (L-DOPA) 
buffer (100) was added to each well, followed by incubation 

at 37 °C for 2 h. Similarly, we determined the OD492 value 
to assess tyrosinase activity. Three duplications of cell sam-
ples per group for this experiment.

Analysis of senescence‑associated 
beta‑galactosidase (SA‑β‑gal) activity

The cells were stained following specific instructions using 
the SA-β-gal staining kit (Beyotime Biotechnology, Shang-
hai, China). Briefly, after washing with PBS, the cells were 
fixed using the fixation solution at ambient temperature for 
15 min followed by overnight incubation at 37 °C with the 
staining solution. An optical microscope was used to analyze 
the results from three randomly selected fields at 200 × mag-
nification and count the number of stained blue cells. Finally, 
the Image-Pro Plus 6.0 software (Media Cybernetics, Silver 
Spring, USA) was used to calculate the proportion of SA-β-
gal-positive cells. Three duplications of cell samples per 
group for this experiment.

Giemsa staining

Seventy two hours after the primary melanocytes were irra-
diated with 80 mJ/cm2 UVB, they were fixed with metha-
nol for 15 min. The primary melanocytes were removed 
and stained with Giemsa working solution for 15 min and 
washed with PBS solution. A microscope was used to meas-
ure the size of the cells and nuclei. Three duplications of cell 
samples per group for this experiment.

Lyso‑Tracker Red staining

The primary melanocytes were incubated with Lyso-Tracker 
Red working solution for 30 min. Then, the Lyso-Tracker 
Red staining working solution was removed, and a normal 
cell culture medium was added to every well. The fluores-
cence intensity was then measured and photographed using 
a fluorescence microscope and imaging system (Olym-
pus). Three duplications of cell samples per group for this 
experiment.

Statistical analysis

The GraphPad Prism 9.0 software (San Diego, CA, USA) 
was used for statistical analysis and plotting. A one-way 
ANOVA was used to compare several groups, followed by 
LSD tests, and a two-tailed Student’s t-test was used to com-
pare two groups. The data homogeneity of the data was con-
firmed based on the variances and the normal distribution. 
The data were presented as the mean ± SD. All differences 
among and between groups were considered to be statisti-
cally significant at P < 0.05.
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Results

Culture and identification of primary melanocytes

We established primary cultures of adult human melano-
cytes from the stratum basale of the foreskin after circumci-
sion to better simulate the melanin synthesis process in vivo 
(Fig. 1A). Passage 0 cells were observed on day 7. They had  
a spindle shape with a unique vortex arrangement at 90% 
confluence and were interspersed with keratinocytes and 
fibroblasts (Fig. 1B(a)). Pure melanocytes were obtained 
by passaging after trypsin digestion for 2 min (Fig. 1B(b)). 
Primary melanocytes were identified at the gene, protein, 
and morphological levels. Primary melanocytes had higher 
TYR mRNA and protein levels than HaCaT cells (Fig. 1C, 
D). The primary melanocytes were distinguished by their 
distinct morphology, dendritic structure, and large cell  
body. Also, the primary melanocytes appeared black after 
L-DOPA staining, indicating that the tyrosinase activity was higher 
in primary melanocytes than that in HaCaT cells (Fig. 1E, F).

Melanin synthesis is partly dependent on TYR 
activation and expression in primary melanocytes 
after UVB irradiation

At various multiplicities of infection (MOI), primary 
melanocytes were transduced with the pLKD-CMV-
EGFP-2A-Puro-U6-TYR lentivirus vector. When the 
MOI was 40, transfected cells showed the most EGFP 
expression (Fig.  2A, B). The expression of TYR 
decreased significantly in lentivirus-transduced cells 
and by nearly 60% in cells transfected with the pLKD-
CMV-EGFP-2A-Puro-U6-TYR #2 sequence (Fig. 2C). 
Furthermore, we discovered that after 72 h of UVB irra-
diation, tyrosinase activity and melanin levels increased 
significantly (P < 0.05). However, this increase could 
be alleviated in primary melanocytes by adding pLKD-
CMV-EGFP-2A-Puro-U6-TYR #2 transfection (Fig. 2D, 
E). These findings suggested that UVB-induced melanin 
synthesis might partly depend on the expression and acti-
vation of TYR in primary melanocytes.

