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Abstract
Oxidative stress is a major cause of morbidity and mortality in human health and disease. In this review, we focus on the 
Forkhead Box (Fox) subclass O3 (FoxO3), an extensively studied transcription factor that plays a pleiotropic role in a wide 
range of physiological and pathological processes by regulating multiple gene regulatory networks involved in the modulation 
of numerous aspects of cellular metabolism, including fuel metabolism, cell death, and stress resistance. This review will 
also focus on regulatory mechanisms of FoxO3 expression and activity, such as crucial post-translational modifications and 
non-coding RNAs. Moreover, this work discusses and evidences some pathways to how this transcription factor and reactive 
oxygen species regulate each other, which may lead to the pathogenesis of various types of diseases. Therefore, in addition 
to being a promising therapeutic target, the FoxO3-regulated signaling pathways can also be used as reliable diagnostic and 
prognostic biomarkers and indicators for drug responsiveness.
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Introduction

Reduction and oxidation reactions (redox) control almost all 
aspects of life [1]. Oxidation is a fundamental part of aero-
bic life and our metabolism; thus, reactive species (RS) of 
oxygen (ROS), nitrogen (RNS), chlorine, bromine, iron, and 
sulfur are formed as by-products of this type of metabolism 
whose effects are counteracted by the reactions of reduction 
[2, 3]. Therefore, RS can be produced naturally or due to 
some biological dysfunction, such as during intensive physi-
cal activity, exposure to microbial infections that involve 
the activation of phagocytes, the action of pollutants/toxins 
such as cigarette smoke, alcohol, ionizing and UV radiation, 
pesticides, and ozone [4].

Historically, RS were believed to function exclusively as 
agents of cellular damage, reacting indiscriminately with 
lipids, proteins, and DNA [5, 6]. However, over the past 

two decades, there has been a growing appreciation of the 
role of ROS and RNS as mediators of cellular signaling, 
regulating numerous physiological responses [1, 2, 7]. The 
phenomenon termed hormesis describes a dose–response 
relationship to stressors, with a low-dose leading to stimu-
lation of stress resistance mechanisms, thus enhancing the 
cellular capacity of preservation and repair and a high dose 
being detrimental, causing inhibition and cell damage [8, 
9]. Therefore, biological systems present a dynamic evolu-
tionary adaptive strategy depending on dose-time response 
[9]. The molecular recognition mechanisms occur at the 
atomic level. They operate in signaling through chemical 
reactions that lead to covalent modifications of proteins 
[10], promoting an expansion of the potential number of 
specific recipients [11].

The versatility of these molecules, concerning their 
properties and mobility within cells, is one of the signifi-
cant advantages that is believed to be responsible for the 
evolutionary conservation of this type of signaling [12]. 
Moreover, as part of a highly conserved cellular signaling 
network, they are integrated with several signaling pathways, 
including the protective responses to ROS-induced oxidative 
stress. In this scenario, it has become apparent that mod-
erate elevations in ROS levels (eustress) are essential for 
regulating processes, such as cell proliferation, apoptosis, 
and gene expression, through the transcription factor (TF) 
modulations [2, 4]. Under pathophysiological conditions, 
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the RS production exceeds this physiological level, and 
only then does oxidative damage accumulate (distress), a 
process observed in many pathologies [1, 13]. Thus, redox 
homeostasis, described as “the golden mean of healthy liv-
ing” [14], is indispensable for cell function and viability, so 
there is considerable evidence showing that oxidative dam-
age is related to the primary or secondary pathophysiologi-
cal mechanisms of various diseases [1, 13].

Regulation for such homeostasis can occur by modifying 
the activity of metabolic enzymes and TFs and through gene 
expression and epigenetic modifications [1, 15]. Therefore, 
this complex regulation involves a finely regulated network 
of redox reactions, post-translational modifications (PTMs), 
and their cellular outputs. This review will focus on the TF 
aspect of this regulation, more specifically, the Forkhead 
Box (Fox) subclass O3 (FoxO3), an extensively studied TF 
that shows a promising correlation with the redox metabo-
lism and several pathological diseases associated with a 
redox disbalance [16]. Thus, this review aims to show that 
FoxO3 is a crucial modulator in redox metabolism by evi-
dencing some pathways to how this TF and ROS regulate 
each other.

General aspects of FoxOs

The members of the FoxO family (FoxO1, 3, 4, and 6) are 
widely distributed throughout multiple species, ranging from 
yeasts to human beings [16, 17]. All four isoforms recognize 
and bind to the same FoxO-responsive sites, called "fork-
head-responsive DNA elements" (FHRE), in the promoter 
region of target genes. Thus it is not surprising that FoxO 
isoforms have some overlapping activities, which results in 
a certain degree of redundancy [18]. However, there are also 
isoform-specific effects, as evidenced in studies with FoxO-
isoform-specific knockout mice [19]. Nevertheless, there 
are also cell- and tissue-specific effects of the four FoxO 
isoforms due to differences in their expression levels and 
regulation [20]. FoxOs can be considered multitasking pro-
teins as they play pleiotropic roles in a variety of physiologi-
cal and pathological processes by regulating multiple gene 
regulatory networks involved in the modulation of numerous 
aspects of cellular metabolism, including fuel metabolism, 
cell death, and stress resistance (Fig. 1) [16, 21].

Regarding redox homeostasis, FoxO3 is an essential 
TF due to its well-established role as a central mediator of 

Fig. 1   FoxOs as homeostasis 
regulators. Overview of FoxO 
transcription factors' roles 
in a wide range of cellular 
processes, which are generally 
regulated by external changes 
that disturb homeostasis, 
including metabolic stress (e.g., 
starvation) and oxidative stress, 
the last one being highlighted 
(upper right quadrant). Source: 
by the authors
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cellular response to stress in different animal models [22]. 
Indeed, FoxO3 is a known core regulator of cellular home-
ostasis, stress response, and longevity, as it can modulate 
various stress responses upon nutrient shortage, oxidative 
stress, hypoxia, heat shock, and DNA damage. Therefore, we 
can link its role to increased lifespan by modulating stress 
responses upon oxidative stress, DNA damage, nutrient 
shortage, and caloric restriction [23].

