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Abstract 
Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high 
indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an 
attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene 
therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of 
therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown 
some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, sys-
temic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene 
transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. 
To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare 
alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic 
delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising 
platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy 
trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regu-
latory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel 
producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many 
of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, 
this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines.
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Key messages 
•	 First-generation HAd-5 vectors are widely used in cardiovascular gene therapy.
•	 HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function.
•	 Novel HAd vectors may represent promising transgene carriers for systemic delivery.
•	 Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes.
•	 National regulatory health agencies have issued guidance on GMP for GTMPs.
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Introduction

The concept of gene therapy was first proposed many 
decades ago and pre-dates the completion of the Human 
Genome Project. In theory, the concept is simple: once a 
disease-causing mutation in the genetic code is identified, 
delivery of a correct copy would provide a cure. This para-
digm has rapidly gained traction for inherited, monogenic 
disorders, which are caused by mutations in a single gene 
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and are estimated to affect 1 in 100 people worldwide [1]. In 
addition, investigation of underlying pathomolecular mecha-
nisms of cell and organ function has identified specific can-
didate genes which become deregulated in disease [2, 3]. 
For example, restoration of target gene expression via gene 
therapy is being explored to tackle heart failure (HF) [2, 3]. 
However, the gene therapy community has been faced with 
substantial challenges in obtaining sufficient levels of protein 
expression from therapeutic genes in target organs, using 
safe and effective gene delivery vectors. Therefore, many 
decades of work have focussed on identifying, researching, 
and refining a range of both viral and non-viral gene therapy 
vectors to ensure they are safe and efficient.

One of the earliest identified viruses explored as a gene 
delivery vector is human adenovirus serotype 5 (HAd-5), 
and since then, this serotype has been widely studied for 
its ability to deliver therapeutic genes for treatment of 
inherited [4–6] and acquired diseases [7–12]. In cardiovas-
cular disease, adenoviral-mediated gene therapy has been 
investigated in experimental models of atherosclerosis [7], 
myocardial ischaemia [8], restenosis and vein graft failure 
(VGF) [9], pulmonary arterial hypertension (PAH) [4], and 
essential hypertension [10]. As one of the earliest developed 
vectors, HAd-5 has been assessed in many clinical trials, 
including cardiovascular applications in myocardial ischae-
mia, therapeutic angiogenesis, and HF [2, 13–17]. Here, 
another hurdle in translating experimental gene therapy pro-
cedures to the clinic has been the development of robust, 
good manufacturing practice (GMP), and release processes 
that comply with regulatory requirements. Collaboration 
between academia and industry has played a key role in 
addressing and overcoming these challenges. Owing to the 
combined efforts of public and private sector partners, the 
adenoviral vector platform has matured tremendously such 
that multiple adenoviral vector-based vaccines are currently 
at the forefront of the fight against COVID-19, caused by 
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) [18–24]. Here, the development of adenoviral vec-
tors for cardiovascular disease and vaccine applications is 
reviewed, and we provide an industry perspective on the 
achievements and challenges in manufacturing and scale-
up, as well as discussing clinical application of these ver-
satile gene delivery vectors.

Adenovirus structure and genome organisation

Adenoviruses are classified under the family of Adenoviri-
dae which is subdivided into 5 distinct generations: Mastad-
enovirus, Aviadenovirus, Siadenovirus, Atadenovirus, and  
Ichtadenovirus (reviewed in) [25]. Human adenoviruses 
belong to the generation of mastadenoviridae which are sub-
divided into 7 subgroups (A–G) with a total number of 67  

known serotypes (reviewed in) [26]. A schematic represen-
tation of Ad structure and genome organisation is presented 
in Fig. 1.

In humans, wild-type HAds typically cause conjunctivitis, 
keratoconjunctivitis, upper and lower respiratory tract infec-
tions, pneumonia, gastroenteritis, hepatitis, and cystitis [27]. 
Adenoviruses infect a broad range of species and include 
simian Ads, bovine Ads, porcine Ads, ovine Ads, canine 
Ads, murine Ads, and fowl Ads [28].

The evolution of different Ad vector systems

The in-depth understanding of Ad biology and genome 
organisation allowed for the engineering of the Ad genome, 
thus enabling the development of a large variety of human 
and non-human Ad vectors capable of delivering transgenes 
to target cells and tissues. Based on specific viral gene dele-
tion, Ad vectors are typically classified as first-, second-, 
or third-generation vectors. In addition, conditionally rep-
licating or oncolytic Ads have been designed, to selectively 
replicate in, and destroy tumour cells. A summary of the 
genetic engineering underlying these different vectors is 
provided below.

First-generation Ad vectors are non-enveloped icosahedral-
shaped capsids which are made up of trimeric hexons, pen-
tameric penton bases, and trimeric fibre proteins (Fig. 1A). 
Together, these structures protect the double-stranded ade-
noviral DNA and facilitate infection of target host cells. In 
first-generation Ad vectors, the E1 and often E3 regions are 
substituted for an expression cassette with an insert capacity 
of 8.2 kb (reviewed in) [29, 30] (Fig. 1B). Genes within the 
E1 region encode proteins which orchestrate viral replication 
and promote host cell proliferation (reviewed in) [30–32]. 
The development of the HEK293 cell line, which contains 
Ad DNA encoding the E1 region, provided a crucial helper 
cell line able to provide key replicative functions of the virus 
in trans to enable laboratory amplification and production of 
replication-deficient vectors [33]. In contrast, the E3 region 
contains genes encoding proteins that modulate the immune 
response following wild-type Ad infection [34]. These func-
tions are only activated when E1 is functional, and, hence, E3 
is dispensable when designing an Ad as a gene therapy vector.

Owing to their intrinsic ability to trigger strong cellu-
lar and humoral immune responses, Ad-based vectors are 
widely studied as vaccine vectors. Non-replicating human 
and non-human Ad-based vaccine vectors include Ad26.
COV2.S [22], simian ChAdOx1 nCoV-19 [18, 21, 24], Gam-
COVID-Vac (Sputnik V, recombinant Ad26 and Ad5) [20, 
23], Ad26.ZEBOV/MVA-BN®-Filo [35], and Ad26.Mos4.
HIV [36] (Table 2). In addition, an Ad-5-based vector encod-
ing the spike “S” and nucleoside “N” genes of SARS-CoV-2 
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has been reported to elicit a mucosal immune response in the 
digestive tract when given orally as a tablet [37].

Second-generation Ad vectors feature a combination 
of E1/E3 deletions with E2 and/or E4 deletions and have 
proven less immunogenic compared to first-generation vec-
tors (reviewed in) [38]. The E2 region encodes for the DNA-
binding protein (DBP), the pre-terminal protein (pTP), and 
the viral DNA polymerase which are crucial for viral replica-
tion (reviewed in) [39]. The development of this generation 
of adenoviral gene therapy vector has been hampered by the 
lack of efficient helper cell lines co-expressing E1 and E2 
functions. The E4 region contains genes which modulate 
cell signalling, the cell cycle, and DNA repair (reviewed in) 

[40]. Following deletion of the E1, E2, E3, and E4 regions, 
second-generation vectors have a maximal insert capacity 
of 14 kb (reviewed in) [30]. The scientific and industrial 
interest in second-generation vectors have waned as they 
have largely been surpassed using third-generation adeno-
viral vectors.

Third-generation or helper-dependent (HD) Ad vectors 
lack all viral genes except two inverted terminal repeats 
(ITRs) and the packaging signal, thereby allowing a maximal 
insert size of 36 kb [41, 42]. HD-Ad propagation requires 
an additional E1-deleted helper virus (HV) which provides 
all viral proteins crucial for the rescue of the HD Ad. Third-
generation Ad vectors are sophisticated gene delivery systems 

Fig. 1   Ad structure and genome organisation. (A) Adenoviral viri-
ons are non-enveloped icosahedral-shaped capsids ranging from 70 to 
90 nm in diameter [202]. Each capsid encompasses a total of 252 pro-
teins classified into 240 trimeric hexons, 12 pentameric penton bases, 
and 12 trimeric fibre proteins (reviewed in) [203]. (B) The capsid con-
tains linear double-stranded (ds) DNA ranging from 26 to 46 kb. The 
Ad genome is divided into 4 early (E) and 5 late (L) transcriptional 
units. Early transcriptional units encode non-structural proteins which 
regulate Ad DNA replication and host cell metabolism [58]. Late tran-
scriptional units encode structural proteins which form the Ad virion. 
*indicates regions which are often manipulated/deleted to generate 

HAd gene therapy vectors. Abbreviations: IX, gene-encoding capsid 
protein IX; pIIIa, gene-encoding capsid protein precursor pIIIa; III, 
gene-encoding penton base; pVII, gene-encoding core protein precur-
sor VII; V, gene-encoding core protein V; pVI, gene-encoding capsid 
protein precursor VI; pVIII, gene-encoding capsid protein precur-
sor VIII; CR1-α, gene-encoding membrane glycoprotein E3 CR1-α; 
GP19K, gene-encoding membrane glycoprotein E3 gp19K; RID-β, 
membrane protein E3 RID-β; ITR, inverted terminal repeat; pTP, gene-
encoding pre-terminal protein; DBP, gene-encoding DNA-binding pro-
tein
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capable of mediating long-term gene delivery and therapeutic 
benefit; however, they are challenging to translate to GMP-
grade manufacturing due to the requirement to ensure that 
HVs do not contaminate the final vector batches.