Fig. 1  The culture and identification of the primary melanocytes. A 
Steps for primary melanocyte culture. (a) Adult male prepuce tissue 
was obtained. (b) The fat and subcutaneous tissues were removed 
from the prepuce. (c) The prepuce tissue was cut into 3 mm strips; (d 
and e) The epidermis and dermis were separated after 18 h of trypsin 
digestion; (f) Primary melanocytes were extracted and cultured 
from the middle layer of the prepuce. B Primary melanocytes were 
observed at 200 × magnification using an optical microscope. (a) Pas-

sage 0. (b) Passage 1. C and D The protein (C) and mRNA (D) levels 
of TYR in HaCaT and primary melanocytes. The HaCaT cells were 
used as control. E L-DOPA staining of HaCaT and primary mel-
anocytes. The HaCaT cells were severed as the negative control. F 
Quantification of the optical density ratio to the total area (IOD/ARE) 
in cells that were stained in black using the Image-Pro Plus software 
(scale bar indicates 10 µm, *P < 0.05 vs. the control group)
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P53 is the key factor linking premature senescence 
and senescence‑associated pigmentation in primary 
melanocytes after UVB irradiation

Based on our previous study, UVB irradiation can induce 
premature senescence of the primary melanocytes and 
increase p53 expression. The primary melanocytes were 
pretreated with  10−9 mol/L p53 activator (Nutlin-3) and 
p53 inhibitor (PFT-α) for 12 h before UVB irradiation to 
upregulate or downregulate the p53 level and to determine 
the relationship between p53 and TYR (Fig. 3A). The p53 
level increased significantly after Nutlin-3 treatment and 
decreased after PFT-α treatment (Fig. 3A). UVB increased 
the level of p53 and TYR in primary melanocytes at 72 h 
after UVB irradiation (Fig. 3A). An increase in p53 and 
TYR expression induced by UVB irradiation was fur-
ther enhanced by 8% and 4% after Nutlin-3 treatment, but 
decreased by 8% and 37%, respectively, after PFT-α treat-
ment (Fig. 3A). UVB irradiation significantly promoted 
premature senescence, tyrosinase activity, and melanin 

expression in primary melanocytes (P < 0.05). The UVB 
irradiation-induced premature senescence, tyrosinase activ-
ity, and melanin levels increased significantly following the 
Nutlin-3 treatment. However, they decreased significantly 
after treatment with PFT-α (P < 0.05) (Fig. 3B–E). These 
results indicated that activation or inhibition of p53 during 
senescence can strongly influence melanin pigmentation in 
primary melanocytes after UVB irradiation.

Melatonin partly inhibits UVB irradiation‑induced 
premature senescence, accompanied by a decrease 
in p53 levels and phosphorylation of p53 (Ser‑15) 
in the primary melanocytes

To determine the mechanism of melatonin undergoing UVB 
irradiation-induced premature senescence in primary mel-
anocytes, we irradiated melatonin-treated or untreated pri-
mary melanocytes with UVB and detected the proportion of 
premature senescence and p53 and p-p53 (ser-15) expres-
sion at 72 h after UVB irradiation. The cell morphology of 

Fig. 2  Changes in the tyrosinase 
activity and melanin level in 
the TYR-knockdown within 
primary melanocytes after UVB 
irradiation. A Primary melano-
cytes transfected with pLKD-
CMV-EGFP-2A-Puro-U6-TYR 
at different multiplicities of 
infection (MOI). B Efficiency of 
infection in primary melano-
cytes transfected with pLKD-
CMV-EGFP-2A-Puro-U6-TYR 
at MOI = 40. The images were 
taken 72 h after infection at a 
magnification of 200 × . C Pri-
mary melanocytes were infected 
with MOI = 40, total proteins 
were isolated from the cells, and 
the protein levels of TYR were 
assessed 72 h after infection. D 
and E The tyrosinase activ-
ity (D) and the melanin levels 
(E) in the TYR-knockdown of 
primary melanocytes increased 
72 h after UVB irradiation. 
(Scale bar indicates 50 µm, 
*P < 0.05 vs. the control group; 
# P < 0.05 vs. the UVB group)
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primary melanocytes became more prominent, and the cell 
volume increased at 72 h after UVB irradiation. The results 
of Giemsa staining showed that the cell morphology changed 
(Fig. 4A). Lyso-Tracker Red was used to label lysosomes in 
cells. UVB irradiation increased the number of lysosomes 
in primary melanocytes (Fig. 4B). UVB irradiation sig-
nificantly increased the proportion of SA-β-gal-positive 
cells that stained with blue (P < 0.05). It also increased the 
expression of the senescence-related proteins p21 and p16 
(Fig. 4C–E). The results indicated that premature senescence 
increased after UVB irradiation. However, this increase was 
partly alleviated after treatment with melatonin (P < 0.05). 
Additionally, UVB irradiation significantly increased p53 
and p-p53 levels and the p-p53/p53 ratio (P < 0.05). How-
ever, these enhancements were inhibited by the additional 
melatonin treatment (P < 0.05) (Fig. 4F). This indicated that 
the increase in p53 phosphorylation and expression induced 
by UVB could be suppressed by melatonin. These results 
showed that melatonin could partly inhibit premature senes-
cence induced by UVB irradiation, along with the inhibition 