In regard to cellular defense against oxidative stress, 
FoxO3 has a well-established role in regulating the expres-
sions of many antioxidants, including catalase (CAT), 
Zinc and manganese superoxide dismutase (Zn- and Mn-
SOD), peroxiredoxins 3, and 5 (PRDX3 and PRDX5), 

and glutathione peroxidase (GPx) [24–28]. Furthermore, 
the expressions of thioredoxin 2 (Trx2) and thioredoxin 
reductase 2 (TrxR2) were also revealed to be regulated by 
FoxO3 [28]. Thus, protecting cells from oxidative stress 
by increasing ROS scavengers contributes to extending 
the organismal lifespan. Moreover, FoxO3 protein can 
act in promoting cell growth inhibition (by enhancing the 
expression of various CDK inhibitors) [29–32] or apopto-
sis (pro-apoptotic genes are activated) [33–37] when upon 
intense oxidative stress. Hence, this demonstrates that 
activation of FoxO3-dependent transcription in response 
to oxidative stress depends on the severity of the stimulus 
[16] (Fig. 2).

Fig. 2   FoxO and Oxidative stress. The activity of FoxO proteins is 
differentially controlled in specific tissues according to oxidative 
stress intensity (external stimuli) through the modification of protein 
levels, subcellular localization, DNA-binding, and transcriptional 
activity of FoxO. In cases of medium oxidative stress stimuli, FoxOs 
proteins mediate protective cellular mechanisms by increasing the 
expression of ROS scavengers. On the other hand, under high oxida-
tive stress stimuli, FoxOs promote cell growth inhibition (by enhanc-
ing the expression of various CDK inhibitors) or apoptosis (pro-
apoptotic genes are activated). ATG12, autophagy related 12; BBC3, 
BCL-2-binding component 3 gene; BCL2L11, Bcl-2-like protein 11, 
commonly called BIM; Bcen1, beclin 1; BCL6, B cell lymphoma 6; 
BNIP3, BCL2 Interacting Protein 3; CAT, catalase; CCND1, cyclin 
D1; CCNG2, cyclin G2; CDKN1A, cyclin-dependent kinase inhibi-
tor 1A; CDKN1B, cyclin-dependent kinase inhibitor 1B; CDKN2A, 
cyclin-dependent kinase inhibitor 2A; CDKN2B, cyclin-dependent 
kinase inhibitor 2B; FASLG, Fas ligand; FoxO, forkhead box O pro-

tein; GABARAPL1, GABA type A receptor associated protein like 
1; GADD45A, growth arrest and DNA damage inducible alpha; 
GPx, glutathione peroxidase; Mn-SOD, manganese superoxide dis-
mutase; PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1; 
PRDX3, peroxiredoxin 3; PRDX5, peroxiredoxins 5; PTEN, induced 
putative kinase 1; PUMA, p53 up-regulated modulator of apoptosis; 
p15; p19; p21; p27; p53, up-regulated modulator of apoptosis; p130; 
RBL2, RB transcriptional corepressor like 2; SENP, sentrin-specific 
protease 1; TNF, tumor necrosis factor; TNFSF10, tumor necrosis 
factor superfamily member 10; TRAIL, tumor necrosis factor-related 
apoptosis-inducing ligand; TrxR2, mitochondrial thioredoxin reduc-
tase; Trx2, mitochondrial thioredoxin; Zn-SOD, zinc superoxide 
dismutase. *For a review of FOXO-regulated genes, see [38]. The 
authors created this figure by adapting images from Servier Medical 
Art Commons Attribution 3.0 Unported License (http://​smart.​servi​er.​
com)

http://smart.servier.com
http://smart.servier.com


86	 Journal of Molecular Medicine (2023) 101:83–99

1 3

Regulatory mechanisms of FoxO3 
expression and activity

FoxOs are transcriptional regulators that activate gene 
expression in most cases. Their activities and cellular 
functions are regulated by various mechanisms, such as 
non-coding RNAs (ncRNAs), protein–protein interaction, 
and PTMs, such as phosphorylation, acetylation, ubiqui-
tination, and methylation [39], as well as the oxidative 
modifications [40, 41].

Post‑translational modification

Of particular interest to human health, FoxO3 is under 
the control of the phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (AKT) signaling pathway, whose acti-
vation results in the phosphorylation at three conserved 
residues (Thr32, Ser253, and Ser315) of FoxO3 [42]. This 
PTM causes FoxO3 exclusion from the nucleus, and its 
association with the chaperone 14–3-3, ultimately block-
ing re-entry into the nucleus [43, 44]. Hence, contrary 
to PI3K/AKT, other signaling pathways can positively 
regulate FoxO3, for example, through stress-kinase (JNK, 
MST1)-mediated phosphorylation [16, 21]. This antago-
nistic signaling pathway occurs in response to oxidative 
stress. Thus, in this case, the phosphorylation of FoxO3 by 
MST1 or JNK at alternative PTM sites dissociates 14–3-3, 
promoting FoxO3’s localization to the nucleus. In other 
words, in the absence of AKT phosphorylation, the nuclear 
accumulation of FoxO3 facilitates its interaction with gene 
regulatory regions, inducing the expression of its target 
genes. However, only this subcellular localization per 
se presumably does not result in the total transcriptional 
activity of FoxO3 [45].

Other kinases, such as serum- and glucocorticoid-
inducible kinase (SGK), cyclin-dependent kinases 
(CDKs), and mitogen-activated protein kinase (MAPK) 
can also phosphorylate FoxO3 [45]. For example, the 
mammalian MAPK family is comprised of three well-
characterized subfamilies, including extracellular signal-
regulated kinase (ERK) [46], which can directly phos-
phorylate FoxO3 at three different sites (Ser294, Ser344, 
and Ser425), leading to its degradation in a murine dou-
ble minute 2 (MDM2)-dependent manner [47]. From this 
data, it is possible to observe that each kinase recognizes 
specific motifs within FoxO3, and thus, the phosphoryla-
tion can lead to opposing effects depending on the target 
residue.

Acetylation is another widely occurring dynamic PTM 
that modulates the functions of proteins [48]. In regards 
to FoxO3 role, its acetylation at Lys242 and Lys245 sites 

by calcium response element-binding protein (CBP)/p300 
significantly reduces their DNA-binding capacity and 
induces their cytoplasmic localization [49]. It is notewor-
thy that the effect of acetylation is negatively regulated by 
histone deacetylases (HDACs), which remove the acetyl 
groups from histones and non-histone proteins through an 
enzymatic reaction [50]. For instance, Sirtuin 1 (SIRT1)—
a subclass of HDACs with nicotinamide adenine dinucle-
otide-dependent deacetylation activity, was reported to 
maintain FoxO3 nuclear localization, following exposure 
to stress stimuli, by mediating its deacetylation via directly 
interacting with FoxO3 [51].

