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Abstract
Metabolic cardiomyopathy is an emerging cause of heart failure in patients with obesity, insulin resistance, and diabetes. It 
is characterized by impaired myocardial metabolic flexibility, intramyocardial triglyceride accumulation, and lipotoxic dam-
age in association with structural and functional alterations of the heart, unrelated to hypertension, coronary artery disease, 
and other cardiovascular diseases. Oxidative stress plays an important role in the development and progression of metabolic 
cardiomyopathy. Mitochondria are the most significant sources of reactive oxygen species (ROS) in cardiomyocytes. Dis-
turbances in myocardial substrate metabolism induce mitochondrial adaptation and dysfunction, manifested as a mismatch 
between mitochondrial fatty acid oxidation and the electron transport chain (ETC) activity, which facilitates ROS production 
within the ETC components. In addition, non-ETC sources of mitochondrial ROS, such as β-oxidation of fatty acids, may also 
produce a considerable quantity of ROS in metabolic cardiomyopathy. Augmented ROS production in cardiomyocytes can 
induce a variety of effects, including the programming of myocardial energy substrate metabolism, modulation of metabolic 
inflammation, redox modification of ion channels and transporters, and cardiomyocyte apoptosis, ultimately leading to the 
structural and functional alterations of the heart. Based on the above mechanistic views, the present review summarizes the 
current understanding of the mechanisms underlying metabolic cardiomyopathy, focusing on the role of oxidative stress.
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Introduction

Obesity represents a major health challenge worldwide 
due to its escalating prevalence and associated clusters 
of cardio-metabolic diseases that reduce life quality and 
expectancy. It is estimated that by 2040, approximately 

500 million individuals will be overweight and insulin 
resistant, and 642 million individuals will develop type 
2 diabetes mellitus [1]. Obesity, insulin resistance, and 
diabetes can inflict numerous harmful effects on the 
heart. Accumulating evidence demonstrates that people 
with these conditions are at a higher risk of developing a 
metabolic cardiomyopathy phenotype, which has become 
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an emerging cause of cardiac dysfunction and heart fail-
ure in these individuals [2–4]. Metabolic cardiomyopathy 
represents a chronic metabolic disorder characterized by 
an intramyocardial accumulation of triglycerides (TGs) 
and lipotoxic damage in association with structural and 
functional alterations of the heart, which occur independ-
ent of the presence of coronary artery disease, valvular 
heart disease, hypertension, and other cardiovascular dis-
eases [5, 6]. Of note, the cardiac pathological phenotype 
of metabolic cardiomyopathy can be manifested as either 
heart failure with preserved ejection fraction (HFpEF) or 
heart failure with reduced ejection fraction (HFrEF) [7, 
8]. Diabetes-related and obesity-related cardiomyopathies 
are the most studied subtypes of metabolic cardiomyo-
pathy [9]. Diabetic cardiomyopathy was first reported in 
postmortem pathological findings in 1972 [10] and further 
confirmed in a 1974 Framingham Heart Study [11]. It is 
defined by abnormal myocardial structure and function, 
beyond that elicited by ischemia or hypertension [12, 13]. 
Diabetic cardiomyopathy is marked by lipid deposition in 
cardiomyocytes, reactivation of fetal genes, and left ven-
tricular hypertrophy, which synergistically induce contrac-
tile dysfunction [14]. People with obesity, dyslipidemia, 
and insulin resistance are prone to develop a similar type 
of cardiomyopathy even in the absence of diabetes, which 
is often referred to as obesity-related cardiomyopathy [9, 
15]. Considering that dysregulated metabolism is the key 
player in the etiology of these cardiomyopathies and dia-
betes, insulin resistance, and obesity are frequently over-
lapped, we group these cardiomyopathies together and 
collectively refer to them as metabolic cardiomyopathy in 
the present review, despite that diabetes and obesity may 
contribute to cardiac structural and functional derange-
ments through several distinct mechanisms [9, 15].

The pathogenesis of metabolic cardiomyopathy is multifac-
torial, but insulin resistance is believed to be an integral com-
ponent [5]. An insulin-resistant state leads to increased levels 
of free fatty acids (FFAs), proinflammatory mediators, and 
the appearance of certain adipocytokines and hepatokines in 
the circulation, which can further aggravate systemic insulin 
resistance and induce cardiac insulin resistance [16]. Cardiac 
insulin resistance leads to a marked alteration in myocardial 
energy substrate metabolism due to impaired insulin-regulated 
metabolic signaling, characterized by decreased glucose uptake 
and utilization and enhanced fatty acid uptake and β-oxidation 
[17–19]. This change results in impaired myocardial metabolic 
flexibility and reduced energy production efficiency. Further-
more, when FFA uptake markedly exceeds β-oxidation capacity 
in cardiomyocytes, excessive FFAs form TG. The deposition 
of fatty acids and TG in cardiomyocytes induce a phenomenon 
called cardiac lipotoxicity, which may promote mitochondrial 
dysfunction, oxidative stress, impaired calcium handling, 
myocardial cell apoptosis, and metabolic inflammation that 

ultimately lead to myocardial dysfunction and heart failure [5, 
20, 21].

Enhanced oxidative stress in the heart is a common charac-
teristic of metabolic cardiomyopathy [22–24]. Oxidative stress 
reflects a disturbance in the balance between the production 
of reactive oxygen species (ROS) and the biological system’s 
capacity to detoxify these reactive intermediates with antioxi-
dants [25]. Depending on the cellular environment and the 
sources of ROS, ROS can act as signaling molecules that play 
important regulatory roles in normal physiological processes 
or modulate maladaptive responses that promote metabolic 
disorders, inflammation, and cell death [26, 27]. ROS, such as 
superoxide anion radical  (O2

•−) and hydrogen peroxide  (H2O2), 
are constantly generated as byproducts of energy substrate 
metabolism in cardiomyocytes [28]. Cardiac insulin resistance 
and the resultant alterations in myocardial substrate metabolism 
can induce mitochondrial dysfunction and facilitate ROS pro-
duction [19]. Excess generation of various ROS, such as  O2

•−, 
 H2O2, and hydroxyl radicals, can induce oxidative modification 
to cellular macromolecules (e.g., lipids, DNA, and proteins) 
and is considered a crucial mechanism for metabolism-related 
immune responses and remodeling in the heart [28].

Although the prevalence of metabolic cardiomyopathy will 
likely grow considerably in the coming decades, its underly-
ing mechanisms are still poorly understood. One major issue 
is that whether altered energy substrate metabolism is a cause 
or a consequence of structural and functional derangements 
in the heart remains elusive. Complicated interactions exist 
between metabolic alterations and cardiac structure and func-
tion, and the precise mechanisms underlying these interactions 
are not well elucidated [15]. Indeed, the term “metabolic car-
diomyopathy” is not a well-established one. Additionally, very 
few diagnostic and therapeutic tools are currently available for 
this disease entity [5, 29]. Therefore, further investigation is 
urgently needed to strengthen the notion of “metabolic cardio-
myopathy” and clarify the mechanistic basis underlying this 
disease. In this review, we summarize the alterations in energy 
substrate metabolism in metabolic cardiomyopathy and the 
possible mechanisms underlying the overproduction of ROS 
in cardiomyocytes. We also summarize the potential effects 
of ROS on myocardial metabolism, inflammatory responses, 
calcium regulation, and cell death. Finally, we briefly discuss 
several challenges facing the development of therapies against 
metabolic cardiomyopathy.