of protein levels and phosphorylation of p53 in primary 
melanocytes.

Melatonin partly inhibits senescence‑associated 
pigmentation through the p53‑TYR pathway 
in primary melanocytes after UVB irradiation

We measured the melanin levels in melatonin-treated or 
untreated primary melanocytes at 24, 48, and 72 h after UVB 
irradiation at 80 mJ/cm2 to determine the role of melatonin 
in melanin production in UVB-stimulated primary melano-
cytes. Melatonin significantly decreased the melanin level 
(P < 0.05) (Fig. 5A). UVB increased melanin expression 
(P < 0.05), which was mitigated in part by pretreated mela-
tonin (P < 0.05). Additionally, UVB increased tyrosinase 
activity (P < 0.05). In contrast, the increase was alleviated 
by pretreated melatonin (P < 0.05) (Fig. 5B). The expression 
of p53 and TYR was assessed in primary melanocytes at 
72 h after UVB irradiation to better understand the mecha-
nism contributing to the anti-melanin synthesis effects of 

Fig. 3  Effects of p53 regulation 
on premature senescence, TYR 
expression, tyrosinase activity, 
and melanin levels in primary 
melanocytes after UVB irradia-
tion. A Changes in the expres-
sion of p53 and TYR. B Typical 
SA-β-gal staining images were 
obtained at a magnification of 
200 × . C SA-β-gal-positive cell 
proportion measurement using 
IPP. D and E Tyrosinase activ-
ity (D) and melanin levels (E) in 
primary melanocytes pretreated 
with  10–9 mol/L of Nutlin-3 or 
PFT-α before UVB irradiation 
were analyzed 72 h after UVB 
irradiation. (Scale bar indicates 
10 µm, *P < 0.05 vs. the control 
group; # P < 0.05 vs. the UVB 
group)
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melatonin. These results suggested that melatonin decreased 
the expression of TYR by 57% (Fig. 5C). UVB increased 
the expression of p53 and TYR, which was significantly 
reversed by pretreated melatonin (Fig. 5D). Therefore, after 
UVB irradiation, melatonin can partly inhibit senescence-
associated pigmentation through the p53-TYR pathway in 
the primary melanocytes.

Melanin synthesis depends on the expression 
of TYR in hair, whiskers, skin, eyes, and paws 
in the C57BL/6 J mice

The TYR (+/+) and TYR (–/–) or TYR (+/–) C57BL/6 J mice 
showed the effect of TYR on melanin synthesis in vivo. 
The TYR (–/–) knockout mice had white coat color, paws 
(Fig. 6B–E), and hair (Fig. 6A). There was no signifi-
cant difference in back skin pigmentation in the TYR (+/+) 
(left) mice compared to the TYR (–/–) knockout homozy-
gous (middle) mice. In contrast, the back skin pigmenta-
tion increased in the TYR (–/+) heterozygous (right) mice 
(Fig. 6C). The images showed a loss of pigment in the 
eyes of TYR (–/–) knockout mice (Fig. 6D). Whisker fol-
licles were extracted, stained with DOPA, and captured at 
a 200 × magnification under the microscope. The follicles 
of TYR (+/+) (left) mice stained deep black, while those of 
the TYR (–/–) knockout (right) mice did not (Fig. 6F). The 
tyrosinase activity and melanin levels in whisker follicles 
of TYR (–/–) knockout mice also decreased significantly 

relative to the WT counterparts (Fig. 6G, H). These results 
indicated that melanin synthesis in the hair, whiskers, skin, 
eyes, and paws of the C57BL/6 J mice depended on TYR 
expression.