Protein methylation is also a reversible process that plays 
a crucial role in modulating protein characteristics, such as 
activities, translation, and localization [52]. For example, Cal-
nan et al. demonstrated that FoxO3 methylation by the SET 
domain containing lysine methyltransferase 9 (Set9) at Lys270 
and Lys271 resulted in the reduction of the DNA-binding 
activity and transactivation of FoxO3 [53]. Ubiquitination 
is a reversible PTM whose primary function is to mediate 
protein degradation via the ubiquitin–proteasome pathway 
[54]. In this way, ubiquitin–proteasome-mediated protein 
degradation plays a crucial role in regulating several cellu-
lar processes, such as cell cycle progression, transcriptional 
regulation, and DNA repair [55]. Thus, the interplay between 
molecular redox signaling and the ubiquitin–proteasome sys-
tem are intertwined to pathophysiological processes in human 
diseases [56]. For example, constitutive photomorphogenic 
1 (COP1) promotes the ubiquitination and degradation of 
FoxO3, decreasing the expression of its target genes [57, 58]. 
Another essential and complex PTM is glycosylation. This 
PTM plays a crucial role in regulating FOXO3 substrate struc-
ture, function, and physical properties [59]. The most com-
mon mechanisms of protein glycosylation are N-glycosylation 
and O-glycosylation [60]. Shin et al. demonstrated the occur-
rence of O-glycosylation sites in the FoxO3 transactivation 
domain. Additionally, they showed that the O-glycosylation 
at Ser284 significantly inhibited p21-mediated cancer cell 
growth by targeting the MDM2-p53-p21 axis [61].

Furthermore, in redox signaling, low levels of ROS 
can cause the oxidation of specific cysteine-thiols, which 
can both activate [62] or inactivate [63] proteins. This 
signaling is an exciting concept, as it allows the redox 
state-dependent regulation of TFs by introducing a cova-
lent bond with cofactors that, under reducing conditions, 
would hardly interact [41]. Putker et al. demonstrated that 
FoxO3 forms a disulfide-dependent heterodimer with the 
nuclear import receptors, Importin-7 (IPO7), and Impor-
tin-8 (IPO8). These interactions are required for efficient 
nuclear import of FoxO3 under oxidative conditions (i.e., 
the interaction required for ROS-induced nuclear transloca-
tion of FoxO3). Thus, the authors proposed that ROS could 
directly regulate FoxO3 nuclear importation by mediating 
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its heterodimerization in a redox-sensitive and disulfide-
dependent manner through FoxO3’s cysteine oxidation [64].

Meanwhile, Hopkins et al. demonstrated that FoxO3's 
disulfide heterodimer with PRDX1 also influences the 
nuclear localization of this TF. Thus, allowing a rapid and 
precise regulation of FoxO3 in response to oxidative stress. 
The authors propose that PRDX1 constitutes an essential 
step for maintaining a redox signaling-dependent cytoplas-
mic reservoir of FoxO3 that is readily available in the face of 
high levels of H2O2 [65]. This observation allowed FoxO3s 
proteins to be classified as "Speroxiredoxinylated", a term 
coined to demonstrate the interaction between peroxiredox-
ins with redox reaction cysteines in general [66].

These examples show that FoxO3 functions are affected via 
distinct mechanisms. Thus, demonstrating that these PTM pat-
terns produce specific biological effects. Therefore, as exem-
plified above, these reversible PTMs are dynamic and can 
modulate FoxO3 function by altering its subcellular localiza-
tion and changing its stability and DNA-binding affinity [67]. 
These PTM are also affected by redox-regulatory processes 
(i.e., oxidative inactivation of Akt [68]), which adds another 
layer of complexity associated with FoxO regulation. As an 
example, the phosphorylation mediated by PI3K/AKT path-
way is affected by ROS at several levels, including oxidative 
inhibition of protein tyrosine phosphatase-1B (PTB-1B), or 
of the lipid and protein phosphatase, PTEN, and even oxida-
tive inactivation of AKT was described (reviewed in [68, 69].

Non‑coding RNAs influence FoxO3 
regulation

According to the ENCODE (Encyclopedia of DNA Ele-
ments) project and later reports, about 80% of the human 
genome can be transcribed into non‑coding RNAs (ncR-
NAs). In general, ncRNAs are a range of RNA molecules 
that act on multiple biological processes, pathological or 
physiological, through regulating gene expression or PTM. 
These molecules are derived from eukaryotic transcription 
from different genomic regions and RNA processing that 
produces various ncRNA species that are grouped into dif-
ferent categories according to size and function, such as long 
ncRNAs (lncRNAs), microRNAs (miRNAs), circular RNAs 
(circRNAs), and others (reviewed in [70]). In the last few 
years, it has become clear that such molecules significantly 
influence the activity and expression of FOXO in different 
pathological conditions.

It is well established that different miRNAs can regulate 
FOXO transcripts in various processes due to their pleio-
tropic influence, such as in neurodegenerative diseases, 
longevity, cancer, and many others [16]. Different miRNAs 
targeting FOXO mRNAs are involved in tumor promotion, 
growth, or metastasis, such as miR-182. Under physiological 

conditions, miR-182 can down-regulate FOXO expression, 
allowing cell proliferation and cycle progression. On the 
other hand, when inhibition of proliferation, cell cycle arrest, 
or apoptosis is intended, a down-regulation of miR-182 may 
be required. Examples of miR-182 action occur in lung can-
cer [71] and melanoma [72]. Furthermore, researchers have 
shown that miR-182 also contributes to FOXO3 regulation 
in skeletal muscle during chronic diseases associated with 
elevated glucocorticoid production, such as diabetes and 
chronic kidney disease [73].

He et al. demonstrated that MiR-25 could directly target 
the 3′UTR of FOXO3 mRNA, inhibiting its expression and 
resulting in enhanced resistance of gastric cancer cells to cis-
platin [74]. A similar result was demonstrated in colorectal 
cancer using another miRNA, the miR153 [75]. Moreover, 
in another report about this later type of cancer, miR-592 
promotes metastasis, in part, by targeting FOXO3 [76]. The 
direct bind of MiR-96 to the 3′-UTR of FOXO3 mRNA 
inhibits its function [77]. It can also promote, in response to 
collagen matrix via reducing FOXO3 and its targets (p27, 
p21, and Bim), the pathologically altered idiopathic pulmo-
nary fibrosis (IPF) phenotype [78].