Conditionally replicating or oncolytic Ads have the abil-
ity to directly target and destroy cancer cells due to the lytic 
nature of replicating Ads (reviewed in) [38]. Intact E1A and 
E1B regions are crucial for Ad replication in healthy host 
cells which enable the virus to block host cell defence mech-
anisms mediated through P53 and retinoblastoma (rb) sig-
nalling. In contrast, these regions are dispensable in tumour 
cells with defective p53 and/or rb. Hence, manipulation/
deletion of specific E1A or E1B genes enables targeted Ad 
replication in cancer cells and subsequent lytic destruction 
[43, 44]. For example, deletion of the E1B 55 kDa gene 
prevents viral inactivation of p53 [45], while deletion of 
24 bp in the E1A gene leads to translation of a mutant E1A 
protein which is unable to bind and inhibit rb [46]. Targeted 
tumour cell lysis may also be achieved by tissue-specific, 
promoter-driven transcriptional control of the E1 region [47, 
48]. Oncolytic HAd-5-based GTMPs approved by the China 
Food and Drug Administration include Oncorine (rAd5-
H101) and Gendicine (rAd-p53) [49, 50] (Table 2).

HAd‑5‑dependent transgene delivery

HAd-5 belongs to HAd subgroup C [51] and represents the 
preferred vector in many cardiovascular gene therapy trials 
(Table 1). HAd-5 utilises a range of cell surface receptors 
for attachment and internalisation, including the coxsackie 
and adenovirus receptor (CAR) [52], heparan sulphate pro-
teoglycans (HSPG) [53], major histocompatibility complex 
(MHC)-I [54], vascular cell adhesion molecule (VCAM)-1 
[55], and integrins [56] (Fig. 2). Following receptor-mediated 
endocytosis [56], the viral capsid gradually disassembles 
allowing binding to the nuclear pore complex and viral DNA 
import into the nucleus [57]. Nuclear uptake of viral DNA 
initiates transcription of early units followed by transcription 
of late units (reviewed in) [58]. In wild-type Ads, replicated 
viral genomes are packaged into fully functional viral cap-
sids, culminating in virus-induced cell lysis followed by viral 
release [38]. E1 deletions in the HAd-5 prevents replication 
in healthy wild-type host cells. E3 is not required for the 
function of the replication-deficient HAd-5 vector, and its 
deletion creates additional space for incorporation of larger 
expression cassettes. The E1 and/or E3 regions are often sub-
stituted for an expression cassette which contains a transgene 

Table 1   Advantages and disadvantages of different viral vector systems for cardiovascular gene therapy

AAV adeno-associated virus, GMP good manufacturing practice, ds double stranded, ss single stranded, LV lentivirus vector, nAbs neutralising 
antibodies

Features 1st-generation HAd-5 Adeno-associated virus Lentivirus

Genome /size dsDNA, ~ 36 kb ssDNA, ~ 4.7 kb ssRNA, ~ 9 kb
Packaging capacity insert 8.2 kb 4.6 kb 8 kb
Infection Most dividing and non-dividing cells Most dividing and non-dividing cells Most dividing and non-dividing cells
Transgene expression Transient Transient and/or stable expression Stable expression
Risk of mutagenesis   -Low to none

  -Viral DNA / transgene remains 
episomal

  -Yes
  -Viral DNA / transgene remains 

episomal

  -Yes
  -Viral genome integrates into host 

DNA
Immunogenicity High Moderate Low
Neutralising antibodies Common, high prevalence Common, high prevalence Rare, low to no prevalence
Up-scaling/infectious titre Well established following GMP Challenging Challenging

1.97 × 109 transducing units [198]
Advantages relative to 

comparative viral vec-
tors

  -Low to no risk of mutagenesis
  -Industrial GMP-grade up-scaling 

well established

  -Enables stable long-term 
transgene expression

  -Preferred vector for myocardial 
gene transfer (serotypes 1, 6, 8, 
and 9)

  -AAVs have never been shown to 
cause human disease

  -Low mutagenesis risk

  -Enables stable long-term 
transgene expression

  -Reduction in immune-mediated 
elimination 2nd to low immuno-
genicity and absence of nAbs

Disadvantages relative 
to comparative viral 
vectors

  -Transient transgene expression
  -High immunogenicity and high 

prevalence of nAbs drive rapid 
immune-mediated elimination

  -Hepatic sequestration following 
intravenous administration

  -Low packaging capacity
  -High prevalence of nAbs risks 

rapid immune-mediated elimina-
tion

  -Challenging GMP-grade up-
scaling

  -Heightened risk of mutagenesis
  -Challenging GMP-grade up-

scaling
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of interest. Following delivery to a target cell the transgene 
is expressed in the nucleus, remains extrachromosomal, and 
produces a therapeutic protein [59].

HAd‑5‑based vectors: advantages 
and clinical challenges for gene therapy

The continued use of HAd-5-based gene therapy vectors for 
in vitro and in vivo applications is based on several advan-
tages. The HAd-5 genome has been extensively character-
ised, which has facilitated genetic engineering and enabled 
reproducible HAd-5 genome manipulation and/or thera-
peutic transgene insertion [60]. HAd-5 engages intracellu-
lar trafficking pathways that can rapidly deliver therapeutic 

transgenes to the nucleus, facilitating efficient transgene 
expression. Furthermore, HAd-5 demonstrates wide tropism 
for quiescent and non-quiescent cells, and its genome does 
not integrate into the host cell genome, which reduces the 
risk of mutagenesis [61, 62]. From an industry perspective, 
replication-deficient HAd-5 gene therapy vectors can be 
upscaled, achieving high titres of up to 1013 viral particles 
(VPs)/mL following GMP.

However, HAd-5-based gene therapy products also carry 
a range of clinical challenges. Elimination of replication-
deficient HAd-5 by the immune system poses a major 
challenge for clinical gene therapy trials when long-term 
transgene expression is required, for example, in the context 
of monogenic diseases. In contrast, immune-mediated elimi-
nation may not be an issue when acute/transient transgene 

Fig. 2   Schematic representation of HAd-5-dependent transgene deliv-
ery. Replication-deficient HAd-5 enters a target cardiovascular cell 
via an entry ± accessory entry receptor. Following receptor-mediated 
endocytosis, the HAd-5 capsid is broken down, and the viral DNA is 
imported into the nucleus via nuclear core complexes. The transgene 
remains extrachromosomal and produces a therapeutic protein. Clini-

cal limitations following HAd-5 delivery include viral elimination 
by the immune system, off-target effects and hepatotoxicity, reduced 
transduction efficiency based on tissue-dependent entry/accessory 
entry receptor density, and transient/loss of transgene expression 
because of episomal degradation

879Journal of Molecular Medicine (2022) 100:875–901



1 3

overexpression is required, for example, in the context of 
promoting angiogenesis or triggering T-cell and humoral 
responses following vaccine administration. Based on the 
geographical setting, seroprevalence of neutralising anti-
bodies (nAbs) for HAd-5 in humans ranges between 72 and 
85.2% [63, 64]. Clinical trials have demonstrated that nAbs 
suppress the immunogenicity of HAd-5-based vaccine vec-
tors, thereby hampering vaccine efficiency [65, 66]. Murine 
in vivo studies have identified the immunological basis of 
HAd-5 vector elimination, showing that systemic recom-
binant Ad delivery activated innate immune mechanisms 
which resulted in rapid Ad clearance and, hence, inefficient 
transgene delivery/expression [67, 68]. Yang et al. demon-
strated that retrograde biliary E1-deleted HAd-5 delivery 
to mice not only resulted in desired hepatocyte transgene 
expression but also in low-grade viral gene expression [69]. 
This triggered a virus-specific cellular immune response cul-
minating in the destruction of genetically modified hepato-
cytes highlighting the role of the adaptive immune system 
in eliminating recombinant HAd-5.