Myocardial energy substrate metabolism

Myocardial energy substrate metabolism 
under physiological conditions

The heart has the highest energy demands per gram of any 
organ. Myocardial ATP is generated at a high rate from the 
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mitochondrial oxidation of diverse energy substrates, such 
as glucose, fatty acids, and lactate [30]. FFAs (primarily 
long-chain fatty acids) are the preferred energy substrates 
[31]. Under normal physiological conditions, ATP pro-
duction in the myocardium is derived mainly from fatty 
acid β-oxidation (approximately 70–90%) [32]. Circulating 
FFAs enter cardiomyocytes via passive diffusion or trans-
port with the help of fatty acid translocase (FAT)/cluster 
of differentiation (CD)36 [31]. Cytoplasmic long-chain 
FFAs are converted into long-chain fatty acyl-coenzyme-
A (CoA) esters and then transferred into the mitochondria 
via carnitine palmitoyltransferase (CPT)-1. CPT-1 is a 
rate-limiting step in fatty acid catabolism, and its activ-
ity is inhibited by malonyl-CoA. Malonyl-CoA synthesis 
is catalyzed by acetyl-CoA carboxylase (ACC), whereas 
its degradation is catalyzed by malonyl-CoA decarboxy-
lase (MCD) [33–35]. The activation of AMP-activated 
protein kinase (AMPK) induces an inhibitory effect on 
ACC with a consequent decrease in malonyl-CoA level 
and an increase in CPT-1 activity [36–38]. Once in the 
mitochondrial matrix, fatty acyl-CoA is broken down via 
β-oxidation to produce acetyl-CoA, which enters the citric 
acid cycle to produce nicotinamide adenine dinucleotide 
(NADH) and flavin adenine dinucleotide (FADH2), the 
reducing equivalents feeding the electron transport chain 
(ETC). The oxidation of reducing equivalents by the mito-
chondrial ETC results in an electrochemical gradient that 
is necessary for ATP production, but it may also stimulate 
ROS generation under certain pathological conditions [32, 
33].

Although energy conversion in the heart primarily 
relies on fatty acid oxidation, the heart is metabolically 
omnivorous and also readily metabolizes glucose, ketone 
bodies, and amino acids. Approximately 10–30% of the 
acetyl-CoA used for ATP synthesis is derived from the 
oxidation of pyruvate, the final product of glycolysis and 
dehydrogenation [39, 40]. Glucose uptake in cardiomyo-
cytes relies on the action of GLUTs in the cell membrane. 
The ubiquitous glucose transporter GLUT1 accounts for 
basal myocardial glucose uptake, while GLUT4 is respon-
sible for insulin or contraction-stimulated glucose uptake 
[30, 41]. The heart exhibits prominent fuel flexibility 
under normal conditions and switches between fatty acids 
and glucose depending on the nutritional status and physi-
cal activity, which helps preserve contractile functions in 
various physiological and pathophysiological conditions 
[5, 32]. When fatty acid oxidization is enhanced, glu-
cose utilization would be decreased via the Randle cycle 
[42]. On the other hand, after a high carbohydrate supply, 
increased insulin levels would induce a shift in cardiac 
energy substrate toward glucose utilization [31]. Indeed, 
insulin plays a vital role in metabolic homeostasis of the 
myocardium. The binding of insulin to the α-subunits 

of the insulin receptor on the cell surface stimulates the 
phosphorylation of the insulin receptor β-subunits, which 
activates the docking protein insulin receptor substrate 
1 (IRS1) and subsequently upregulates the downstream 
phosphatidylinositol 3-kinase (PI3K) and RACβ serine/
threonine-protein kinase 2 (AKT2). The activation of PI3K 
and AKT2 triggers the translocation of GLUT4 and CD36 
from the intracellular store to the cell membrane, resulting 
in enhanced uptake of glucose and FFAs [5, 30]. Increased 
glucose and FFA uptake promotes mitochondrial oxidative 
metabolism to produce ATP and supports cardiac contrac-
tile function [30].

Myocardial energy substrate metabolism 
in metabolic cardiomyopathy

Insulin resistance is characterized by decreased insulin sen-
sitivity and suppressed glucose disposal in peripheral tis-
sues, and it is a hallmark of type 2 diabetes, obesity, and 
metabolic syndrome [43–45]. A number of mechanisms 
associated with systemic metabolic disorders, including 
increased FFA and ceramide levels, decreased glucose 
uptake, altered hepatokine profiles (e.g., elevated seleno-
protein P and fetuin-A) and adipocytokine profiles (e.g., 
reduced secretion of adiponectin and enhanced secretion of 
leptin), augmented release of proinflammatory mediators, 
and changes in gut microbiota and its metabolites may cause 
systemic and cardiac insulin resistance [5, 46]. Several clini-
cal studies have provided evidence linking systemic meta-
bolic disorders with cardiac insulin resistance [47–50]. It is 
reported that myocardial insulin resistance occurs in about 
60% of individuals with type 2 diabetes and is associated 
with an increased risk of cardiovascular diseases [47]. Peo-
ple with 1-h postload hyperglycemia and impaired glucose 
tolerance also showed attenuated global myocardial glucose 
metabolism, indicating that myocardial insulin resistance is 
an early defect that can already be detectable in subjects with 
prediabetes [48]. The association between type 2 diabetes 
and myocardial insulin resistance is independent of coronary 
artery disease, and myocardial insulin resistance is directly 
related to whole-body insulin resistance in individuals with 
type 2 diabetes [49]. It is important to stress that myocardial 
insulin resistance may act as a response mechanism to fuel 
overload rather than as a mediator of cardiac dysfunction 
[51]. Indeed, myocardial insulin resistance may protect the 
heart from being flooded with excess amounts of energy 
substrates in disordered metabolic states [52, 53]. This may 
explain why insulin-sensitizing agents unexpectedly led to 
adverse cardiovascular events such as the development of 
heart failure in some clinical studies [51, 54].

Insulin resistance may affect the myocardium via a num-
ber of mechanisms [18, 55]. Systemic insulin resistance 
induces uninhibited lipolysis in adipose tissues, leading 
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to increased circulating FFAs and dramatically enhanced 
myocardial fatty acid uptake [34, 56, 57]. In the insulin 
resistance state, FAT/CD36 localization to the sarcolemmal 
membranes is increased; however, GLUT4 translocation to 
the plasma membranes is impaired. As a result, the insulin-
dependent glucose uptake pathway is attenuated, resulting 
in a shift away from glycolytic metabolism, with increased 
reliance on fatty acid β-oxidation for energetic metabolism 
[58, 59]. This shift leads to metabolic inflexibility of the 
myocardium. It is well-established that ATP generation from 
fatty acid oxidation is less efficient than glucose, producing 
40% less ATP per oxygen molecule consumed [59]. Dis-
turbed myocardial substrate metabolism and increased left 
ventricular myocardial oxygen demand have been observed 
in severely obese patients with normal ejection fraction and 
without known heart disease [60, 61].