In regards to the lncRNAs, a recent study demonstrated 
that FOXO3 expression could be negatively regulated by 
miR-27a-3p and positively regulated by lncRNA X inac-
tivate‑specific transcript (XIST), an RNA associated with 
cerebral ischemia/reperfusion ( I/R) injury that binds with 
miR-27a-3p to upregulate FOXO3 [79]. Wang et al. revealed 
that lncRNA plasmacytoma variant translocation 1 (PVT1), 
directly interacting with FoxO3, can modulate its transcrip-
tion activity. The enhanced FoxO3 activity was achieved 
by the knockdown of PVT1, which considerably downregu-
lated its phosphorylation level by facilitating SCP4-mediated 
FoxO3 dephosphorylation. The upregulation of FoxO3, due 
to PVT1 knockdown, also enabled the apoptosis of granu-
losa cells [80].

Moreover, overexpression of the lncRNA growth arrest-
specific transcript 5 (GAS5) resulted in a significant eleva-
tion of FoxO3 protein level, which was attenuated by the 
addition of miR-9, demonstrating that GAS5 promoted 
FOXO3 expression by competitively sponging miR-9. Mean-
while, the knockdown of GAS5 significantly reduced the 
expression of FoxO3 protein, and the depletion of miR-9 in 
bEnd restored it [81]. Zhai et al. identified a new lncRNA, 
URRCC, as a part of a feedback loop with EGFL7/P-AKT/
FoxO3 signaling. In renal cell carcinoma samples, URCC 
expression is upregulated, promoting clear cell renal carci-
noma (ccRCC) cell proliferation, invasion, and reduced over-
all survival of ccRCC patients. Mechanistically, URRCC can 
acetylate histone H3 of EGFL7 promoter, increasing AKT 
signaling pathway and consequently suppressing down-
stream FoxO3 signaling through AKT phosphorylation, 
which was demonstrated to enhance cell proliferation and 
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invasion in vitro and in vivo. On the other hand, FoxO3 can 
directly bind to the URRCC promoter region, downregulat-
ing its expression [82].

Lastly, studies have shown that circRNAs can be crucial 
modulators of FoxOs. Recently, Yu et al. demonstrated that 
circRNA CRIM1 overexpression significantly repressed the 
migration and invasion of bladder cancer cells by up-regulating 
FOXO3 expression via sponging miR-182, a miRNA capable 
of modulating FoxO3 activity. Moreover, miR-182 expression 
was elevated in bladder cancer tissues and cell lines, while 
CRIM1 and FOXO3 expressions were decreased [83].

Another layer of complexity arises from the fact that circ-
FOXO3 can modulate FoxO3 activity. Du et al. presented 
some exciting findings about circ-FOXO3. Their study 
showed that in patient tumor samples and a panel of can-
cer cells, circ-FOXO3 was minimally expressed. However, 
circ-FOXO3 expression significantly increased during can-
cer cell apoptosis, which can be explored as the possibility 
of inhibiting tumor growth with the delivery of circ-FOXO3 
plasmid. Moreover, silencing endogenous circ-FOXO3 
contributed to cell viability, although ectopic expression of 
this RNA led to stress-induced apoptosis and repression of 
the growth of tumor xenografts. In addition, circ-FOXO3 
expression elevated FoxO3 protein levels but inhibited p53 
levels by promoting MDM2-induced p53 ubiquitination and 
degradation, leading to a decrease in p53. Due to low bind-
ing affinity to FoxO3, circ-FOXO3 avoided MDM2 from 
inducing FoxO3 ubiquitination and degradation, maintaining 
high levels of this TF that subsequently caused cell apoptosis 
by upregulation of its downstream target PUMA [84].

Overview of the relationship between free 
radicals and disease

As previously discussed, oxidative stress emerges from an 
imbalance of oxidative to reducing species, being also better 
defined as a perturbation of redox signaling [4]. The redox 
imbalance from chronic oxidative stress leads to significant 
PTM oxidative modifications in crucial biomolecules, such 
as lipid peroxidation, protein carbonylation, carbonyl (alde-
hyde/ketone) adduct formation, nitration, sulfoxidation, DNA 
impairment such as strand breaks, or nucleobase oxidation 
yielding 8-oxo-20-deoxyguanosine. Moreover, with the accu-
mulation of these damaged biomolecules, healthy cells of 
the body lose their function and structure (reviewed in [85]).

In recent decades, the significance of oxidative stress 
has become increasingly recognized; thus, we can find 
stress-related diseases in virtually every organ [86]. There-
fore, it is widely accepted that oxidative stress influences 
the establishment of multiple mechanisms by which oxi-
dants contribute to cellular damage in various diseases, 
including atherosclerosis, chronic obstructive pulmonary 

disease (COPD), Alzheimer’s disease, and cancer [87]. 
In other words, it is essential to highlight the extent to 
which oxidative stress participates in the pathology of such 
diseases is quite variable. However, the effectiveness of 
therapeutic alternatives that increase antioxidant defense 
is still limited to some conditions. Thus, this section will 
focus on evidencing the relationships between oxidative 
stress and FoxO3 in different diseases.

As stated above, one of the primary mechanisms 
through which oxidative stress contributes to a disease 
involves the production of ROS (e.g., •OH, ONOO− and 
HOCl) that directly oxidize macromolecules, including 
membrane lipids, structural proteins, enzymes, and nucleic 
acids, leading to aberrant cell function and death. Another 
important mechanism of oxidative stress is aberrant redox 
signaling, in which non-physiological production of ROS 
(e.g., H2O2) can cause redox signaling to go awry [1]. 
Despite the role of oxidative stress in many diseases not 
being incompletely understood, a tentative categorization 
has been made: first, oxidative stress as the primary cause 
of pathology (e.g., atherosclerosis—oxidative stress is 
responsible for the conversion of LDL cholesterol into the 
oxidized-LDL, which has a crucial role in the development 
of atherosclerosis); second, oxidative stress as the second-
ary contributor to disease progression (such as in COPD, 
hypertension, and Alzheimer disease by disturbing various 
signaling pathways and thus, affecting multiple biological 
processes) (reviewed in [88]).

Additionally, in diseases caused by oxidative stress, the 
wide range of the pathological role of free radicals was 
didactically categorized, by some authors, into two major 
groups [89]. On one side, we have the diseases character-
ized by “inflammatory oxidative conditions” and enhanced 
activity of either NAD[P]H oxidase (leading to atheroscle-
rosis and chronic inflammation) or xanthine oxidase-induced 
formation of ROS (implicated in ischemia and reperfusion 
injury). In this group, we can see that the reaction of the 
biomolecules and the free radicals will lead (directly or indi-
rectly) to the disease, such as in the case of atherosclerosis, 
in which the malondialdehyde (MDA), a product of lipid 
peroxidation, reacts with low-density lipoproteins [90].