Targeted cardiovascular transgene delivery via the vascular 
route is further complicated by sequestration of replication-
deficient HAd-5 in the liver, combined with reduced viral trans-
duction efficiency in the vasculature and in aged cardiomyo-
cytes [70–73]. More importantly, intraportal vein delivery of 

E1-deleted HAd-5 to non-human primates led to hepatotoxicity 
and features of potentially life-threatening systemic inflamma-
tory response syndrome (SIRS) [74]. In the clinical context, 
intrahepatic artery delivery of E1-/E4-deleted HAd-5 harbour-
ing the human OTC gene (encodes ornithine transcarbamylase) 
to an OTC-deficient patient triggered a fatal SIRS resulting in 
the termination of one of the first gene therapy trials in humans 
[75]. Finally, pre-clinical in vivo studies have demonstrated 
transient loss of first-generation HAd-5-mediated transgene 
expression due to episomal degradation [76, 77].

Strategies to improve efficiency 
adenovirus‑mediated transgene delivery

Local delivery of therapeutic HAds via intracoronary 
infusion, intramyocardial injection, and lumenal ex vivo 
saphenous vein graft (SVG) transduction provides local 
gene delivery, circumventing the need for intravenous sys-
temic administration. In contrast, systemic HAd adminis-
tration would be the preferred route for targeting vascular 
disorders such as PAH or atherosclerosis, or to provide 
potential for global delivery to an organ such as the heart 
that cannot be achieved through local gene transfer. Such 
approaches would be especially useful in applications 

Table 2   List of approved virus-based GTMPs with regulatory guidance

r recombinant HAd-5 human adenovirus serotype 5, AAV adeno-associated virus, LV lentivirus, HSV1 herpes simplex virus 1, ALL acute lymph-
oblastic leukaemia, EMA European Medicines Agency, CFDA China Food and Drug Administration, FDA US Food and Drug Administration

Brand name Product name Indication Viral vector base Company Regulatory product number

Oncorine rAd5-H101 Nasopharyngeal carci-
noma

HAd-5 Shanghai Sunway Biotech 
Co., Ltd

CFDA

Gendicine rAd-p53 Head and neck squamous 
cell carcinoma

HAd-5 Shenzhen SiBiono Gen-
Tech Co., Ltd

CFDA

Imlygic Talimogene laherparepvec Melanoma HSV1 Amgen Europe B.V EMA: EMEA/H/C/002771
FDA: STN: 125,518

Yescarta Axicabtagene ciloleucel Lymphoma LV Kite Pharma EU B.V EMA: EMEA/H/C/004480
FDA: STN: BL 125,643

Tecartus Brexucabtagene auto-
leucel

Mantle cell lymphoma
ALL

LV Kite Pharma EU B.V EMA: EMEA/H/C/005102
FDA: STN: BL 125,703

Etranacogene dezapar-
vovec

Haemophilia B AAV5 uniQure Biopharma B.V EMA: EU/3/18/1999

Luxturna Voretigene neparvovec Leber’s congenital amau-
rosis

AAV2 Novartis Europharm 
Limited

EMA: EMEA/H/C/004451
FDA: STN: 125,610

Zolgensma Onasemnogene abepar-
vovec

Spinal muscular atrophy AAV9 Novartis Gene Therapies 
EU Limited

EMA: EMEA/H/C/004750
FDA: STN: 125,694

Kymriah Tisagenlecleucel Large B-cell lymphoma
B-cell precursor acute 

lymphoblastic leukae-
mia

LV Novartis Europharm 
Limited

EMA: EMEA/H/C/004090
FDA: STN: 125,646

Zynteglo Betibeglogene autotemcel Transfusion-dependent 
beta-thalassemia

LV Bluebird bio B.V EMA: EMEA/H/C/003691

Strimvelis Severe combined immu-
nodeficiency

LV Orchard Therapeutics 
B.V

EMA: EMEA/H/C/003854

880 Journal of Molecular Medicine (2022) 100:875–901



1 3

where the transgene product is not secreted and acts inside 
the transduced cell. Whereas this strategy theoretically ena-
bles lumenal transgene delivery to diseased vasculature, it 
also risks deleterious side effects. In the context of VGF, 
efficient ex vivo SVG transduction requires high doses 
of HAd-5 due to low CAR presence on vascular smooth 
muscle cells (SMCs) and endothelial cells (ECs) risking 
toxicity and increased immune responses [78]. Strategies 
to improve target cardiovascular cell transduction and to 
reduce immunogenicity include the use of drug-mediated 
immunosuppression (reviewed in) [79], inhibition of 
coagulation factor (F)X carboxylation [80], and the use of 
genetically engineered chimeric HAds [78] and rare HAd 
serotypes [81].

HAd capsid and fibre modifications

Genetic HAd capsid structure and fibre modification are 
strategies to alter cell/organ tropism and reduce immuno-
genicity. In addition to previously discussed findings, Parker 
et al. demonstrated that pseudotyping the HAd-5 capsid with 
both the fibre and penton of HAd-35 (HAd-5/F35/P35 chi-
maera) significantly improved luciferase transgene deliv-
ery to SVG SMCs compared to HAd-5/F35, HAd-35, and 
HAd-5 [78]. This effect was SMC-specific since transduc-
tion enhancement was not observed in SVG ECs. It appeared 
that pseudotyping the HAd-5 capsid with the HAd-35 pen-
ton base likely improved cell internalisation (compared to 
HAd-5) and intracellular trafficking (compared to HAd-35). 
Although HAd-5 transduction of whole SVGs remains inef-
ficient at low viral doses, HAd-5 capsid integrity may be 
necessary for efficient transgene delivery to the nucleus in 
SVG SMCs [82].

The RGD-4C motif (tripeptide Arg-Gly-Asp) targets 
integrins [83] which HAd-5 utilises for internalisation [56]. 
Unlike CAR, the primary attachment receptor for HAd-5 
and other species C HAds, integrins are expressed at high 
levels in vascular cells. To harness this entry mechanism, 
Work et al. inserted the RGD-4C motif into the HI loop (sit-
uated on the knob surface) of a replication-deficient HAd-5 
expressing the GFP or luciferase transgenes [72]. HAd-5 
RGD-4C-mediated transgene delivery to SVG SMCs, SVG 
ECs, and whole SVGs ex vivo was significantly increased 
compared to unaltered HAd-5, highlighting that this strategy 
is a viable approach to improve transgene delivery to SVGs 
during the CABG procedure. Furthermore, Nicklin et al. 
demonstrated that genetic incorporation of the EC-binding 
peptides SIGYPLP [71] (AdKO1SIG) and MSL and MTP 
[84] into the HI loop of replication-deficient HAd-5 s ena-
bled selective transduction of vascular ECs.

Targeting HAd-5 to the vasculature following systemic 
administration is hampered by profound HAd-5 liver tropism 

[5]. Waddington et al. demonstrated that upon intravenous 
HAd-5 administration, FX binds to HAd-5 hexon proteins, 
thereby enabling hepatocyte transduction [85]. Alba et al. 
showed that inserting genetic mutations into the hypervariable 
region (HVR) of the HAd-5 hexon protein obstructed binding 
between FX and the modified hexon protein [86]. This resulted 
in reduced liver sequestration following intravenous administra-
tion to mice. Hence, a combination of RGD-4C insertion into 
the HI loop and preventing FX binding to the hexon protein 
appears to be a logical approach to redirect modified HAd-5 
towards the vasculature. Robertson et al. generated a modi-
fied HAd-5 vector (HAd-5 T* HI loop) which demonstrated 
enhanced transgene delivery to SVG SMCs in vitro compared 
to unaltered HAd-5 [87]. In contrast, RGD-4C insertion did 
not prevent nAb neutralisation demonstrating that HAd-5 T* 
HI loop remained sensitive to immune attack. In addition, 
Ballmann et al. developed the novel chimeric HAd-20–42-42, 
a human Ad closely related to the human serotype 42 which 
contains the penton base of the human serotype 20 [88]. The 
authors demonstrated that HAd-20–42-42 showed a greater 
transduction potential of human saphenous vein ECs compared 
to HAd-5 and HAd-35 in the presence of FX. In vivo biodis-
tribution studies in mice following systemic delivery revealed 
that HAd-20–42-42 mainly targeted the liver, lung, and spleen. 
Together, partial evasion of FX-dependent sequestration to the 
liver makes this vector an interesting candidate for systemic 
targeting of cardiovascular tissues.

In summary, HAd-5 capsid and fibre modifications are 
promising approaches to improve vascular cell transduction 
efficiencies and direct the modified HAd-5 vector towards 
the vasculature. Presented findings warrant future stud-
ies investigating safety and efficacy of local and systemic 
delivery of modified HAd-5-mediated transgene delivery 
in the context of vascular disease, although it is likely that 
tropism-modified adenoviral vectors may require bespoke 
GMP manufacturing processes to be developed to facilitate 
large-scale production of high-titre batches.