Despite the augmentation in flux via the β-oxidation path-
way, excessive fatty acids exceed the mitochondrial respira-
tory capacity and accumulate in a metabolic low-turnover 
pool, and the TG content increases [32]. The limited capac-
ity of cardiomyocyte to safely store excessive fatty acids 
in the TG pool may induce a phenomenon called “cardiac 
lipotoxicity,” which refers to toxicity resulting from the 
accumulated lipids and lipid intermediates (e.g., diacylg-
lycerols, ceramides, and lysophosphatidyl choline species) 
within cardiomyocytes [32, 62]. Lipotoxicity can stimulate 
cardiomyocyte death via augmented ROS formation and 
endoplasmic reticulum (ER) stress, leading to structural and 
functional alterations of the heart. It has been shown that 
insulin resistance promotes cardiac lipotoxicity in human 
subjects and murine models [18, 55, 63]. Individuals with 
type 2 diabetes have increased intramyocardial TG content, 
which is significantly associated with left ventricular dias-
tolic dysfunction, independent of age, blood pressure, heart 
rate, body mass index, and visceral fat [64, 65]. In addition, 
a consistent proportion of patients with nonischemic heart 
failure exhibit myocardial TG overload and altered expres-
sion of genes related to contractile dysfunction [66].

Several animal studies have used transgenic murine mod-
els to investigate the possible mechanisms of the effect of 
cardiac lipotoxicity or myocardial lipids on structural and 
functional alterations of the heart [18, 63]. Cardiac lipid 
accumulation, in association with myocardial damages, 
cell death, and cardiac remodeling and dysfunction, was 
observed in murine models with a restricted knockout of 
peroxisome proliferator–activated receptor gamma (PPARγ) 
in cardiomyocytes and cardiomyocyte overexpression of 
fatty acid transport proteins, membrane-anchored lipopro-
teins, acyl Co-A synthetase, diacylglycerol acyltransferase, 
and PPARα [18, 63]. These toxic effects are generally con-
sidered to be triggered by long-chain fatty acids and their 
derived metabolites, such as diglycerol and ceramide, which 
can further aggravate insulin resistance [18]. However, it 

is uncertain whether the findings derived from genetically 
modified animal models could be easily translated to human 
pathophysiology.

It is also noteworthy that the serum levels of branched-
chain amino acids (BCAAs) are elevated in obesity and 
insulin resistance. Dysregulated BCAAs play an important 
role in the etiology of cardiovascular diseases [67]. High 
levels of serum BCAAs may aggravate myocardial insulin 
resistance and cardiac contractile dysfunction by inducing 
mitochondrial dysfunction and upregulating mammalian tar-
get of rapamycin (mTOR) [3, 67]. Moreover, the oxidation 
of BCAAs is crucial for cardiac function [3]. Inhibition of 
branched-chain α-keto acid dehydrogenase (BCKDH), the 
essential step for BCAA oxidation, decreases systolic func-
tion in the mouse heart, and the use of a pharmacological 
inhibitor of BCKDH promotes cardiac BCAA degradation 
and preserves cardiac systolic function [67].

In summary, profound perturbations in energy substrate 
metabolism occur in metabolic cardiomyopathy, character-
ized by enhanced fatty acid oxidation and suppressed glu-
cose uptake and utilization (Fig. 1). These changes result in 
metabolic inflexibility and a reduction in the efficiency of 
cardiac energy production. Moreover, cardiac lipotoxicity 
may induce a variety of cellular processes, such as oxidative 
stress and cardiomyocyte apoptosis, that lead to structural 
and functional alterations of the heart. In addition, altera-
tions in other energy substrates, such as BCAAs, may also 
contribute to the development of metabolic cardiomyopathy.

Oxidative stress in metabolic 
cardiomyopathy

Metabolic cardiomyopathy is closely associated with the 
presence of oxidative stress. Perturbations in myocardial 
energy substrate metabolism affect several ROS generators, 
particularly mitochondria. Augmented ROS production and 
decreased antioxidant defense mechanisms characterize the 
myocardium of human subjects and animal models with 
obesity, insulin resistance, or metabolic syndrome [23, 24].

The most common forms of cardiac ROS include  O2
•−, 

 H2O2, peroxynitrite  (ONOO−), and hydroxyl radical  (HO•) 
[58].  O2

•− is a highly reactive molecule generated by a one-
electron reduction of oxygen. It is dismutated to  H2O2 by 
superoxide dismutase (SOD), maintaining its concentrations 
in the picomolar-nanomolar range [68]. Unlike  O2

•−,  H2O2 is 
relatively more stable and readily crosses lipid membranes. 
It is a crucial redox signaling molecule that participates in 
both physiological and pathological processes and exhibits 
fairly low reactivity and relatively high specificity for molec-
ular targets.  H2O2 is decomposed to  O2 and  H2O by cata-
lase, maintaining its concentration in the nanomolar range 
[69].  O2

•− also rapidly reacts with nitric oxide to generate 
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 ONOO−, an oxidant with a relatively short half-life primar-
ily linked to pathology [70]. It can inflict further structural 
damage via lipid peroxidation and exhibits fairly high reac-
tivity and low specificity for molecular targets [58].

ROS are maintained within a certain range by endog-
enous antioxidant systems under normal conditions to acti-
vate physiological redox signaling, which is necessary for 
normal cellular functions, such as cell metabolism, prolif-
eration, differentiation, immune defense, and survival [26]. 
Oxidative stress occurs when ROS generation is elevated 
and/or the antioxidant mechanisms are impaired. An excess 
of ROS activates pathological redox signaling that leads to 
cell damage, particularly when ROS generation shifts to 
more toxic ROS species [71, 72]. However, identifying the 
specific ROS species that participate in a signaling event is 
not easy because one ROS species can be transformed into 
other species, and their effects on molecular targets might 
not be noticeably different [73].

Sources of ROS in cardiomyocytes include organelles, 
such as mitochondria, and enzymes, such as NADPH 

oxidase (NOX), nitric oxide synthases, and xanthine oxi-
dase [24, 58]. ROS generally accumulate in certain cellular 
compartments, and each of the organellar compartments 
has its own redox niche within the cell [74]. Mitochondria 
are the most quantitatively relevant ROS generators in car-
diomyocytes, and these organelles are particularly crucial 
for ROS produced from energetic metabolism [22, 23]. 
The ETC is the most studied source of mitochondrial ROS. 
The monoelectronic reduction of  O2 occurs at complexes 
I, II, and III within the ETC, resulting in the production of 
 O2

•− and other derivative species. Of note, accumulating 
studies demonstrate that other sources of mitochondrial ROS 
are also quantitatively sizable, such as pyruvate dehydro-
genase, glycerol phosphate dehydrogenase, α-ketoglutarate 
dehydrogenase, and monoaminoxidase [27, 75, 76]. NOX is 
an important source of cytoplasmic ROS that directly cata-
lyzes the one-electron reduction of  O2 to  O2

•− using NADPH 
as the electron donor [77]. It is a membrane-bound enzyme 
complex with seven isoforms (NOX1-5 and DUOX1-2) in 
mammalian cells, which differ in tissue distribution and 