On the other hand, there are diseases characterized by 
pro-oxidants shifting the thiol/disulfide redox state and 
impaired glucose tolerance, also known as “mitochondrial 
oxidative stress” conditions (cancer and diabetes mellitus). 
To further exemplify, we can take cancer as a model. ROS 
contributes to the initiation and progression of carcinogen-
esis through the infliction of ROS-dependent mutations in 
DNA, which include base modifications to the activation 
of oncogenes [91].

The intrinsic relationship between the severity of dif-
ferent diseases and the imbalance between pro-oxidants 
and natural defenses suggests that antioxidant therapy 
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Table 1   Oxidative stress-related diseases and FoxO3’s interactions

Diseases FoxO3 Reference

Diabetes mellitus Disease development/progression
Downregulation of mitophagy through suppressing the Sirt3-Foxo3A-Parkin signaling pathway may 

play a vital role in developing diabetic cardiomyopathy (DC).
[106]

Therapeutic targets
PI3K/AKT/FoxO3a signaling pathway has shown therapeutic potential by inhibiting apoptosis via 

resveratrol (RSV) in DC.
[107]

Type 2 diabetes mellitus (T2DM) rats treated with RSV showed attenuation of FOXO expression 
(decreased levels of FOXO1 and FOXO3 expression in adipose tissue) and an increased serum 
SOD activity, consequently ameliorating insulin resistance.

[108]

Punicalagin (PU) protects against liver injury induced by T2DM by restoring autophagy through the 
AKTt/FoxO3a signaling pathway.

[109]

Insulin resistance Disease development/progression
Increased FoxO hepatic activity enhances the transcription of gluconeogenic enzymes and hepatic 

glucose production. If sustained, the FoxO activity may promote hyperglycemia and consequences 
thereof, including secondary oxidative stress.

[110]

The G allele of rs2153960 FoxO3 SNP was associated with a decrease in the concentration of circu-
lating insulin-like growth factor-1 (IGF-1), a marker of insulin resistance.

[111]

Therapeutic targets
Downregulating Drosophila Target of Rapamycin (dTOR) activity arrests the insulin resistance and 

metabolic syndrome phenotypes related to elevated activity of dFOXO.
[112]

Parkinson’s disease 
(PD)

Disease development/progression
Increased FoxO3 expression is associated with Lewy bodies and Lewy neurites in the PD brain, and, 

FoxO3 protein localization to Lewy bodies and Lewy neurites suggests a function for FOXO3 in 
the morphogenesis of inclusions in synucleinopathies.

[113]

Survival of nigral dopamine (DA) neurons critically depends on tight FoxO regulation and explores 
the role of FoxO3 in neurons confronted with a-synuclein proteotoxicity.

[114]

Therapeutic targets
Upon FoxO3 activation, the decrease in soluble a-synuclein coincides with neuronal protection. 

Besides, autophagic flux in neuronal cells is controlled by FoxO3. Therefore, it suggests that 
FoxO3 acts as a significant determinant of neuronal survival in the substantia nigra, which may 
oppose a-synuclein accumulation and proteotoxicity.

[114]

Alzheimer’s disease 
(AD)

Disease development/progression
The MicroRNA (miR)-132/miR-212/PTEN/FOXO3 signaling pathway contributes to AD neurode-

generation.
[115]

Therapeutic targets
Inactivation of FoxO3a activity (of the insulin receptor (IR)/IGF-1 signaling pathway) correlates 

with attenuation of Alzheimer’s disease-type amyloid neuropathology in the Tg2576 mouse AD 
model.

[116]

Selenoprotein P (one of the FoxOs targets genes product) is a known protective protein in the brain 
and is co-localized with β-amyloid (Aβ) plaque (Aβ plaques formation is a pathognomonic change 
associated with AD) and accumulation of neurofibrillary tangles (NFT), although the functional 
relevance thereof is yet unknown.

[117]
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Table 1   (continued)

Diseases FoxO3 Reference

Depression Disease development/progression

Interaction between neurotransmitters, their postsynaptic receptors, and binding of growth factors to 
their receptor tyrosine kinases (RTKs) inactivate FoxOs through cAMP/PKA, PKC, PI3K/AKT, 
or MEK/ERK signaling. Hyperactivation of the hypothalamic–pituitary–adrenal axis promotes the 
activation of FoxOs through their nuclear location. Released glucocorticoid binds to the gluco-
corticoid response element located at FoxOs promoter and increases the production of FoxOs. 
Therefore, activation of FoxO happens due to chronic stress, which interrupts neurogenesis/synap-
togenesis and leads to neuronal atrophy. After that, behavioral manifestations related to depression 
are presented.

[118]

Therapeutic targets

PI3K/AKT signaling pathway mediates the d-fenfluramine effect. Enhancing serotonergic activity 
by d-fenfluramine substantially increased the phosphorylation of FoxO3 in distinct brain regions 
and reduced FoxO3 nuclear localization. Chronic treatment using imipramine, an antidepressant, 
also increased the phosphorylation of the brain FoxO3. FOXO3-/- deficient mice presented with 
relevant antidepressant-like behavior.

[119]

Further experimental exploration and validation are required to fully comprehend FoxOs and their 
signaling pathways as potential therapeutic targets in depression. However, direct targeting of 
the signaling pathways rather than the FoxOs is proposed as a preferred strategy for efficacious 
therapeutic agents.

reviewed in [118]

Multiple sclerosis 
(MS)

Disease development/progression
The pro-survival integrin α4β1 has a crucial role in the remissions and relapses of patients with mul-

tiple sclerosis (MS) by inhibition of apoptosis through the transcription factors FoxO3 and Nuclear 
factor-κB (NF-κB).

[120]

Therapeutic targets
Mice experimental autoimmune encephalomyelitis to imitate MS and myelin injury have shown that 

a protein expressed in MS lesions, osteopontin, leads to the extended survival of myelin-reactive 
T cells and disease progression through an association of events that implicate FoxO3a inhibition, 
NF-κB activation, and proapoptotic proteins expressions, such as Bim, Bak, and Bax.

[121]

Hypertension Disease development/progression
Activation of the FoxO3a-PGC-1α signal pathway improved high-fat diet-induced hypertension. [122]
The inhibition of miR-155, a miRNA molecule with differential expression in pregnant hypertension, 

which participates in the disease regulation, improves the damage of pregnant hypertension via the 
upregulation of FoxO3 in a pregnant hypertension rat model. Oppositely, the MiR-155 inhibitor 
suppressed miR-155 expression and increased FoxO3 level and placental tissue morphology.