Rare HAd serotypes

Human Ad-49 (HAd-49) belongs to the HAd subgroup D 
and utilises CAR, sialic acid, and cluster of differentia-
tion (CD)46 receptors for cell attachment and internalisa-
tion [51]. E1/E3-deleted HAd-49-mediated GFP transgene 
delivery to primary SMCs and ECs from SVGs resulted in 
enhanced and more rapid transduction efficiency compared 
to HAd-5 GFP and suggests possible clinical relevance since 
the SVG only remains ex vivo for approximately 30 min 
during the CABG procedure [81]. Sera collected from 103 
study patients did not yield any nAbs to HAd-49 compared 
to HAd-5. In addition, Bates et al. demonstrated that sys-
temic delivery of HAd-49 to mice resulted in reduced liver 
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sequestration while maintaining lung transduction indicating 
that this vector may be useful to deliver candidate therapeu-
tic transgenes to the pulmonary vasculature and parenchyma 
[89]. Human Ad serotypes 35 (HAd-35) and 11 (HAd-11) 
belong to HAd subgroup B and utilise the CD46, CD80/86, 
receptor X, and HSPG receptors for cell entry [51]. Neutral-
ising Abs to HAd-35 [90] and HAd-11 [91] demonstrated 
low seroprevalence in humans, and E1-deleted HAd-35- and 
HAd-11-mediated GFP transgene delivery to SVG SMCs 
was more efficient compared to HAd-5 GFP. In addition, 
intravenous HAd-35 delivery to mice did not result in liver 
sequestration compared to HAd-5 delivery [90]. Parker et al. 
confirmed findings from Vogels’s study demonstrating that 
HAd-35-mediated GFP delivery to SVG SMCs was more 
efficient compared to HAd-5 GFP [78].

Taken together, replication-deficient HAd-11, HAd-35, 
and HAd-49 appear to have the potential to efficiently deliver 
therapeutic transgenes to SVG SMCs in vitro and whole SVGs 
ex vivo. Low nAb seroprevalence to rare Ads in humans sug-
gests that these serotypes may be able to evade the initial 
immune response following systemic administration. Hence, 
these serotypes may also represent as potential candidates for 
intravenous transgene delivery. Pre-clinical in vivo studies 
are warranted to investigate the efficacy and safety of local 
and systemic administration of rare HAd serotype-mediated 
transgene delivery in the context of experimental cardiovas-
cular disease models to assess their ability to provide thera-
peutic levels of gene transfer in comparison to the widely used 
HAd-5 vector.

Modulation of host immunity and inhibition 
of FX carboxylation

HAd-5-mediated gene therapy only enables transient 
transgene expression in host target cells. Hence, HAd-5 vec-
tor readministration may be necessary to sustain a continu-
ous therapeutic effect in certain disease settings. However, 
the high prevalence of nAbs and immune system sensitisa-
tion results in rapid HAd-5 vector elimination which renders 
this strategy unviable. In order to overcome this barrier, host 
immunomodulation with immunosuppressive drugs and/or 
monoclonal antibodies may represent another strategy to cir-
cumvent immune-mediated elimination of adenoviral gene 
therapy vectors (reviewed in) [79]. Jooss et al. demonstrated 
that systemic co-administration of cyclophosphamide and 
Ad vectors blocked activation of CD4 + and CD8 + T cells 
as well as nAb formation resulting in prolonged transgene 
expression in the liver and lung of C57BL/6 mice [92]. In 
addition, a study by Lochmüller et al. found that admin-
istration of tacrolimus to adult dystrophic mice enabled 
prolonged Ad-mediated dystrophin expression by suppress-
ing the humoral and cellular immune responses [93]. More 

recently, Leborgne et al. investigated the use of imlifidase in 
the context of adeno-associated virus (AAV)-mediated gene 
therapy [94]. Imlifidase is an endopeptidase which is capable 
of degrading circulating IgG and is being tested in trans-
plant patients [95]. The authors showed that administration 
of imlifidase to mice and non-human primates was safe and 
enhanced AAV-mediated hepatic transgene delivery, even 
after readministration. In addition, the authors demonstrated 
that imlifidase reduced the amount of neutralising AAV anti-
bodies in human sera in vitro.

Profound FX-mediated sequestration of HAd-5 to the 
liver presents another barrier to enabling efficient HAd-
5-mediated gene transfer to non-liver targets following sys-
temic administration. Waddington et al. pre-treated mice 
with warfarin, a known inhibitor of vitamin K-dependent 
carboxylation of FX, prior to systemic administration of 
recombinant HAd-5 [80]. The authors found that HAd-5 
liver uptake was markedly reduced in warfarinised mice, 
indicating that warfarin may be a useful tool in detarget-
ing HAd-5 from the liver. In addition, Schüttrumpf and col-
leagues investigated the effect of multiple anticoagulants 
on AAV- and Ad-mediated gene therapy [96]. The authors 
showed that administration of the FXa inhibitor tick anti-
coagulant peptide significantly reduced Ad-mediated liver 
uptake following systemic vector administration in C57BL/6 
mice.

Together, these pre-clinical studies provide evidence that 
both immunomodulation and/or FX inhibition may repre-
sent attractive strategies to reduce host immune system-
driven elimination and liver sequestration of systemically 
administered recombinant HAd-5 vectors. It is noteworthy 
that investigated immunosuppressive drugs and warfarin 
are already authorised treatments for humans, and hence, 
this may facilitate the design of future gene therapy trials 
in humans. Furthermore, it may be of interest to explore the 
effect of newer direct oral anticoagulants (FXa inhibitors), 
for example, apixaban, on liver sequestration of recombinant 
HAd-5 vectors in a pre-clinical setting.

Industrial manufacturing of adenoviral 
vector‑based products

Typical production volumes for Ad vectors to get into phase 
I–II clinical trials are in the range of 10–50 L and can be 
scaled up to even larger volumes when using suspension 
cells or high cell density packed-bed manufacturing systems 
like iCELLis or scale-X bioreactors [97]. When manufac-
turing in suspension, the typical cell seeding density lies 
between 0.5 and 1.0 million cells/mL resulting in approxi-
mately 1013 VPs per L for standard batch bioreactor pro-
cesses [98, 99]. The latter is based on extensive data using 
the Ad5 vector, but yields with other serotypes are similar 
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as packaging cells allow the formation of about 105 VP per 
cell. A standard, six step vector purification process has been 
published previously consisting of (i) cell lysis and genomic 
DNA breakdown, (ii) clarification with dead end filters, (iii) 
concentration via ultrafiltration, (iv) anion exchange, (v) gel 
filtration, and (vi) dead-end filtration [100]. During the first 
step, detergent-based cell lysis increases the virus titre sub-
stantially by aiding the release of mature virions from the 
cell [98, 101–104]. However, this also increases the release 
of contaminants from the cells including intracellular pro-
teins and genomic DNA. To rapidly reduce the nucleic acid 
chain lengths, an enzymatic digestion of DNA (using, e.g., 
DNase or Benzonase) is commonly used to reduce genomic 
DNA size to mere fragments [98, 105–107]. During the sec-
ond step, a series of depth filters is used to remove cell debris 
and reduce bioburden load. The chosen depth filters typically 
allow the Ad vector to pass quickly while retaining contami-
nants [98, 107, 108]. A final 0.2-μm filter step using a sterile 
membrane allows for an “in-process” hold step which facili-
tates flexibility in the production planning. The third step 
involves product concentration mainly to reduce volume for 
the next purification steps. That said, this step typically also 
allows for a high reduction of small molecules such as small 
proteins. When using membranes up to 100 MDa, the virus 
with a molecular mass of around 170 MDa is concentrated, 
while small contaminants wash through [98, 107, 109, 110]. 
Step 4 involves an anion-exchange column purification as the 
Ad vector is negatively charged at physiological pH. Resins 
typically employed include Source-Q, Q-Sepharose-XL, or 
Fractogel DEAE [98, 99, 103, 106, 109–114]. This step typi-
cally results in a high recovery (between 60 and 90%) [106, 
109, 111]. As the vector is eluted from the column by salt, 
the fifth purification step typically involves a gel filtration 
to remove the salt and to facilitate buffer exchange to final 
formulation. Resins used in this step are typically Toyopearl 
HW75F, Sepharex-G25 or Sephacryl-400HR [98, 99, 106, 
113]. Again, high recoveries (up to 90%) of vector are read-
ily reported [109]. The final step to produce a clinical-grade 
product is the filtration through a 0.2-μm sterilising grade 
filter. Typically, a purification process as described above 
results in an overall 60% product recovery with the product 
adhering to set regulations as stipulated in regulatory guid-
ance documents (Ph. Eur 5.14, Ph. Eur 5.2.3, Ph. Eur 2.6.16, 
FDA1998, FDA 2010, EMA 2010) [100].