Fig. 1  Energy substrate metabolism and mitochondrial reactive oxy-
gen species (ROS) production in cardiomyocyte at physiological or 
pathophysiological states. Under physiological condition (left panel), 
the cardiomyocyte is metabolically omnivorous and readily metabo-
lizes various energy substrates such as glucose and free fatty acids 
(FFAs) for ATP production. In metabolic cardiomyopathy (right 
panel), cardiac insulin resistance leads to decreased glucose uptake 
and utilization and enhanced fatty acid (FA) uptake and β-oxidation 
in cardiomyocytes. When the uptake of FFAs markedly exceeds the 
β-oxidation capacity, excess FAs form triglyceride (TG) and lipotoxic 
lipids such as ceramide and diacylglycerol (DAG), leading to cardiac 
lipotoxicity. FA β-oxidation produces flavin adenine dinucleotide 
(FADH2) and nicotinamide adenine dinucleotide (NADH), which are 

the reducing equivalents that feed the electron transport chain (ETC). 
In well-coupled mitochondria, the electron flow rate through the ETC 
is limited by the ATP turnover rate. Impaired electron transfer within 
the ETC facilitates electron leakage from the ETC complexes, result-
ing in ROS formation. Moreover, enzymes in FA oxidation such as 
long and very long-chain acyl-CoA dehydrogenase (LCAD\VLCAD) 
may also produce a considerable quantity of ROS, especially in the 
context of myocardial metabolic disorders. GLUT, glucose trans-
porter; FAT, fatty acid translocase; CD36, cluster of differentiation 
36; PI3K, phosphatidylinositol 3-kinase; FACS, fatty acyl-CoA syn-
thetase; CPT, carnitine palmitoyltransferase; PDH, pyruvate dehydro-
genase; ETF, electron transfer flavoprotein; ETFDH, ETF dehydroge-
nase; ANT, adenine nucleotide translocator
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ROS production kinetics [78]. NOX2 and NOX4 are consid-
ered the major isoforms in myocardium, with NOX2 local-
ized to the cell membrane and NOX4 predominantly to the 
mitochondria [79, 80]. Increased NOX4 expression and ROS 
production have been shown in pressure overloaded heart 
[81]. Nox4 deletion in cardiomyocytes significantly attenu-
ated cardiomyocyte apoptosis, myocardial hypertrophy, and 
interstitial fibrosis in the presence of pressure overload [81]. 
In addition, loss of Nox2 could prevent oxidative stress and 
progression to advanced heart failure in response to pressure 
overload in mice [82]. Moreover,  Ca2+-dependent NOX5 is 
reported to be a crucial NOX isoform participated in oxida-
tive stress-mediated cardiac hypertrophy [83].

Because mitochondria are the most important cellular 
source of ROS in metabolic cardiomyopathy due to their 
key role in myocardial energetic metabolism, the next sec-
tion focuses on the mechanisms of cardiac ROS overproduc-
tion induced by mitochondrial dysfunction under metabolic 
disorders.

Metabolic alterations induce mitochondrial 
ROS overproduction

ROS produced from the ETC

The heart is one of the highest energy-demanding organs 
with extreme dependence on the normal structure and func-
tion of mitochondria. Mitochondria are the most important 
cellular source of ROS in metabolic cardiomyopathy but also 
suffer ROS-mediated damage [84]. Despite discrepancies, 
accumulating evidence indicates mitochondrial dysfunction 
in metabolism-related cardiomyopathy, characterized by 
alterations in ETC complex activity, oxygen consumption, 
fatty acid oxidation, and mitochondrial DNA (mtDNA) con-
tent. In general, mitochondrial fatty acid oxidation is aug-
mented, or at least preserved, in metabolic cardiomyopathy, 
but the ETC activity progressively declines with disease 
progression [2, 3, 19, 22, 23, 58, 59, 85]. The mismatch 
between mitochondrial fatty acid oxidation and ETC activity 
induces more substrate-derived reducing equivalents to get 
into and then leak from the impaired ETC, resulting in the 
overproduction of oxidants (Fig. 1).

It is reported that FFAs may exert dual effects on mito-
chondrial ROS production, shown as either an increase or 
reduction in  O2

•− formation [73, 86].  O2
•− formation from 

mitochondria oxidizing NAD-dependent substrates dramati-
cally increases in the presence of FFAs, which is related to 
the partial inactivation of complexes I and III [87–90]. FFAs 
can interact with ETC components, thus lowering the rate of 
forward electron transfer (FET) and promoting  O2

•− forma-
tion, which might be the primary mechanism of the FFA-
stimulated production of oxidants in nonphagocytic cells 

[86]. In addition, FFAs are amphiphilic and may incorporate 
into mitochondrial inner membranes, which increases mem-
brane fluidity and the chances of electron leakage [91–93]. 
On the other hand, FFAs have mild uncoupling or proto-
nophore effects due to the cyclic movement of their proto-
nated and deprotonated forms across the mitochondrial inner 
membrane [94]. Therefore, FFAs can act as protonophores 
and decrease ROS generation in reverse electron transfer 
(RET) [87, 89, 95]. Notably, a high Δp is required for RET, 
and only a slight depolarization of the mitochondrial inner 
membrane by ADP phosphorylation or the mild uncoupling 
effects of FFAs can abolish the RET-dependent formation 
of oxidants [96]. This mechanism suggests that the RET-
dependent generation of oxidants may have little impor-
tance under an in vivo condition, in which mitochondria are 
actively phosphorylating [73].

ROS produced from non‑ETC sources

Several non-ETC sources of ROS exist in mitochondria. 
For example, several mitochondrial flavoenzymes, includ-
ing α-ketoglutarate dehydrogenase, pyruvate dehydrogenase, 
glycerol phosphate, electron transfer flavoprotein (ETF), and 
ETF-oxidoreductase, are increasingly considered important 
ROS sources, which may generate a markedly larger quantity 
of  O2

•− compared to ETC in certain circumstances [75, 96, 
97]. Moreover, a considerable proportion of  H2O2 originat-
ing from fatty acid oxidation is produced in mitochondrial 
matrix by flavoproteins upstream of complex III, includ-
ing short-, medium-, long-, and very long-chain acyl-CoA 
dehydrogenases (SCAD, MCAD, LCAD, and VLCAD, 
respectively), which are essential in mitochondrial fatty 
acid oxidation [98, 99]. Electrons flow from these acyl-CoA 
dehydrogenases to ETF then ETF dehydrogenase (ETFDH), 
which transfers electrons to ubiquinone and eventually to 
complex III. Among the various acyl-CoA substrates, long-
chain fatty acid substrates are likely associated with the 
augmented generation of mitochondrial ROS [98–100]. 
LCAD and VLCAD use long-chain acyl-CoA substrates. 
Recent studies indicate that VLCAD and LCAD can pro-
duce  H2O2 directly [99, 101]. It is estimated that VLCAD 
makes a considerable overall contribution to ROS formation 
(nmol  min−1  mg−1 protein range) due to its continuous oxi-
dase activity [101]. Moreover, recombinant human LCAD 
is reported to generate  H2O2 15-fold faster than VLCAD 
[98]. Because fatty acid oxidation is the predominant energy 
source of the heart, VLCAD and LCAD might be important 
sources of non-ETC oxidants and crucial players in oxi-
dative stress in metabolic cardiomyopathy (Fig. 1). More 
gain-of-function and loss-of-function studies of fatty acid 
oxidation–related flavoproteins are needed to elucidate their 
functional roles in ROS production, contribution to oxidative 
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stress, and regulatory roles in the pathogenic mechanisms of 
metabolic cardiomyopathy.