[123]

Therapeutic targets
Suppression of endothelial-to-mesenchymal transition (EndoMT) by SIRT (Sirtuin) 3 alleviated 

the development of Hypertensive Renal Injury through the regulation of ROS by modulating the 
antioxidant expression of catalase (expression activated in a FOXO3-dependent manner by the 
SIRT3-Foxo3a-catalase pathway), and FOXO3 knockdown abolished SIRT3-mediated suppression 
of EndoMT. Thus, delineating the involvement of the SIRT3-FOXO3-catalase signaling pathway 
in regulating EndoMT might represent a novel therapeutic target in hypertensive renal injury.

[124]

Atherosclerosis Disease development/progression
Insulin sensitivity and leukocytosis that can affect the predisposition to atherosclerosis can be modu-

lated via the FoxO branch of insulin receptor signaling, highlighting a heretofore-unknown link 
between them.

[125]

Inhibition of FoxO3 and its downstream genes, including apoptotic protease activating factor 1, 
mediates AKT1, a significant regulator of vascular smooth muscle cell (VSMC) survival in vivo 
during vessel remodeling and atherogenesis.

[126]

FoxO3 activation promotes atherosclerosis and induces VSMC apoptosis, in part, because of 
transcriptional activation of matrix metalloproteinase 13 (MMP13). This FOXO3a-induced matrix 
metalloproteinase activation represents a direct mechanistic link between VSMC apoptosis and 
matrix breakdown in vascular disease, which is known for accelerating atherosclerosis.

[127]

Therapeutic targets
Ablation of the three genes encoding isoforms of FoxO (1, 3, and 4) in endothelial cells prevents 

atherosclerosis in low-density lipoprotein receptor triple knockout mice by reversing these subphe-
notypes. Thus, demonstrating an atheroprotective effect of FoxO deletion.

[128]
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Table 1   (continued)

Diseases FoxO3 Reference

Myocardial infarction 
(MI)

Disease development/progression

CircFoxo3 regulates MI-related cardiac dysfunction by targeting the KAT7/HMGB1 axis, and the 
overexpression of circFoxo3 ameliorated MI-induced cardiac dysfunction, thus, attenuating MI-
induced autophagy in a rat model.

[129]

Therapeutic targets

Inhibition of miR-302a-3p promoted mitochondrial autophagy and inhibited oxidative stress by 
targeting FoxO3 to suppress myocardial apoptosis.

[130]

Apelin, an adipocyte-derived factor, prevents nuclear translocation of FoxO3 in response to oxygen 
deprivation through a PI3K pathway, which is associated with the activation of survival pathways 
(i.e., cardioprotection). Thus, suggesting its potential clinical relevance in obese patients with heart 
failure.

[131]

Cataract Disease development/progression
The lack of downregulation of FoxO3 in age-related cataracts (ARC), possible via the modulation 

role of SIRT, indicates the activation of the FoxO pathway is part of the onset of ARC pathogen-
esis in human lens epithelial cells.

[132]

Therapeutic targets
Downregulation of AMPK-FoxO3 induced autophagy activity was found in diabetic cataract (DC) 

patients, which may be the underlying mechanism of DC formation. Thus, targeting AMPK-
induced autophagy may be a potential therapeutic approach for this disease.

[133]

Rheumatoid arthritis 
(RA)

Disease development/progression
14–3-3η–FoxO3–Snail axis promotes the aggressive extracellular matrix-degrading phenotype of 

RA-Fibroblast-like synoviocytes (FLS), suggesting its role in cartilage degradation.
[134]

Therapeutic targets
Cysteine-rich protein 61 (CYR-61) is important in the pathogenesis of RA, and SIRT-1/FoxO3a 

signaling is crucial to the induction of CYR-61 in rheumatoid arthritis synovial fibroblasts. This 
pathway is upregulated by Simvastatin, which plays a beneficial role in inflammatory arthritis 
through inhibition of FoxO3 (nuclear export, phosphorylation, and acetylation) and maintains its 
binding to the Cyr61 promoter.

[35]

Paeonol protected against TNF-α-induced proliferation and cytokine release in an RA-FLS model by 
decreasing the expression of miR-155 and upregulating its target, FoxO3.

[135]

Cancer Disease development/progression
PI3K/PTEN/AKT/mTOR pathway controls ROS levels in cancer stem cells by regulating the nuclear 

localization of FoxO and the consequent over-expression of antioxidant enzymes.
reviewed in [136]

FoxOs have been implicated in the pathogenesis of various cancers, generally as tumor suppres-
sors. Their inactivation (usually inactivated through different posttranslational mechanisms) is 
associated with the initiation and progression of cancer. Furthermore, several cell line studies 
have revealed that FoxOs limit various hallmarks of cancer, including inhibiting cell proliferation, 
inducing apoptosis and senescence, and limiting angiogenesis and invasion.

reviewed in [137]

FoxO proteins are not solely tumor suppressors but also support tumor growth and metastasis by 
regulating many cellular processes essential for tumorigenesis.

reviewed in [138]

Therapeutic targets
FoxO proteins are crucial in the unfolded protein response (UPR). Targeting FoxO proteins can 

be an attractive strategy for tackling cancer and overcoming drug resistance. In addition to being 
anticancer therapeutic targets, FoxO-regulated signaling and gene signatures can also be used as 
reliable diagnostic and prognostic biomarkers and indicators for drug responsiveness.

reviewed in [139]

FILNC1 (FoxO-induced long non-coding RNA 1) inhibits c-Myc-mediated energy metabolism and 
represses renal tumor development upon energy stress.

[140]

FoxO3 modulates miR-34b/34c by activating the promoter that regulates the expression of its precur-
sor RNA, which  then inhibits the β-catenin expression and suppresses the expression of Wnt/β-
catenin target genes in prostate cancer.

[141]
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Table 1   (continued)

Diseases FoxO3 Reference

Obstructive pul-
monary disease 
(COPD)

Disease development/progression

Targeted disruption of FoxO3 in mouse lungs by cigarette smoke resulted in the downregulation of 
antioxidant genes and disruption of NF-kB DNA-binding ability, which leads to an inflammatory 
response and, lastly, to the development of chronic obstructive pulmonary disease/emphysema.

[142]

COPD cells presented remarkably increased IL-8 compared with normal cells, negatively correlated 
with nuclear levels of FoxO3. Also, COPD bronchial biopsies revealed diminished nuclear FoxO3. 
Increased phosphorylation of EGFR, AKT, and FoxO3 was associated with decreased FoxO3 
activity in COPD cells.