Melatonin prevents skin erythema and melanin 
pigmentation induced by UVB irradiation 
in C57BL/6 J mice

The mechanism by which melatonin affected skin erythema 
and melanin synthesis after UVB irradiation in C57BL/6 J 
mice was investigated. First, we discovered that melatonin at 
a concentration of 2.5% provided the best protection against 
skin erythema in mice after irradiation (Fig. 7A). Then, we 
randomized the wild-type TYR (+/+) mice into four groups, 
three individuals per group, to investigate the changes that 
occurred during skin erythema and melanin pigmentation 
in mice after UVB irradiation. Moreover, UVB induced 
excessive damage to the erythema and integrity of the back 
skin and increased melanin pigmentation in the ear skin of 
mice (Fig. 7B, C). However, topical treatment with 2.5% 
melatonin prevented skin erythema and restored its integ-
rity (Fig. 7B). Melanin pigmentation in the ear skin also 
decreased with topical treatment with 2.5% melatonin in 
mice after UVB irradiation (Fig. 7C). These results sug-
gested that melatonin prevented skin erythema and melanin 
pigmentation in C57BL/6 J mice after UVB irradiation.

Fig. 4  Effects of melatonin on premature senescence, expression 
of p53 and p-p53 (Ser-15) in primary melanocytes 72 h after UVB 
irradiation. A Morphological changes in melanocytes were observed 
after UVB irradiation. B The representative images of Lyso-Tracker 
staining were taken after UVB irradiation. C The changes in the 
expression of p16 and p21 protein levels in primary melanocytes after 
UVB irradiation (80 mJ/cm2). D The representative images of SA-β-

gal staining were taken after treatment with  10–5 mol/L of melatonin 
following UVB irradiation. E The proportion of SA-β-gal-positive 
cells quantified by IPP. F The changes in the expression of p53 and 
p-p53 (Ser-15) in primary melanocytes pretreated with  10–5 mol/L of 
melatonin at 72 h after UVB irradiation (Scale bar indicates 10 µm; 
*P < 0.05 vs. the control group; # P < 0.05 vs. the UVB group)
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Discussion

The skin acts as a barrier that depends on melanocytes 
to generate melanin for photoprotection and regulates 
the balance of the human body through local neuroen-
docrine and immune systems [23, 24]. Melanocytes 
mainly exist at the junction between the epidermis and 
dermis, accounting for about 10% of basal epidermal 
cells, and can synthesize melanin [25]. Primary mel-
anocytes, extracted from the stratum basale of the adult 
human foreskin, can simulate melanin synthesis in vivo 
[26]. Primary melanocytes were used as the experimen-
tal model, which were identified using various methods. 
Primary melanocytes have a prominent dendritic struc-
ture, a larger cell volume, and higher TYR mRNA and 
protein levels, which is consistent with previous research 
findings [27].

Prolonged exposure to UVB facilitates skin senescence 
and senescence-associated pigmentation [28, 29]. The regu-
latory mechanisms causing pigmentation are complex and 
not completely understood. However, several studies have 
suggested that DNA damage and repair initiate the signaling 
pathways that increase melanogenesis after UVB irradia-
tion [30]. Our previous study showed that UVB irradiation 
promoted melanin production in melanocytes, accompa-
nied by tyrosinase activation. Tyrosinase is a rate-limiting 
enzyme responsible for melanin synthesis [31]. Its activ-
ity increases in melanocytes after UVB irradiation [32, 
33]. Therefore, TYR gene expression was knocked down 
using pLKD-CMV-EGFP-2A-Puro-U6-TYR to determine 
whether UVB-induced melanin synthesis depends on TYR 
in primary melanocytes. In addition, tyrosinase activity and 
melanin levels were detected in primary melanocytes at 
72 h after UVB irradiation. In this study, we discovered that 

Fig. 5  Effects of melatonin on the melanin level, tyrosinase activity, 
and TYR protein expression in the primary melanocytes after UVB 
irradiation. A and B Melanin expression (A) and TYR activity (B) 
in the primary melanocytes pretreated with  10–5 mol/L of melatonin 

were measured at 24/48/72  h after UVB irradiation. C and D The 
TYR and p53 protein levels in primary melanocytes pretreated with 
 10–5 mol/L of melatonin were analyzed at 72 h after UVB irradiation. 
(*P < 0.05 vs. the control group; # P < 0.05 vs. the UVB group)
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UVB-induced melanin synthesis partly depends on TYR in 
the primary melanocytes. In vivo studies with wild-type and 
TYR knockout C57BL/6 J mice verified the results.