Oxidative damage to the mitochondria

Mitochondria-originated ROS can modulate cellular redox-
sensitive signalings via reversible modification of critical 
elements in signal transduction to exert multiple physiologi-
cal functions [75]. Conversely, ROS at a high concentration 
can lead to non-specific damages to intracellular macromol-
ecules, which generally produce more reactive intermediates 
and initiate a chain of damage amplification [73]. Indeed, 
fatty acid–induced ROS generation may trigger both oxida-
tive damages to the mitochondria and mitochondrial uncou-
pling that leads to impaired ATP production, indicating a 
pathophysiological association between oxidative stress and 
mitochondrial dysfunction [102, 103].

Mitochondria have their own DNA that is circular, double-
stranded, 16,569 base-paired DNA encoding thirteen subu-
nits of mammalian respiratory complexes, 22 tRNAs, and 2 
rRNAs [104]. mtDNA shows a higher sensitivity to oxida-
tive damages compared to nuclear DNA. Several human and 
animal studies have suggested that mtDNA may accumulate 
significantly more oxidized bases relative to nuclear DNA 
[105]. This is because mtDNA is closer to ROS-producing 
respiratory chains and it lacks the protection of histone-like 
proteins.  H2O2 and  O2

•− synthesized in the mitochondrial 
inner membrane can readily react with proximal mtDNA and 
cause the accumulation of point mutations and/or deletions 
and reduced DNA copy number, impairing mitochondrial 
functions [105, 106]. Mitochondria possess well-defined 
DNA repair mechanisms quite similar to those of the nucleus, 
such as base excision repair, mismatch repair, single-strand 
break repair, and homology recombination–dependent repair. 
Several mitochondrial repair mechanisms have been reported 
to improve mitochondrial dysfunction and cardiac structural 
and functional abnormality [107–110]. However, the DNA 
repairing capacity in the mitochondria appears to be less 
powerful than that in the nucleus [107, 111]. Moreover, it 
is suggested that oxidative stress could directly or indirectly 
impair the mtDNA repair pathways, resulting in an increased 
number of mtDNA mutations [110, 111]. Nevertheless, the 
mechanisms of mtDNA repair and their role in contribut-
ing to mitochondrial dysfunction in cardiomyocytes require 
further investigation.

Oxidative damage to mtDNA leads to a decrease in mito-
chondrial transcript and protein levels and impaired ETC 
function and ATP formation, which further trigger mito-
chondrial ROS production and mtDNA mutations to form a 
vicious cycle of damage amplification [112–114]. Several 
studies have indicated that elevated oxidative mtDNA dam-
ages are involved in the development of cardiomyopathy and 

heart failure [115–117]. The coexistence of ROS-mutated 
mtDNA and wild-type mtDNA in the same mitochondrion 
is called mtDNA heteroplasmy [118, 119]. As the percentage 
of mutant mtDNA rises above certain thresholds (60–70%), 
mitochondrial homeostatic mechanisms are disturbed, result-
ing in impaired mitochondrial bioenergetic capacity, reduced 
mitophagy, and imbalance of mitochondrial fusion and fis-
sion events. Dysfunctional mitochondria accumulated in 
cardiomyocytes further lead to impaired ATP generation, 
cell atrophy, or death, and also interfere with certain meta-
bolic mechanisms and signaling pathways, which contrib-
utes to the development of cardiomyopathy [118]. Indeed, 
the increase in mtDNA heteroplasmy not only causes mito-
chondrial dysfunction but also induces broad alterations in 
gene expression [120–122], as mitochondria serve as criti-
cal intracellular signaling hubs modulating nuclear gene 
expression at both transcriptional and epigenetic levels. To 
date, over 400 mtDNA mutations have been identified to be 
associated with human diseases such as heart failure [119]. 
In this context, developing mitochondrial therapies to deal 
with mtDNA heteroplasmy has received growing attention 
for the treatment of cardiovascular diseases [118].

ROS not only affect mtDNA but also lipids and proteins. 
Accumulation of fatty acids and lipid-derived metabolites 
in the internal mitochondrial membrane may increase 
lipid peroxidation. Lipid peroxidation products, such 
as 4-hydroxynonenal (4-HNE), 4-hydroxy hexenal, and 
malondialdehyde (MDA), are involved in the development 
of metabolic cardiomyopathy [123]. There is evidence that 
lipid peroxidation products may damage mitochondrial 
membranes, suppress cyclooxygenase (COX), and activate 
uncoupling protein (UCP)-2, leading to ETC dysfunc-
tion and exacerbation of ROS production [73, 123]. One 
of the primary phospholipids of the mitochondrial inner 
membranes, cardiolipin, is also prone to modification by 
oxidants [124]. Oxidative modification of cardiolipin can 
impair mitochondrial membrane fluidity, reduce ETC activ-
ity, and induce mitochondrial permeability transition pore 
(mPTP) opening, resulting in profound consequences on 
mitochondrial function [124]. Moreover, changes in the 
mitochondrial proteome and related mitochondrial dysfunc-
tions are involved in cardiac diseases [84]. Several lines of 
evidence showed an underlying connection between cardiac 
oxidative stress and alterations of the mitochondrial pro-
teome [125, 126]. Significant cardiac mitochondrial pro-
teome remodeling has been observed in diabetic mice in 
response to transverse aortic constriction, which could be 
significantly attenuated by mitochondrial catalase–mediated 
scavenging of mitochondrial ROS [126]. However, the asso-
ciation between oxidative stress and alteration of cardiac 
mitochondrial proteome needs to be further studied with an 
in-depth analysis of sequencing technology.
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Consequences of oxidative stress 
in metabolic cardiomyopathy

ROS are important regulators of multiple intracellular responses 
via redox signaling pathways. However, the role of ROS in phys-
iology or pathology depends on their type, concentration, and 
the site of formation [75]. Low concentrations of ROS primar-
ily participate in physiological processes, such as cell prolif-
eration and differentiation and excitation–contraction coupling 
(ECC). In contrast, high concentrations of ROS induce oxida-
tive stress–regulated signaling events and modify the structure 
and function of critical molecules in cardiomyocytes, which 
further worsens myocardial metabolism, induces dysfunctions 
in mitochondria and ion channels and transporters, and trig-
gers inflammation and cardiomyocyte apoptosis (Fig. 2). These 
changes ultimately result in impaired cardiac remodeling and 
heart failure [127].