[143]

Therapeutic targets

Increased PI3K/AKT-mediated phosphorylation of FoxO3 is caused by aberrant epidermal growth 
factor receptor (EGFR) activity in COPD airways. Therefore, nuclear FoxO3 is decreased, and 
chemokine expression is increased. However, Quercetin restores nuclear FoxO3a and lowers 
chemokine expression partly by modulating EGFR/PI3K/AKT activity.

[143]

Asthma Disease development/progression
FOXO3 single nucleotide polymorphism rs13217795 (C > T transition) was significantly associated 

with Indian asthmatics, plausibly contributing to the chronic inflammatory and heightened immu-
nological response. In addition, gender-based stratification indicated that the mutant “T” allele has 
a much more pronounced risk rate of asthma in females than males.

[144]

Zeste homolog 2 (EZH2), as an epigenetic factor, promotes asthma progression by regulating the 
FoxO3-miR-34b-BTG2 axis.

[145]

S-phase kinase-associated protein 2 (SKP2) exacerbates asthma by promoting FoxO3 ubiquitination 
to suppress the Kruppel-like factor 15–lipoprotein receptor-related protein 5 (KLF15–LRP5) axis.

[146] 

FOXO3 rs13217795 SNP was associated with a five times increase in total IgE levels in the asth-
matic patients compared with the control subjects in Jordanian subjects.

[147]

Therapeutic targets
FoxO3 promotes low-density lipoprotein receptor-related protein 5 (LRP5) expression, a suggested 

suppressor of asthma development, through KLF15 in TGF-β1–induced airway smooth muscle 
cells (ASMCs).

[146]

Chronic kidney dis-
ease (CKD)

Disease development/progression
Significant aggravation of CKD phenotype was observed due to tubular deletion of FoxO3 dur-

ing the Acute kidney injury (AKI)-to-CKD leading to transition aggravated renal structural and 
functional damage. Also, tubular deletion of FoxO3 induced a decreased autophagic response and 
increased oxidative injury, which may clarify renal protection by FoxO3.

[148]

Therapeutic targets
To minimize cell damage and promote cell survival, the accumulation and nuclear translocation of 

FoxO3 activate two central cellular defense mechanisms, autophagy and antioxidative response in 
renal tubular cells. The expression of Atg protein is directly activated by FoxO3, which provides 
core components of the autophagic machinery to enable sustained autophagy in the chronically 
hypoxic kidney.

[149]

In vivo, FoxO3 was necessary for the protective effect of proximal tubular β-catenin in renal injury. 
Furthermore, a potentially new transcriptional target of β-catenin/FoxO3 signaling in the proximal 
tubule, cystathionine γ-lyase, has therapeutic potential for CKD.

[150]
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represents a promising path for treatment. This strategy 
could be achieved by two means, through the use of natural 
antioxidants originating from an exogenous source, such 
as foods or dietary supplements (e.g., vitamins C and E) 

[92] or the synthesis of endogenous antioxidants, such as 
SOD [93]. The problem with the first option is known 
as the “antioxidant paradox”, which is the adverse effect 
resulting from the ingestion of a high concentration of 

Table 1   (continued)

Diseases FoxO3 Reference

Sickle Cell Disease 
(SCD)

Disease development/progression

FoxOs are essential in maintaining the long-term regenerative potential of the HSC compartment, 
and FoxO-deficient bone marrow presents a defective long-term repopulating activity that cor-
relates with increased cell cycling and apoptosis of HSC. Changes in the expression of genes that 
regulate ROS were also seen, expressing a context-dependent increase of ROS in FoxO-deficient 
HSC*.

[151]

FoxO3 is an essential regulator of hematopoietic stem cell (HSC) activity and is a crucial media-
tor of erythroid terminal maturation and enucleation by regulating cell cycle and optimum ROS 
regulation, enucleation, and mitophagy*.

reviewed in [152]

Therapeutic targets

Piceatannol reduces the phosphorylation of AKT and increases FoxO3 activity and localization to 
the nucleus (by AMPK phosphorylation). Thus, through the FoxO3-AMPK-AKT pathway, picea-
tannol could be a novel HbF-inducing agent for patients with hemoglobinopathies.

[153]

FOXO3 gene silencing reduced fetal-globin RNA levels and cell fetal hemoglobin (HbF) levels in 
erythroblasts, while overexpression of FOXO3 produced the opposite effect. Thus, the treatment 
with Metformin of human primary erythroid progenitor cells increases HbF in a partially FOXO3-
dependent manner which ameliorates the pathophysiology of SCD by reducing the concentration 
of sickle hemoglobin to inhibit its polymerization.

[154]

Mutant allele (G) of the FOXO3 SNP rs3800231 (c.35-2764A > G) was related to higher catalase 
activity, hypothesizing that this polymorphism may be involved in the modulation of the oxidative 
profile.

[155]

Beta-thalassemia 
(β-thal)

Disease development/progression
Erythropoiesis in normal cells maintains constant activation of FoxO3. However, there is a 

significant decrease in FoxO3 activity during the late stage of erythroblast differentiation in 
β-thalassemia, and the expression of FoxO3 target genes is also diminished, concurrent with high 
phosphorylation of AKT, most clearly at the late stage of erythroid differentiation.

[156]

The process of ineffective erythropoiesis was demonstrated to be caused by the inactivation of 
FOXO3, which led to oxidative damage in late erythroblasts. This downregulation of FOXO3 is 
caused by persistent activation of the EPOR-PI3K/AKT/mTOR pathway, suggesting that the acti-
vation of FOXO3 could be beneficial in this blood disorder.

[157]

Therapeutic targets
RSV ameliorates the β-thal ineffective erythropoiesis through upregulation of antioxidant enzyme 

expression, including catalase and peroxiredoxin-2, through activation of FOXO3, which was 
mediated by AKT inhibition.

[102]

Rapamycin induces fetal-globin mRNA and HbF production in cultured human erythroid progenitors 
from β-thal patients. In vivo treatment remarkably increased red blood cell numbers and hemo-
globin concentration in FoxO3 − / − peripheral blood and stimulated the production of erythroid 
cells towards terminal maturation.