Manufacturing challenges

Cell and virus culture

Viral vectors for gene therapy are mainly produced using 
adherent cells for virus replication. However, adherent 
cells (e.g., HEK293) need a solid support for growth, and 

therefore, cell and subsequent virus culture scale-up is 
more challenging when compared with using suspension 
cells. Small-scale viral vector manufacturing has relied 
on different classical research laboratory methods using 
culture flask approaches, and traditional scale-up options 
have been stacked culture flasks [115, 116]. However, 
such horizontal scale-out allowing for the required sur-
face for adherent cells to proliferate is cumbersome, often 
requires manual handling, may need open connections, 
and lacks monitoring and control for pH and dissolved 
oxygen [115, 117]. Therefore, the use of scalable fixed-
bed bioreactors in viral vector clinical lot and commer-
cial manufacturing has recently been explored success-
fully [97, 115, 118]. Fixed-bed bioreactor vessels offer 
a solid or porous support to immobilise adherent cells, 
in which the cells can be grown to high cell densities by 
perfusion of nutrients and oxygen. Such fixed-bed bio-
reactor vessels can support the manufacturing of batch 
sizes sufficiently large for clinical studies and for mar-
ket introduction and can be either reusable or disposable 
[118]. In addition, with the increasing demand for viral 
vectors, it is anticipated that the development of a mix 
of alternative or additional production technologies in 
large-scale viral vector manufacturing: (i) suspension-
based upstream processes in stirred-tank vessels, and (ii) 
a trend towards continuous bioprocessing approaches will 
be observed [117]. These various production technolo-
gies and modes of operation hold the promise of signifi-
cantly increased batch sizes, therefore reducing manufac-
turing costs [117, 118].

Virus purification

Third-generation HD Ad vectors remove all protein-coding 
sequences from the vector backbone, requiring these ele-
ments to be supplied in trans. Coinfection of cells with a 
HV (generally an empty first-generation vector) is thus 
necessary to produce these vectors [119, 120]. The gut-
less Ad vector not only eliminates the cellular immune 
responses against de novo synthesised viral proteins but 
also significantly expands its capacity for the transgene 
cassette [120]. Because production of a gutless vector 
requires helper functions from coinfected E1-deleted Ad, 
it is critical to remove the HV efficiently from the gutless 
vector preparations [97, 98]. Since the capsids of the HV 
and vector are indistinguishable, gradient ultracentrifu-
gation is the currently available method to remove HV 
[119]. However, ultracentrifugation is most often used in 
pre-clinical development [121]; the method is expensive 
and considered not convenient for large-scale manufac-
turing following GMP requirements [97, 122]. Therefore, 
alternatives like sequential use of anion-exchange columns 
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and density gradients have been explored to improve sepa-
ration and enrichment of full vector particles [97, 122]. 
In addition, a combination of chromatographic methods 
based on capture antibodies, ionic exchange, size exclu-
sion, hydrophobic interaction, and immobilised metal 
affinity columns has been described as a feasible alterna-
tive [97, 122].

Complementing cell line development

Efforts to generate a cell line to complement these vec-
tors initially failed, likely due to the inherent cytotoxicity 
of some Ad proteins [119]. However, recently success-
ful production of HD-Ad in the absence of a HV, using 
a helper plasmid instead, was reported [123]. Utilising 
this helper plasmid, large quantities of recombinant HD 
Ad were successfully produced. Importantly, the helper 
plasmid-based system exclusively produced recombinant 
HD Ad with no generation of helper plasmid-originating 
Ad and replication-competent Ad [123].

Good manufacturing practices

Ultimately, the choice of cell lines and production equip-
ment and methods for large-scale manufacturing of clinical-
grade viral vectors requires a substantial investment in time 
and capital as each system requires deliberate and careful 
optimisation and validation, in compliance with regulatory 
requirements and current GMP [116, 121, 124]. For exam-
ple, in large-scale manufacturing of the first approved oncol-
ogy gene therapy product Gendicine® (HAd-5 expressing 
p53), a proprietary perfusion-based bioreactor system was 
used for cell and virus culture, and commercial equipment 
and conventional methods (membrane filtration, ultrafil-
tration, and chromatography) were applied in purification 
[125]. The chemistry, manufacturing, and controls (CMC) 
for Gendicine® were established to be fully compliant with 
investigational new drug (IND) application and current 
GMP requirements for both the Chinese and US FDA. The 
critical components, such as master cell and vector banks, 
working cell and vector banks, and other raw materials, 
were all analysed according to robust assay panels [125]. 
The major in-process testing items were vector infectivity 
and validity, vector quantity in the crude harvest, vector 
purity, and impurity analysis. The main lot release test-
ing parameters were sterility, vector purity, concentration, 
VP measurement, infectivity/plaque forming unit (PFU), 
potency (p53 gene expression/bioactivity), replication-com-
petent Ad, AAV, residuals (host cell DNA, protein, bovine 
serum albumin), endotoxin, and mycoplasma [125].

Regulatory requirements

Gene therapy medicinal products are innovative and 
promising treatment strategies that seek to modify or 
manipulate the expression of a gene or to alter the bio-
logical properties of living cells for therapeutic use (a 
list of authorised viral vector-based GTMPs with their 
respective regulatory guidance is provided in Table 2). 
As a novel class of therapeutics, GTMPs are faced with 
particular challenges when it comes to regulatory assess-
ment. GTMPs are complex pharmaceuticals, often requir-
ing specific administration modalities, and with specific 
safety issues linked to their use such as integrational 
mutagenesis and off-target biodistribution. Manufac-
turing considerations for GTMPs include product qual-
ity, purity, potency, and the need to meet stringent GMP 
requirements (as discussed above [126]). Recognising 
these challenges, regulatory agencies have developed spe-
cific frameworks to deal with the assessment of GTMPs. 
In Europe, the EMA has provided recommendations 
regarding CMC information that needs to be submitted 
in a GTMP IND application to meet local legal require-
ments (for EU: Directive 2001/83/EC code relating to 
medicinal products for human use, Regulation (EC) No. 
1394/2007 on advanced therapy medicinal products, and 
Directive 2001/18/EC for deliberate release of genetically 
modified organisms, while other member states consider 
contained use according to Directive 2009/41/EC). The 
purpose of such guidance is to inform how to provide suf-
ficient CMC information required to assure product safety, 
identity, quality, purity, and strength (including potency) 
of the investigational product. In the USA, the FDA has 
developed similar guidance documents on topics relevant 
to GTMPs, including CMC information for gene therapy 
INDs [127], long-term follow-up after administration of 
GTMPs [128], and guidance on specific indications (e.g. 
haemophilia, retinal disorders, and neurodegenerative dis-
eases). In Europe, the Committee for Advanced Therapies 
(CAT) is responsible for making marketing authorisation 
recommendations to the Committee of Human Medicinal 
Products (CHMP) [129]. A recent review identified major 
objections, issues, and concerns raised during the market-
ing authorisation application (MAA) process for products 
resulting from the interaction of both committees between 
2008 and 2017 [130]. During the first few years following 
CAT establishment, the quality issues were often identi-
fied as major deficiencies. Regulators frequently identified 
problems with the production process, drug specification, 
or release assay data, perhaps linked to the fact that the 
development of many GTMPs during that period was initi-
ated by academic institutions, which may not have had the 
appropriate resources or training to adequately anticipate 
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quality issues. Issues at the non-clinical level appeared to 
be less frequent and were mainly focused on pharmacoki-
netics and pharmacodynamics. Of particular relevance to 
this review, regulators have raised concerns regarding the 
persistence of replication-competent adenovirus (RCA) 
particles in GTMP batches. Conversely, clinical efficacy 
and safety issues appeared to have a major role in unsuc-
cessful MAA outcome for GTMPs [130]. Regulators have 
criticised GTMPs for a lack of clinical efficacy, changing 
or using non-validated primary endpoints, and the appli-
cation of post-hoc and subgroup analyses. Particular con-
cerns have been raised regarding the risk of immunogenic-
ity, mediated by humoral and cellular responses targeting 
the GTMP vectors and/or transgenes.

Adeno‑associated and lentiviral vectors: 
an alternative to adenoviral vectors 
in cardiovascular gene therapy

It is important to highlight that other viral vectors have been 
investigated for cardiovascular gene therapy applications. 
In particular. adeno-associated virus (AAV) and lentivirus 
(LV)-based gene therapy vectors represent alternative plat-
forms for delivering therapeutic transgenes to target cardio-
vascular tissues (reviewed in) [131]. Especially in the case 
of AAV vectors, there has been significant translation into 
clinical trials for cardiovascular gene therapy, and therefore, 
these vectors are briefly introduced here to aid as a com-
parator to developments using adenoviral vectors which are 
then outlined below. A side by side comparison including 
advantages and disadvantages of Ad-, AAV-, and LV-based 
gene therapy vectors is presented in Table 1.