Effects of ROS on myocardial energy substrate 
metabolism

Modulation of key regulators in energy substrate 
metabolism

A coordinated network of nuclear receptors finely regulates 
the enzymes involved in cardiac energy substrate metabolism 

[32]. Emerging evidence suggests that some of these nuclear 
receptors may act as redox sensors, and ROS exposure can 
affect the expression and activity of several nuclear recep-
tors and critical enzymes in different cultured cell models 
[128]. PPARs, including PPARα, PPARβ/δ, and PPARγ, are 
a nuclear receptor superfamily implicated in the regulation 
of metabolism [129, 130]. PPARα is highly expressed in the 
myocardium and regulates the expression of many enzymes 
responsible for various processes in metabolism [131].  H2O2 
exposure can downregulate the expression of PPARα and its 
downstream target genes CPT-1 and ACOX [132]. Moreo-
ver,  H2O2 and lipid peroxidation products, such as 4-HNE, 
can suppress PPARγ expression, which promotes insulin 
sensitivity and fatty acid oxidation [133, 134]. AMPK, the 
key metabolic sensor and regulator in myocardial energetic 
metabolism, has recently emerged as a redox sensor that 
contributes to cardiac physiology maintenance and disease 
progression prevention [135]. Both mitochondrial and cyto-
plasmic ROS have been shown to promote AMPK activity 
[136].  H2O2 could directly modulate AMPK activity and its 
downstream metabolic pathways via oxidative modification 
of the AMPKα subunit and s-glutathionylation of the α- and 
β-subunits of AMPK [137]. AMPK activation attenuates 
oxidative stress by acting on the expression of prooxidant 
and antioxidant genes, thereby protecting the heart from 
injuries [135].

Fig. 2  Consequences of oxidative stress in metabolic cardiomyopathy. 
Augmented reactive oxygen species (ROS) production in cardiomyo-
cytes induces a variety of effects, including modulation of key regula-
tors in myocardial energy substrate metabolism, alterations in insulin 
sensitivity, modulation of metabolic inflammation, redox modification 
of calcium channels and transporters, and mitochondrial dysfunction 
as well as cardiomyocyte apoptosis, which ultimately lead to structural 

and functional alterations of the heart. AMPK, AMP-activated protein 
kinase; PPAR, peroxisome proliferator–activated receptor; TLR, Toll-
like receptor; NLRP3, NLR family pyrin domain–containing 3; JNK, 
c-Jun N-terminal kinase; ASK1, apoptosis signal-regulating kinase 
1; NF-κB, nuclear factor-kappa B; SERCA, sarcoplasmic reticulum 
 Ca2+-adenosine triphosphatase; RYR, ryanodine receptor; mPTP, 
mitochondrial permeability transition pore
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Regulation of insulin signaling

A number of studies have been conducted to directly link 
ROS-mediated signaling to the development of cardiac 
insulin resistance. For instance, cardiac insulin resistance 
in mice with Glut4 deletion was associated with upregula-
tion of NOX1 and NOX2 [138]. Moreover, myocardial over-
expression of the antioxidants catalase and metallothionein 
showed that antioxidants play a critical role in the signaling 
and contractile dysregulation associated with insulin resist-
ance [139, 140]. Although oxidative stress has long been 
considered a critical element in insulin resistance, incon-
sistent results of the association between ROS and insulin 
sensitivity are reported [141, 142]. Recent studies showed 
that approaches promoting  H2O2 elimination provided 
greater protection against insulin resistance than those tar-
geting  O2

•− [141, 143, 144]. Indeed,  H2O2 is considered to 
act as a second messenger in signal transduction, whereas 
 O2

•− seems to act simply as a precursor of  H2O2 rather than 
an important second messenger [145]. It is now recognized 
that  H2O2 can induce a stimulatory or an inhibitory effect 
on insulin signaling, depending on its concentration and 
production site relative to different components of the insu-
lin signaling pathway [142]. Several signaling pathways, 
such as the c-Jun N-terminal kinase (JNK) pathway, were 
proposed as a mechanistic link between  H2O2 production 
and insulin resistance [146]. JNK catalyzes the phospho-
rylation of IRS-1 at serine residues and blocks signal trans-
duction downstream of IRS-1. High concentrations of  H2O2 
(≥ 5 μM) activate the protein tyrosine phosphatases PTP-1B 
and JNK1 in vitro and suppress insulin-stimulated phospho-
rylation of IRS and Akt [146].

The role of ROS in metabolic inflammation

Metabolic stress–induced inflammation is deeply involved 
in the development and progression of metabolic cardio-
myopathy [5]. Notably, metabolic inflammation is primarily 
modulated by the innate immune system [5]. Cardiac innate 
immune signaling plays an important role in the regula-
tion of several critical pathophysiological processes, such 
as chronic inflammation, fibrogenesis, insulin resistance, 
and redox imbalance [147–154]. Therefore, cardiac innate 
immune signaling may serve as a driving force in the devel-
opment of metabolism-related cardiomyopathy [155–158].

Accumulating evidence indicates that innate immune 
signaling and redox signaling interact widely, but the 
molecular mechanisms underlying these interactions are 
not well understood [73]. ROS have been shown to partici-
pate in innate immune signaling by interacting with several 
critical components in signal transduction, including pattern 
recognition receptors (PRRs), such as Toll-like receptors 
(TLRs) and nucleotide-binding oligomerization domain–like 

receptors (NLRs), intracellular kinases, such as JNK and 
apoptosis signal-regulating kinase 1 (ASK1), and tran-
scription factors, such as nuclear factor-kappa B (NF-κB) 
[73]. For example, studies have shown that  O2

•− promotes 
inflammation via TLR4 [159], and TLR2 participates in the 
mechanism of  H2O2-induced cytotoxicity on cardiomyocytes 
[160]. In addition, both mitochondrial and NOX-originated 
ROS can stimulate the formation of the NLR family pyrin 
domain–containing 3 (NLRP3) inflammasome [161], and 
SOD mimetics and catalase can inhibit NLRP3 activa-
tion [162]. NLRP3 inflammasome plays a crucial role in 
the pathophysiology of cardiac dysfunction by activating 
caspase-1, which subsequently cleaves pro-interleukin  
(IL)-1β or pro-IL-18 to their mature forms [5]. Indeed, the 
crystal structure of NLRP3 suggests a high sensitivity to 
alterations in redox status [163]. However, whether the 
priming step of NLRP3 inflammasome activation requires 
ROS participation needs to be further studied. Moreover, 
ROS can activate the JNK signaling pathway by suppress-
ing the activity of mitogen-activated protein kinase (MAPK) 
phosphatase, and in turn, the activated JNK can promote 
mitochondrial ROS formation via SAB, thereby forming a 
positive feedback loop [164]. Furthermore, ASK1 is a redox-
sensitive intracellular kinase that may play a critical role 
in oxidative stress–induced effects in the heart [127]. Mice  
with Ask1 deletion exhibit smaller increase in left ventricu-
lar end-diastolic and end-systolic size, smaller reduction in 
fractional shortening, and a lower cell apoptosis level than 
wild-type mice after thoracic transverse aortic constriction 
or coronary artery ligation [165]. Although ROS can activate 
ASK1 and its downstream signaling pathways, such as the 
p38 and JNK pathways, by preventing the binding of TrxR 
to ASK1 [166, 167], ROS can also inhibit ASK1 activity 
by activating phosphatase 5 (PP5) [168]. In addition, ROS 
and their secondary products, such as oxidized phospholip-
ids and 4-HNE, can directly or indirectly activate NF-κB 
[169, 170], which is a ROS-sensitive transcription factor that 
modulates the expression of a wide range of proinflamma-
tory and prooxidant genes in the heart [73].