[157]

AKI acute kidney injury, ASMCs airway smooth muscle cells, AD Alzheimer’s disease, ARC​ age-related cataracts, β-CM-7 beta-casomorphin-7, 
β-thal beta-thalassemia, CCT​ central corneal thickness, CKD chronic kidney disease, CYR-61 cysteine-rich protein 61, DC diabetic cardiomyo-
pathy, dTOR Drosophila target of rapamycin, EndoMT endothelial-to-mesenchymal transition, EGFR epidermal growth factor receptor, HbF 
fetal hemoglobin, FLS fibroblast-like synoviocytes, FOXO3a Forkhead box O3a, FILNC1 FoxO-induced long non-coding RNA, GST glutathione 
S-transferase, GPx glutathione peroxidase, HSC hematopoietic stem cell, HLECs human lens epithelial cells, IGF-1 insulin-like growth factor-1, 
IRF4 interferon regulatory factor 4, KC keratoconus, KLF15–LRP5 Kruppel-like factor 15–lipoprotein receptor-related protein 5, MMP13 matrix 
metalloproteinase 13, miR MicroRNA, MS multiple sclerosis, DA nigral dopamine, NF-κB nuclear factor-κB, COPD obstructive pulmonary dis-
ease, PD Parkinson’s disease, PRDX Peroxiredoxins, PASMCs pulmonary artery smooth muscle cells, PH pulmonary hypertension, PU punica-
lagin, ROS reactive oxygen species, RTKs receptor tyrosine kinases, RSV resveratrol, RA rheumatoid arthritis, SCD sickle cell disease, SIRT sir-
tuin, SOD superoxide dismutase, SKP2 S-phase kinase-associated protein 2, TrxR thioredoxin reductase, T2DM type 2 diabetes mellitus, VSMC 
vascular smooth muscle cell, EZH2 Zeste homolog 2
*The FoxO role in the hematopoietic system is essential to both Sickle cell disease and Beta thalassemia
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antioxidants, as seen in some studies where the antioxi-
dant treatment aggravated the oxidative damage and wors-
ened the patient's condition (reviewed in [94]). The sec-
ond alternative also presents challenges because proteins 
and enzymes generally make very poor drugs. Among the 
reasons for this “poverty”, we can cite the high cost of 
production, the possible immunogenicity, problems asso-
ciated with purification and stability, non-availability by 
oral administration, and poor pharmacokinetic proper-
ties, including toxic, mutagenic effects, and possible side 
effects [95, 96].

In the search for another alternative, TFs that act on 
energy efficiency, cell resistance to stress, and also cell 
repair, such as FoxO3, has been gaining prominence due to 
their role in the redox code. The term ‘‘Redox Code’’ is a 
four principles code that applies to the redox organization of 
cells, tissues, and organisms, ultimately extending to all liv-
ing matter (extensively reviewed in [13]). This code defines 
the operations of genetic codes and histones in the organiza-
tional structure, differentiation, and adaptation of an organ-
ism [13]. Therefore, they act in the modulation of complex 
networks that control signaling and cellular metabolism, 
thus being a fascinating mechanism in the development of 
new therapeutic strategies for diseases in which oxidative 
stress and inflammation play an essential role [97–99].

The FoxO3 proteins are considered a desirable therapeu-
tic target because of their integral ability to control cell pro-
liferation, metabolism, and survival [100, 101]. Therefore, 
FoxO3 activators, such as Resveratrol, are currently gaining 
attention. Studies performed by Franco et al. evidence the 
beneficial effects of its use [102]. In this study, this poly-
phenolic-stilbene enhanced erythroid cell maturation and 
decreased red cell membrane oxidative damage and anemia 
in β-thalassemic mice. In addition, resveratrol upregulates 
the expression of antioxidant enzymes such as CAT and 
PRDX2 via activation of FoxO3. The results indicate that 
Resveratrol inhibits AKT resulting in FoxO3 activation with 
upregulation of cytoprotective systems allowing the eryth-
roid precursors to survive the oxidative damage and proceed 
with the differentiation. Thus, considering the possibility 
of using this complementary tool in treating diseases with 
chronic stress oxidative, such as β-thalassemia [102].

Other pharmaceutical compounds approved for other uses 
have been shown to activate FoxO3. For example, Bepri-
dil and Trifluoperazine could promote FoxO3 translocation 
to the nucleus by inhibiting AKT phosphorylation [103]. 
Metformin is another promising compound. This drug can 
induce AMPK-mediated phosphorylation and nuclear trans-
location of FoxO3 [104]. This metformin-induced pathway 
is also shown to promote Trx transcription (thru activation 
of FoxO3 and subsequently upregulation of Trx) and thus 
causes a decrease in ROS levels [105]. Hence, the AMPK-
FoxO3-Trx axis may be an essential defense mechanism 

against excessive ROS production induced by stress and 
could be a therapeutic target in treating diseases.

As demonstrated in the studies above, FoxO3 plays a cen-
tral role in antioxidant defense and through its activation by 
different drugs. Therefore, it is a promising research field 
for developing new therapeutic strategies to fight chronic 
oxidative stress in several diseases. Table 1 shows various 
stress-related disorders and how FoxO3 can be related to 
the cause or therapeutic target concerning such conditions.

Conclusion

There is considerable interest in understanding the mech-
anisms underlying the role of oxidative stress not only in 
disease development but also in life-history trade-offs, as 
redox signaling and oxidative damage regulate essential 
physiological functions [11], as stated by the “Redox sign-
aling hypothesis of life history”. Thus, this hypothesis points 
to the importance of the cell-regulatory systems and how the 
generation of molecular oxidative damage is the mechanism 
that drives covariation among life history traits and self-
maintenance (reviewed in detail in [158]).

Therefore, despite the challenges and limitations in targeting 
oxidative stress, the continuous development of this study field 
is essential to establishing alternative therapeutic strategies that 
offer meaningful ways to prevent or reduce pathology. One situa-
tion in which FoxO3 versatility highlights its importance. Recent 
research in human health and disease provides new insights into 
the molecular mechanisms underlying the role and regulation of 
this essential TF. In addition, comprehending the FoxO3 role as 
a crucial element in maintaining the equilibrium that supports 
life will help understand the molecular underpinning of age-
associated diseases and maybe lifespan and how to deal with it.

Hence, the continuous search for identifying small pharma-
ceutical or nutraceutical molecules that directly or indirectly 
activate FoxO3 is of great interest to the aging and human well-
ness research field. Thus, the discovery of several other FoxO3 
activators and pathways leading to its activation will occur in 
the coming years, leading to the expected significant develop-
ment in the therapeutic field, allowing more precise pharmaco-
logical intervention with lower risks of side effects. Thus, with 
continued investment in this research area, the suitable FoxO3 
activator for several health issues is expected to reach the general 
population for prophylactic use in the coming decades [159].

For this to be possible, we reinforce that studies that detail 
the molecular mechanism of FOXO3 gene expression mod-
ulation and its impact are required. The discovery of these 
action mechanisms can potentially be used in the treatment 
and management of many diseases, such as diabetes, cancer, 
neurodegeneration, and heart disease. Lastly, it can help to 
delay the aging process and minimize the side effects of aging.
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