AAVs are replication-defective, non-enveloped viruses 
which belong to the family of Parvoviridae (reviewed in) 
[132]. An icosahedral capsid protects single-stranded (ss) 
AAV DNA (~ 4.7 kb) which is made up of the three genes 
Rep (replication), Cap (capsid), and Aap (assembly) flanked 
by two ITRs (reviewed in) [133]. Replication of wild-type 
AAVs depends on co-infection with a HV, for example, an 
AdV. In AAV-based gene therapy vectors, the Rep, Cap, 
and Aap genes are substituted with a transgene of interest. 
Given the absolute lack of viral DNA, recombinant AAVs 
are in essence engineered replication-deficient nanoparticles 
capable of delivering transgenes of interest to target cells. 
Following delivery, the transgene is stably expressed in the 
nucleus and remains extrachromosomal. Rep gene absence 
in recombinant AAVs hinders site-specific integration into 
chromosome 19 (reviewed in) [134]. Whereas AdV-mediated 
transgene expression is transient in nature, AAV-based gene 
therapy enables stable and long-term transgene expression 
in target host cells. Approved AAV-based GTMPs include 
Luxturna for treating Leber’s congenital amaurosis [135] 

and Zolgensma for treating spinal muscular atrophy [136] 
(Table 2).

Lentiviruses are spherical, enveloped, ssRNA viruses 
which belong to the genus of the Retroviridae family [137]. 
The lentiviral capsid contains two sense-strand RNAs (~ 9 kb) 
as well as reverse transcriptase, integrase, and proteinase pro-
teins (reviewed in) [131]. Depending on their genome organi-
sation, LVs are either classified as simple or complex viruses. 
The human immunodeficiency virus (HIV)-1 is a complex 
virus, and many LV vector systems are derived from HIV-1. 
To date, there are three generations of replication-deficient 
HIV-1-based gene therapy vectors. Following infection and 
reverse transcription, LV DNA non-randomly and preferen-
tially integrates into the host cell genome at transcription-
ally active sites (reviewed in) [138]. Hence, LV-based gene 
therapy enables stable and long-term transgene expression 
in target host cells. However, compared to Ad- and AAV-
based vector systems, recombinant LV-mediated transgene 
delivery poses a risk of mutagenesis second to its ability 
to integrate into the host cell genome. Approved LV-based 
GTMPs include Kymriah for treating large B-cell lymphoma 
and B-cell precursor acute lymphoblastic leukaemia as well as 
Zynteglo for treating transfusion-dependent beta-thalassemia 
(Table 2).

Adenovirus‑based gene therapies 
for cardiovascular diseases

Current cardiovascular gene therapy trials in humans focus on 
improving cardiac angiogenesis and function. Studies in humans 
found that local delivery of recombinant first-generation HAd-5 
to the heart was generally safe in the short term [2, 13–15, 139]. 
However, it must be pointed out that only a limited number of 
cardiac gene therapy trials in humans have been carried out so 
far and that the number of participants per study has always been 
low. Hence, many more studies investigating larger participant 
sizes are necessary to determine long-term safety and efficacy 
of HAd-5-based gene therapies. A list of current and future car-
diovascular gene therapy trials is provided in Table 3.

Drug refractory angina pectoris due 
to obstructive coronary artery disease 
and post‑myocardial infarction

Refractory angina pectoris (AP) is a chronic chest pain 
condition (> 3 months) caused by reversible myocardial 
ischaemia against the background of coronary artery disease 
(CAD) which cannot be controlled with drug or revasculari-
sation therapy [140]. In Europe, refractory AP cases range 
between 30 and 50 thousand patients per year [140]. Several 
gene therapy trials have been conducted or are planned for 
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Table 3   List of current cardiovascular gene therapy trials employing recombinant HAd-5 vectors

CAD coronary artery disease, VEGF vascular endothelial growth factor, VPs viral particles, AC6 adenylyl cyclase 6, FGF4 fibroblast growth fac-
tor 4, HGF hepatocyte growth factor, PFU plaque forming unit
1 Currently withdrawn due to re-evaluation of clinical development and strategy 

Trial name Start and finish 
date

Indication Product name Viral vector, 
delivery route and 
viral particles

Number of 
patients

Phase Clinical trial 
number

Company/university

AdeLE 06/2018 until 
12/2024

Secondary 
lymphoedema

Lymfactin® AdAptVEGF-C
Ex vivo perinodal 

injection
1 × 1011 VPs

39 II NCT03658967 Herantis Pharma 
Plc

06/2016 until 
02/2024

Secondary 
lymphoedema

Lymfactin® AdAptVEGF-C
Ex vivo perinodal 

injection
1 × 1010 and 

1 × 1011 VPs

15 I NCT02994771 Herantis Pharma 
Plc

EXACT​ 01/2020 until 
09/2021

Drug-refractory 
CAD

XC001 AdVEGFXC1
Transthoracic 

epicardial 
intramyocardial 
injection

1 × 109, 1 × 1010, 
and 1 × 1011 VPs

29 I/II NCT04125732 XyloCor 
Therapeutics Inc

12/2020 until 
10/2030

Drug-refractory 
CAD

AdVEGF-AII6A + 
Transthoracic 

epicardial 
intramyocardial 
injection

1 × 108, 1 × 109, 
and 1 × 1010 VPs

41 I/II NCT01757223 Weill Medical 
College 
of Cornell 
University

FLOURISH1 06/2019 until 
06/2023

Heart failure with 
reserved ejection 
fraction

RT-100 Ad5.hAC6
Intracoronary 

injection
No information 

available yet

0 III NCT03360448 Renova 
Therapeutics

07/2010 until 
11/2017

Congestive heart 
failure

RT-100 Ad5.hAC6
Intracoronary 

injection
3.2 × 109 to 1012 

VPs

56 I/II NCT00787059 Renova 
Therapeutics

AFFIRM 06/2021 until 
12/2022

Refractory 
angina due to 
myocardial 
ischaemia

Generx® 
(Alferminogene 
tadenovec)

Ad5FGF-4
Intracoronary 

infusion under 
transient 
ischaemia

6 × 109 VPs

160 III NCT02928094 Angionetics Inc., 
Huapont Life 
Sciences

04/2018 Ischaemic heart 
disease

Ad-HGF
Trans-endocardial 

injections

30 IIa n/a The First Affiliated 
Hospital with 
Nanjing Medical 
University

07/2017 (3-year 
study)

Severe CAD Ad-HGF
Intracoronary 

infusion
5 × 109, 1 × 1010, 

and 2 × 1010 
PFUs

22 I n/a The First Affiliated 
Hospital with 
Nanjing Medical 
University

07/2008 
(35-day and 
11–14 month 
follow ups)

3-vessel CAD Ad-HGF
Intracoronary 

infusion
5 × 109, 1 × 1010, 

and 2 × 1010 
PFUs

18 I n/a The First Affiliated 
Hospital with 
Nanjing Medical 
University
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patients with drug refractory AP and obstructive CAD who 
are unsuitable for standard revascularisation therapies. The 
rationale is to improve cardiac blood flow/oxygen supply by 
delivering therapeutic transgenes which promote myocardial 
angiogenesis.

In 1998, Mack and colleagues investigated the effect 
of direct intramyocardial injection of AdGVVEGF121.10 
(replication-deficient HAd-5 expressing the pro-angiogenic 
VEGF 121 isoform, 1 × 108 PFU/site) via thoracotomy on 
myocardial ischaemia in pigs [141]. The study revealed that 
AdGVVEGF121.10 lead to an increase in myocardial angi-
ogenesis, perfusion, and function following experimental 
myocardial infarction paving the way for gene therapy trials 
in humans. In 1999, a phase I trial (N = 21 CAD patients) 
suggested that direct intramyocardial injection of AdGV-
VEGF121.10 (total doses 4 × 108, 108.5, 109, 109.5, and 1010 
particle units) during coronary artery bypass graft (CABG) 
surgery or minithoracotomy drove myocardial angiogen-
esis (determined by coronary angiography) and improved 
ventricular function (determined by stress sestamibi scan) 
in the area of vector administration [14]. Encouragingly, 
there was no evidence of vector-related adverse events at 
6-month follow-up [15]. The larger REVASC trial (N = 67) 
investigated the effect of direct intramyocardial delivery of 
AdVEGF121 (replication-deficient HAd-5 expressing only 
the VEGF 121 isoform) via mini-thoracotomy versus maxi-
mum medical treatment in patients with clinically significant 
CAD and no conventional option for revascularisation [13]. 
The investigators found that AdVEGF121 delivery to 30 
intramyocardial sites of the left ventricle (total dose 4 × 1010 
particle units) resulted in improved exercise-induced ischae-
mia compared to continued maximum medical treatment. 
Post-mortem analysis of one patient who died from cardio-
genic shock second to a peri-operative myocardial infarct 
for 19 days following AdVEGF121 administration revealed 
robust neovascularisation around the injection sites, provid-
ing some evidence for proof of concept in humans. How-
ever, nuclear perfusion imaging did not reveal an increase 
in myocardial perfusion in AdVEGF121-treated patients. 
Encouragingly, the number of adverse of events, apart from 
procedure-related events in the thoracotomy group, was not 
significantly different indicating that cardiac gene therapy 
was at least safe in the short term.