Recent evidence demonstrates that adaptive immunity is 
an emerging player in the progression of cardio-metabolic 
diseases. T1 and T17 cells are implicated in the development 
and progression of heart failure, which contribute to the 
induction of specific pathological phenotypes of mononu-
clear cells and sustained pathological chronic inflammation 
[171]. Mitochondrial dysfunction in T cells has been shown 
to contribute to severe cardiovascular complications [172]. 
Moreover, mechanisms underlying B lymphocyte activation 
including the production of proinflammatory chemokines, 
cytokines, and cardiac autoantibodies are also involved in 
the pathogenesis of heart failure [171]. Thus, both unbal-
anced T and B cell pathways in the adaptive immune 
network contribute to cardiomyocyte death and cardiac 
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remodeling and dysfunction [171]. Oxidative stress is asso-
ciated with the activation, differentiation, and survival of 
T and B cells [173]. Moderate levels of ROS are necessary 
for T cell activation [173]. The activation of TCR induces 
mitochondrial ROS production, which promotes T cell acti-
vation by modulating IL2 and IL4 expression [174]. How-
ever, excessive ROS production could downregulate NF-кB 
phosphorylation and suppress T cell activity [175]. In addi-
tion, ROS can regulate T cell differentiation and thereby 
modulate the generation of cytokines by polarized T cell 
subsets [173]. For example, in vitro administration of  H2O2 
decreased IFNγ secretion of activated Th1 and promoted 
IL4 production of activated Th2 [176]. Mice with mutated 
p45phox or gp91phox showed blocked Treg induction and 
T cell suppression, indicating NOX-derived ROS are crucial 
for Treg differentiation and function [177]. Similarly, BCR 
stimulation induces rapid ROS generation in primary resting 
murine B cells, and ROS produced by both the NOX and 
mitochondria are participated in B cell activation [173, 178]. 
NOX2-derived ROS are mainly engaged in the early stage of 
B cell activation and mitochondrial respiration-derived ROS 
are at a later stage [178].

Collectively, ROS actively participate in signal transduc-
tion in both innate and adaptive immune responses and are 
engaged in some feedback loops that are part of the exten-
sive interactions between immune signaling and redox sign-
aling to form a fine-tuned network in the development of 
metabolism-related cardiomyopathy.

Oxidative modifications of ion channels 
and transporters

Increased ROS formation can severely affect cardiomyocyte 
electrophysiology. Altered  Ca2+ handling is a hallmark of the 
contractile dysfunction observed in patients with heart fail-
ure [5]. Oxidative stress may contribute to cardiac dysfunc-
tion in the context of obesity and insulin resistance by affect-
ing  Ca2+ handling [179]. Accumulating evidence indicates 
that increased ROS formation under myocardial metabolic 
disorders may induce  Ca2+ mishandling via redox modula-
tion of critical proteins implicated in this process, such as 
sarcoplasmic reticulum  Ca2+-adenosine triphosphatase 2a 
(SERCA2a) and ryanodine receptor 2 (RyR2) [84, 180]. The 
sulfhydryl groups of the cysteine residues of these ion chan-
nels and ion pumps are critical targets for oxidative modi-
fication [84, 181]. Studies in obese and insulin-resistant 
animal models showed augmented formation of ROS and 
oxidative damage products, such as protein carbonyl and 
lipid peroxidation, in the heart and ventricular myocytes 
in association with altered activity of  Ca2+-handling pro-
teins and impaired cardiac relaxation and contraction [179, 
182–184]. ROS-related posttranslational modifications can 
induce diverse functional results according to the type of 

ion channels, pumps, and other transporters [84]. Oxidative 
modification of SERCA2a leads to prolonged  Ca2+ tran-
sients and slower SERCA2a-mediated  Ca2+ reuptake [179]. 
In ob/ob mice, augmented irreversible carbonyl oxidation 
and decreased activity of SERCA2a have been observed, 
which were associated with impaired relaxation of the heart 
[182]. In addition, ventricular myocytes isolated from rats 
fed sucrose showed enhanced oxidation and decreased activ-
ity of SERCA2a, which could be reversed with the anti-
oxidant N-acetylcysteine (NAC) [185]. Moreover, RyR is a 
redox-sensitive sarcoplasmic reticulum  Ca2+ release channel 
located in the inner mitochondrial membrane that can be 
hyperactivated by the redox modification of thiol groups, 
which results in calcium leakage and altered calcium kinet-
ics [84]. Furthermore, ROS also increase the influx of  Ca2+ 
via L-type calcium channels and reverse the function of the 
 Na+/Ca2+ exchanger (NCX), which results in  Ca2+ influx 
and  Na+ efflux [180]. Therefore, oxidative stress contributes 
to cardiac dysfunction via the oxidative modification of ion 
channels, pumps, or other transporter types, leading to alter-
ations in their activities and eventually impaired ECC [84].

Oxidative stress–induced cardiomyocyte apoptosis

Cardiomyocyte apoptosis is a crucial contributor to hyper-
trophic remodeling and cardiac dysfunction [186]. Oxidative 
stress is a major risk factor for triggering cardiomyocyte 
apoptosis via the modulation of downstream signaling path-
ways [187]. Previous studies found that exposure of human 
cardiac progenitor cells (CPCs) to  H2O2 triggered apoptosis 
by activating the JNK signaling pathway [188]. Furthermore, 
ROS production contributed to palmitate-induced apoptosis 
in human CPCs, and pretreatment with antioxidant NAC in 
human CPCs attenuated both palmitate-induced ROS pro-
duction and apoptosis [189]. The mechanisms involved in 
ROS-induced mitochondria-dependent apoptosis in cardio-
myocytes may include the activation of proapoptotic sign-
aling pathways (e.g., the JNK, p38, and ASK1 pathways), 
suppression of antiapoptotic signaling pathways (e.g., the 
PI3K/AKT pathway and the ERK1/2 pathway), and immedi-
ate ROS-triggered effects on mitochondria that induce the 
release of cytochrome c [84]. Alterations in the mPTP and 
membrane potentials are key early signals of oxidative stress 
responses. Oxidative stress and ATP consumption lead to 
a long opening of mPTP in the mitochondrial intima and 
reduction in the proton gradient and potential energy, which 
cause mitochondrial swelling and the release of large quanti-
ties of cytochrome c and apoptosis-inducing factors. These 
events trigger caspase-dependent and caspase-independent 
cascade apoptosis reactions, ultimately contributing to 
the development and progression of cardiac diseases [84]. 
Moreover, the ROS-induced activation of mPTP opening 
can lead to alterations in intra- and intermitochondrial redox 
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environments and facilitate the release of ROS, a phenom-
enon termed “ROS-induced ROS release” (RIRR), which 
may result in different outcomes depending on the levels of 
ROS, ranging from cell injury or even cell and organismal 
death [96]. Maintaining mitochondrial integrity and block-
ing the expression of apoptotic genetic programs could be a 
viable therapeutic strategy for cardiomyocyte apoptosis [84].