UVB can penetrate the epidermis to induce DNA dam-
age in the melanocytes between the epidermis and dermis 
[34]. When DNA damage is not repaired properly, melano-
cytes stop dividing and show symptoms of premature senes-
cence [35]. In our previous study, UVB-induced premature 
senescence in primary melanocytes was accompanied by 
an increase in the expression of p53. We determined the 
critical factors associated with premature senescence and 
senescence-associated pigmentation and evaluated the effect 
of premature senescence on pigmentation among primary 
melanocytes after UVB irradiation. The activator (Nutlin-3) 
and inhibitor (PFT-α) of p53 were used to upregulate or 
downregulate p53. Thus, an increase in premature senes-
cence, tyrosinase activity, and melanin levels due to UVB 
irradiation further increased after Nutlin-3 treatment but 
decreased significantly after treatment with PFT-α (P < 0.05) 
in primary melanocytes. These findings suggest that acti-
vating or inhibiting p53 after UVB irradiation significantly 
impacts senescence-associated pigmentation by regulating 
premature senescence. The results were similar to those of 
previous studies, which suggested the involvement of p53 

in paracrine-associated pigmentation and the regulation of 
the expression of pigment-related genes [36–41]. However, 
neither TYR nor tyrosinase-related protein-1 (TRP-1) can 
regulate the p53 gene in humans. The TYR’s expression 
changes were further assessed after the upregulation or 
downregulation of p53 in primary melanocytes at 72 h after 
UVB irradiation. These results showed that p53 regulates 
TYR expression in primary melanocytes after irradiation. 
Here, we demonstrated that UVB-induced pigmentation in 
the skin via TYR regulated by p53, which is consistent with 
the report of Slominski A that eumelanin production is inde-
pendent from POMC expression [42].

Melatonin can be used to effectively and safely treat 
insomnia, anti-oxidation, and anti-aging, with different 
effects on melanin synthesis among different cell types. It 
promotes melanin synthesis in the human SK-MEL-1 mela-
noma cells [43]. It also inhibits melanin synthesis in mam-
malian hair follicles in vitro, rodent melanoma cells, mouse 
skin in vitro, and human MNT-1 melanoma cells [44–47]. In 
this study, we found that melatonin prevented skin damage 
and melanin pigmentation induced by UVB irradiation in the 
dorsal and ear skin of C57BL/6 J mice in vivo. To investi-
gate the role of TYR in melanin synthesis, we used the TYR 
(–/–) knockout homozygous and TYR (–/+) heterozygous mice 

Fig. 6  Melanin content in hair, whiskers, skin, eyes, and paws of 
wild-type and TYR knockout mice. Hair (A), whiskers (B), eyes (D), 
and paws (E) of TYR (+/+) (left) and TYR (–/–) knockout (right) mice 
were examined 8 weeks after birth. The skin samples (C) of TYR (+/+) 
(left), TYR (–/–) knockout homozygous (middle), and TYR (–/+) heterozy-
gous (right) mice were examined 8 weeks after birth. Quantification 

of L-DOPA staining (F), tyrosinase activity (G), and the melanin 
levels (H) in the whisker hair follicles of the TYR (+/+) (left) and the 
TYR (–/–) knockout homozygous (right) mice 8 weeks after birth. The 
TYR .(+/+) mice were used as the control. (Scale bar indicates 50 µm. 
*P < 0.05 vs. the control group)
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models. The use of mouse models still has some limitations, 
considering that there are some differences in the physiologi-
cal of skin characteristics between mice and humans. But 
mice are currently the most appropriate in vivo evaluation 
model for pigmentation [48]. Previous studies have reported 
that melatonin and its metabolites inhibit tyrosinase activity 
in human skin melanocytes, and the local melatonin sup-
plements protect skin from oxidative damage during viti-
ligo [49, 50]. Our results also showed that melatonin partly 
inhibited UVB irradiation-induced premature senescence, 
along with a decrease in p53 phosphorylation and expres-
sion levels, and alleviated the increase in tyrosinase activity 
and melanin levels after UVB irradiation by reducing the 
expression of TYR. Additionally, p53 can modulate TYR 
in the primary melanocytes after irradiation. In conclusion, 
melatonin partly inhibits senescence-associated pigmenta-
tion through the p53-TYR pathway in primary melanocytes 
after UVB irradiation.
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