However, there remains concern over potential unfavour-
able safety characteristics of the VEGF isoform 121. This 
includes induction of local oedema [142] and pro-oncogenic 
properties [143]. Given the fact that longer VEGF isoforms 
demonstrate a more favourable safety profile [143], Amano 
et al. developed two novel replication HAd-5 vectors which 
expressed all three pro-angiogenic VEGF isoforms 121, 
165, and 189 (AdVEGF-All and AdVEGF-All6A +) [8]. 
Although both vectors encode isoform 121, alteration of 

splicing sequences for exon 6A in AdVEGF-All6A + pro-
mote the expression of the less pro-oncogenic isoform 189 
over 121. Intramuscular injection of both AdVEGF-A11 
(1 × 105 particle units) and AdVEGF-A116A + (1 × 105 
particle units) into the hind limb of rats prior to excision 
of the external iliac artery resulted in a similar induc-
tion of muscular angiogenesis and increase in blood flow 
recovery compared to AdNull-treated rats. Importantly, 
intravenous and intratracheal administration of AdVEGF-
A116A + resulted in reduced tumour growth and pulmo-
nary oedema compared to AdVEGF-A11 indicating a better 
safety profile. Mathison and colleagues went on to show that 
direct injection of AdVEGF-A116A + (total dose 1 × 109) 
around infarcted myocardium in mice resulted in enhanced 
myocardial angiogenesis and improved left ventricular func-
tion compared to AdNull-treated animals [144]. Moreover, 
Kaminsky et al. went on to show that direct administration 
of AdVEGF-A116A + (1 × 105, 106, and 107 particle units) 
to ischaemic myocardium of rats was safe and did not lead to 
any off-target side effects [145]. This pre-clinical work has 
paved the way for two phase I/II trials which aim to inves-
tigate the safety and efficacy of direct epicardial AdVEGF-
All6A + (XC001) delivery to ischaemic myocardium via 
minimally invasive transthoracic injection. The EXACT 
trial is sponsored by XyloCor Therapeutics Inc. (PA, USA), 
and the second trial (NCT01757223) is sponsored by Weill 
Medical College of Cornell University (NY, USA). Whereas 
the shorter EXACT trial will primarily investigate patient 
safety, the 10-year study sponsored by Weill Medical Col-
lege will investigate change in exercise tolerance, segmental 
wall motion in treated territories by echocardiography, and 
segmental wall motion/perfusion in treated territories by 
MRI and AP occurrence in AdVEGF-All6A + and AdNull 
(placebo)-treated trial patients.

Intracoronary artery delivery of HAd-5 vectors represents 
another delivery strategy for cardiac gene therapy. Gao et al. 
investigated the effect of intracoronary artery delivery of 
Ad5FGF4 (replication-deficient HAd-5 expressing pro-
angiogenetic fibroblast growth factor (FGF)4) on myocardial 
ischaemia in pigs [146]. The authors found that Ad5FGF4 
treatment ameliorated regional-induced ventricular dysfunc-
tion and perfusion and this persisted for at least 12 weeks. 
Importantly, transgene FGF4 protein was only detected in 
hearts and not in any extracardiac sites. Furthermore, histo-
logic examination of all organs did not reveal any abnormal 
findings, and FGF4 remained undetectable in plasma sam-
ples following intracoronary artery delivery of Ad5FGF4. 
Although no extracardiac abnormalities were detected in this 
study, a long-term safety concern regarding pro-oncogenic 
properties of FGF4 remains [147].

The AGENT clinical trials in the early 2000s investigated 
safety and efficacy of intracoronary delivery of Ad5FGF4 
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(Generx®, alferminogene tadenovec) in patients with chronic 
stable angina [16, 17] (AGENT3: 3.3 × 108, 109, 1010 VPs and 
1.0 × 108, 109, 1010; AGENT4: 1.0 × 1010 VPs). In general, 
Ad5FGF4 treatment was safe with only some patients devel-
oping transient deranged liver function tests, thrombocyto-
penia, and elevated temperatures. Importantly, no significant 
increase in adverse events was noted in the Ad5FGF4 versus 
placebo arm at 12-month follow-up. Encouragingly, pooled 
subgroup analysis of the AGENT3 and 4 trials revealed an 
improvement in exercise tolerance time, time to angina, time 
to 1 mm ST-segment depression, and the Canadian Car-
diovascular Society class in female study participants who 
received 1.0 × 1010 VPs of Ad5FGF4 indicating a gender-
dependent effect [148]. Myocardial perfusion determined by 
single-photon emission computed tomography (SPECT) in 
the AGENT4 trial only demonstrated a non-significant trend 
towards improvement following AdFGF4 treatment versus 
placebo. Limited efficacy of Ad5FGF4 treatment may be 
explained by inefficient transgene delivery to diseased car-
diac tissue in this clinical setting. To further improve HAd-
5-mediated transgene delivery to cardiac tissue, recent efforts 
have focused on optimising the administration methods for 
delivery. A trial in pigs demonstrated that transgene deliv-
ery was improved by ischaemic reperfusion achieved by two 
consecutive catheter balloon-mediated coronary artery occlu-
sions followed by intracoronary nitroglycerine administra-
tion [149]. The ASPIRE trial confirmed the safe use of this 
technique to deliver Ad5FGF4 to 11 human trial participants 
[150]. The phase III AFFIRM study sponsored by Angionet-
ics Inc. (CA, USA) is investigating Ad5FGF4 safety and effi-
cacy in 160 trial participants following intracoronary delivery 
under transient ischaemia. The study is expected to finish at 
the end of 2022.

In a phase I trial, Yang et al. investigated the safety of 
intracoronary delivery of Ad-HGF (replication-deficient 
HAd-5 expressing the pro-angiogenic growth factor human 
hepatocyte growth factor; 5 × 109, 1 × 1010, and 2 × 1010 
PFU) in patients with severe CAD [151]. Importantly, the 
authors did not detect any serious adverse events (SAEs) 
at 11–14 months of follow-up indicating that intracoronary 
delivery of Ad-HGF was at least safe in the short term. 
Building on this study, a phase IIa trial (N = 30 patients) 
investigated the safety and efficacy of percutaneous endo-
cardial injection of Ad-HGF in patients with post-MI heart 
failure [139]. The authors did not note any SAEs and were 
able to demonstrate a significant improvement in left ven-
tricular end-diastolic dimension and left ventricular ejec-
tion fraction (LVEF) at 6-month follow-up. Findings from 
these 2 small studies are encouraging; however, as with 
VEGF and FGF4, a long-term safety concern remains 
given strong pro-oncogenic properties of HGF [152].

Heart failure with reduced ejection fraction

Heart failure results from the inability of the heart to pump 
a sufficient amount of blood at normal filling pressures to 
organs around the body. Typical symptoms include breath-
lessness, fatigue, exercise intolerance, and ankle swell-
ing reducing quality of life [153]. Based on LVEF, HF is 
further stratified into HF with reduced ejection fraction 
(HFrEF, LVEF < 40%), HF with mildly reduced ejection 
fraction (HFmrEF, LVEF 40–49%), and HF with preserved 
ejection fraction (HFpEF, LVEF > 50%) [154].