Challenges in the development of therapies 
to treat metabolic cardiomyopathy

Several therapies aimed at inhibiting oxidative stress or 
augmenting antioxidant defenses improved cardiac dys-
function related to metabolism in animal models [3]. 
These strategies included (1) natural antioxidant com-
pounds, such as vitamins, polyphenols, and flavonoids, 
(2) synthetic antioxidant agents that selectively target 
mitochondria, such as SOD mimetics, coenzyme Q10 and 
its analogs, and mitochondria-targeted peptides, and (3) 
gene transfer therapy [24]. Despite the promising results 
in preclinical models, data from large-scale clinical trials 
with antioxidative therapies for cardiovascular diseases 
are disappointing due to the lack of efficacy and unde-
sired adverse effects [3, 180]. Thus, there are still many 
challenges in the development of successful antioxidative 
therapies for the treatment of metabolism-related cardio-
myopathy. Differences in the sources, spatial distribution, 
local concentrations, and targets of ROS complicate the 
selection of drugs to target oxidative stress in cardiomy-
ocytes effectively. In addition, maintenance of the ROS 
levels needed for physiological processes in the heart is 
a major challenge. Further treatments should inhibit oxi-
dative stress and meanwhile not severely affect general 
redox homeostasis. Moreover, determination of the cell 
and tissue specificity of antioxidant drugs is also a diffi-
culty. Antioxidant agents in the future should specifically 
target and counteract cardiomyocyte injuries with little 
harm to normal cardiac cells. Another challenge for the 
development of therapeutic agents is the poor selectiv-
ity and permeability of the cell membranes. Advances in 
drug delivery technology, such as the use of polymeric 
nanoparticles as drug delivery systems, may be a viable 
solution [190, 191].

The selection of appropriate in vivo and in vitro models 
is also vital for the translational study of metabolic cardio-
myopathy. Several animal models, including diet-induced, 
genetic, or models with a combination of more than one 
intervention, have been widely applied in the mechanis-
tic studies of cardiomyopathy related to metabolism [3]. 
Although animal models are indispensable for the preclini-
cal evaluation of potential drugs, they are largely incom-
patible with high-throughput drug discovery due to the 

cost and the length of time involved in model generation 
and validation. Furthermore, concerns have been raised 
about the interspecies differences in clinical manifestation, 
pathophysiology, and disease severity [192]. The logical 
approach would thereby be to conduct research on pri-
mary cardiomyocytes obtained directly from human heart 
tissue. Nevertheless, it is impractical to perform mean-
ingful long-term investigational and interventional stud-
ies on such cells due to their limited proliferative ability, 
lifespan, and availability. Fortunately, recent advances in 
human induced pluripotent stem cell (iPSC) technologies 
have provided a promising tool for modeling cardiomyo-
pathy via human heart tissue in a dish [192]. As summa-
rized in recent reviews [192–194], human iPSC-derived 
cardiomyocytes (iPSC-CMs) have been applied as a plat-
form to study a wide range of cardiac disorders related to 
metabolism and oxidative stress. For instance, Venkatesh 
et al. identified LONP1 protease as a negative regulator 
of mitochondrial fatty acid oxidation by using iPSC-CMs 
and proteomics [195]. SCO2 deficiency in iPSC-CMs led 
to cardiomyopathy with abnormalities in mitochondrial 
morphology and function [196]. PRKAG2-mutated iPSC-
CMs showed marked metabolic perturbation, characterized 
by increased AMPK activity, excessive glycogen deposi-
tion, and enhanced fatty acid oxidation [197]. In iPSC-
CMs derived from patients with Barth syndrome, exces-
sive ROS production was detected, and ROS scavenging 
by small molecules improved mitochondrial dysfunction 
[198]. Thus, iPSC-CMs have the potential to become a key 
translational asset for drug discovery in metabolic cardio-
myopathy [193]. A major limitation of iPSC-CMs in meta-
bolic study is their immature phenotype, as iPSC-CMs 
often resemble fetal cardiomyocytes in structure and func-
tion, such as a metabolic preference for glucose utiliza-
tion [199]. Several new maturation protocols have shown 
promising results to promote the metabolic and functional 
maturation of iPSC-CMs, making them applicable to reca-
pitulate adult-like metabolic phenotypes and model cardio-
myopathy related to metabolic disorders [192].

Concluding remarks and future perspectives

Metabolic cardiomyopathy is characterized by impaired 
myocardial metabolic flexibility, intramyocardial TG 
accumulation, and lipotoxic damage in association with 
structural and functional alterations of the heart. Oxi-
dative stress actively participates in the pathogenesis of 
metabolic cardiomyopathy. Mitochondria are the most 
significant ROS sources in cardiomyocytes, and meta-
bolic cardiomyopathy is associated with mitochondrial 
dysfunction, which manifests as the mismatch between 
mitochondrial fatty acid oxidation and ETC activity. The 
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ETC is the most well-studied site of mitochondrial ROS 
production, but non-ETC sources of ROS in the mitochon-
dria, such as fatty acid β-oxidation, might also produce a 
considerable quantity of ROS in the context of myocardial 
metabolic disorders. The consequences of augmented car-
diac ROS generation include the reprogramming of myo-
cardial energy substrate metabolism, alterations in insulin 
sensitivity, regulation of metabolic inflammation, redox 
modification of ion channels and transporters, and cardio-
myocyte apoptosis. These effects suggest that oxidative 
stress plays a critical role in the pathogenesis of metabolic 
cardiomyopathy.

In this context, treatments of metabolic cardiomyopathy 
such as antioxidative therapies have gained much atten-
tion. However, many challenges must be conquered for 
successful translation from the laboratory to the clinic. 
Indeed, there are still many unanswered questions, such 
as (1) whether altered energy substrate metabolism is a 
cause or a consequence of cardiac structural and functional 
abnormities? (2) What are the central metabolic events 
that drive the transition from metabolic disorders to car-
diac injuries? How metabolic intermediates and oxida-
tive stress are linked with immune responses in the heart? 
How to identify the most key molecules in the progres-
sion of metabolic cardiomyopathy and how to determine 
their cell-specific functions? (3) How to identify specific 
agents that selectively target pathogenic pathways (e.g., 
metabolic, oxidative, or immunological pathways) in car-
diomyocytes while maintaining their normal biological 
functions? (4) Why in individuals with similar metabolic 
disorders (e.g., diabetes, insulin resistance, or obesity), 
some develop metabolic cardiomyopathy while others 
develop atherosclerotic cardiovascular diseases? (5) How 
to identify individuals with a higher risk of metabolic car-
diomyopathy at an early stage? How to optimize patient 
management based on risk stratification?

To overcome these daunting challenges, systems-based 
multi-omic analyses, in combination with recent advances 
in iPSC technology and clinically relevant animal mod-
els, would be useful to gain an in-depth understanding of 
the underlying mechanisms linking metabolic disorders, 
oxidative stress, and immune responses in the heart. In 
addition, novel organelle-targeted probes and antioxidant 
compounds would be useful to clarify the contribution of 
compartment-specific oxidants and their effects on critical 
intracellular processes. It is important to stress that a for-
mal definition for metabolic cardiomyopathy as a distinct 
clinical entity remains vague. Most clinical studies to date 
have focused on atherosclerotic cardiovascular events, but 
not on cardiomyopathy related to myocardial metabolic 
disturbances. Thus, more large-scale epidemiological stud-
ies and basic researches with clinically relevant animal 
models should be conducted to strengthen the notion of 

“metabolic cardiomyopathy,” provide solid evidence for a 
causal relationship between systemic metabolic disorders 
and cardiomyopathy, and increase the awareness of this 
disease entity among physicians, biomedical researchers, 
and the public. Finally, there are no approved drugs for the 
treatment of metabolic cardiomyopathy. Further clinical 
trials with adequate duration and power are required to 
assess the long-term efficacy and safety of potential treat-
ment options for this disease.
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