Since morbidity and mortality of HFrEF have remained 
high, gene therapy is an attractive novel approach to restore 
ventricular function. Restoring impaired sarco/endoplasmic 
reticulum Ca2+-ATPase (SERCA2A) expression, which 
regulates Ca2+, in patients with HFrEF represents one treat-
ment strategy. Kawase et al. demonstrated that intracoro-
nary delivery of recombinant AAV-1/SERCA2A (1 × 1012 
VPs) to pigs with volume overload HF was well tolerated, 
safe, reversed systolic dysfunction, and improved ventricu-
lar remodelling [155]. Importantly, the investigators showed 
that cardiac SERCA2A expression levels were significantly 
higher in AAV-1/SERCA2A-treated pigs compared to con-
trol groups at 2-month follow-up providing evidence for 
stable long-term transgene expression. A subsequent phase 
II clinical trial (CUPID-1, N = 39 patients) investigated 
safety and efficacy of intracoronary delivery of AAV-1/
SERCA2A (6 × 1011, 3 × 1012, and 1 × 1013 VPs) to patients 
with advanced HF [156]. At 6 and 12 months, the high-
dose group (1 × 1013 VPs) versus placebo demonstrated an 
improvement or stabilisation of the New York Heart Asso-
ciation (NYHA) class, Minnesota Living With Heart Fail-
ure Questionnaire, 6-min walk test, peak maximum oxygen 
consumption, N-terminal prohormone brain natriuretic 
peptide levels, and LV end-systolic volume as well as a sig-
nificant increase in time to clinical events and a decrease in 
frequency of cardiovascular events. Importantly, no SAEs 
were detected. Zsebo et al. went on to show that the risk of 
prespecified recurrent cardiovascular events was reduced by 
82% in the high-dose versus placebo group at 3-year follow-
up [157]. The authors also provided evidence of long-term 
cardiac SERCA2A expression in a total of 3 patients (highest 
dose group) at 22, 23, and 31 months, respectively. Cardiac 
samples were obtained from deceased patients or patients 
undergoing surgery (e.g., heart transplantation). Of note, 
no safety concerns were noted at 3-year follow-up. Surpris-
ingly and disappointingly, the ensuing much larger CUPID-2 
trial (N = 250 patients) showed that intracoronary delivery 
of AAV-1 SERCA2A (1 × 1013 VPs) did not improve the 
clinical course of patients with HFrEF [3]. No significant 
increase in SAEs was recorded in the treatment arm.
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It is not fully understood why the CUPID-2 trial failed to 
replicate CUPID-1 findings. The authors were able to obtain 
cardiac samples from 7 patients (either deceased or requir-
ing surgical intervention) in which they were able to show 
low levels of vector DNA (range: < 10–192 DNA copies/
μg). This was comparable to vector DNA levels obtained 
in CUPID-1 (range: < 20–561 DNA copies/μg). Further-
more, study participants who were positive or equivocal 
1:2 for AAV-1 nAbs were excluded from the study avoiding 
humoral immune-driven clearance following intracoronary 
vector administration. Although the investigators detected 
high expected AAV-1 nAb seroconversion rates following 
vector administration, these nAbs would unlikely explain 
low DNA vector expression levels since the Ab response 
only occurs after days to weeks. In addition, anti-AAV-
1-specific CD8 + T-cell responses were mostly negative 
excluding cellular immune-driven clearance. One poten-
tial reason for the absence of gene therapy efficacy may be 
explained by differences in AAV-1 preparations between 
CUPID-1 and CUPID-2. The authors found that AAV-1/
SERCA2A doses given to patients in CUPID-1 contained 
85% of empty AAV-1 capsids (absence of ss SERCA2A 
DNA) compared to 25% of empty capsids in CUPID-2. 
The authors hypothesised that a higher proportion of empty 
AAV-1 capsids in CUPID-1 may have acted as potential 
decoys capable of blocking inhibitory Abs as well as other 
interfering serum substances, therefore hindering immune-
driven degradation of therapeutic AAV-1 particles [158]. 
As with the HAd-5-based AFFIRM or upcoming FLOUR-
ISH trials, it may be speculated that introducing transient 
myocardial ischaemia ± intracoronary nitroprusside deliv-
ery following vector delivery may improve AAV-mediated 
transgene delivery to cardiac tissue. Despite the advantage 
of AAV-mediated stable long-term transgene expression, 
which is desirable in a cardiac disease setting, the absence 
of treatment efficacy in CUPID-2 demonstrates a need for 
alternative vector systems such as HAd-5.

Adenylyl cyclase (AC)6 contributes to efficient cardiac 
function through converting ATP to the cyclic (c)AMP [2]. 
Lai et al. showed that intracoronary injection of Ad5.hAC6 
(1.4 × 1012 VPs, followed by nitroprusside) in pigs with 
pacemaker-induced LV dysfunction resulted in short-term 
improvement in LV function and a reduction in LV dilatation 
[159]. Importantly, the authors demonstrated cardiac AC6 
transgene expression and LV cAMP generation following 
Ad5.hAC6 administration indicating successful transgene 
transfer. A subsequent phase I/II trial in patients with HFrEF 
(N = 56) confirmed the short-term safety of intracoronary 
Ad5.hAC6 (3.2 × 109, 3.2 × 1010, 1 × 1010, 3.2 × 1011, and 
1 × 1012 VPs)/nitroprusside delivery with no significant 
increase in SAEs noted in the treatment arm at approxi-
mately 1-year follow-up [2]. The authors revealed that 
only participants with non-ischaemic HFrEF who received 

3.2 × 1011 and 1 × 1012 VPs demonstrated sustained increases 
in LVEF at 12-week follow-up compared to participants with 
ischaemic HFrEF receiving the same doses as well as all 
placebo groups. In contrast, the HF hospital admission rate 
was not significantly reduced in Ad5.hAC6 trial participants 
compared to placebo. Given the fact that this trial only dem-
onstrated modest Ad5.hAC6 treatment effects in a subset of 
patients, it may be speculated that transgene delivery and 
uptake may have been insufficient. Since this study did not 
screen study participants for HAd-5 nAbs prior to randomi-
sation and was unable obtain cardiac tissue for confirmation 
of hAC6 expression, it is difficult to comment on potential 
immune-driven vector elimination and/or low vector trans-
duction efficiency in cardiac tissue. Furthermore, given the 
fact that HAd-5 only enables transient transgene expres-
sion, it is likely that even if a short-term therapeutic effect is 
observed in a cardiac disease setting, such as HFrEF, repeat 
intracoronary injections of HAd-5 expressing non-oncogenic 
therapeutic transgenes may be necessary to ensure a con-
tinuous therapeutic effect. In this hypothetical scenario, 
it is likely that repeat immune system exposure to HAd-5 
would result in an increase in nAb formation culminating in 
rapid vector elimination and, hence, in insufficient transgene 
transfer. Potential strategies to overcome this barrier will 
be addressed later in this review. Nevertheless, Renova™ 
Therapeutics (CA, USA) is sponsoring the upcoming phase 
III FLOURISH trial which aims to investigate safety and 
efficacy of intracoronary Ad5.hAC6 (RT-100)/nitroprusside 
delivery to HFrEF patients [160]. Clinical endpoints will 
determine HF hospitalisation rates, adverse clinical event 
rates, and changes in EF.

Heart failure with preserved ejection 
fraction

HFpEF is diagnosed in patients with signs or symptoms 
of HF, normal or mildly abnormal systolic LV function 
(LVEF > 50), and evidence of diastolic LV dysfunction 
[161]. Structural alterations include cardiomyocyte hyper-
trophy, interstitial fibrosis, and capillary rarefaction [162]. 
Several community-based cohorts reported that HFpEF 
accounts for a large population (51–63%) of HF cases in 
the USA and Europe (reviewed in) [163]. Risk factors for 
HFpEF/HFmrEF include age, female gender, systemic 
hypertension, obesity, and type 2 diabetes [164]. Whereas 
treatment with ACE inhibitors, mineralocorticoid receptor 
antagonists, β-blockers, and diuretics improves survival 
of HFrEF patients, these drugs do not demonstrate a sur-
vival benefit for HFpEF or HFmrEF patients [153]. Since 
global societies are growing older and HFpEF risk factors 
are becoming more prevalent, the incidence of HFpEF is 
set to increase in the future. Together, these facts highlight 
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the need to develop novel efficacious therapies for HFpEF 
patients.

It is noteworthy that pre-clinical HFpEF and HFrEF 
research is challenging since commonly available murine 
HF models do not fully recapitulate human pathology [165]. 
Given the favourable characteristic of stable long-term 
transgene expression, AAV vectors have been favoured over 
Ad vectors in the pre-clinical development of gene therapies 
for cardiac diseases.[166–168]. Hence, only a limited num-
ber of studies investigated the use of Ad in diastolic/HFpEF 
mouse models. Shuai et al. demonstrated that intramyocar-
dial injection of an E1/E3-deleted HAd-5 expressing human 
RLN2 (encodes relaxin-2) improved diastolic dysfunction, 
a key feature of HFpEF, in a rat model of HF [169]. It is 
hypothesised that cardiac capillary rarefaction is a driver of 
HFpEF and, hence, in theory a point could be made that pro-
moting angiogenesis may be a strategy to counter progression 
of HFpEF. In this case, one may argue that using an HAd-5 
approach to deliver a pro-angiogenetic transgene may be more 
favourable than an AAV or LV approach based on transient 
transgene expression which would be favourable given poten-
tial pro-oncogenic properties of pro-angiogenic proteins such 
as VEGF, FGF4, or HGF. Encouragingly, Schiatterella et al. 
have developed a novel murine HFpEF model which more 
accurately mimics human disease [170].

Vein graft failure following coronary artery 
bypass graft surgery

Coronary artery bypass graft (CABG) surgery is a surgical 
revascularisation technique which commonly utilises the 
great saphenous vein to bypass a critically stenosed coro-
nary artery to re-establish blood flow to cardiac tissue [171]. 
Within the first year following CABG surgery, 10–15% of 
saphenous vein grafts (SVGs) occlude, and approximately 
50% fail after 10 years [172]. Vein graft failure is driven 
by early thrombosis, occlusive neointima formation (NF), 
and accelerated atherosclerosis. Although pharmacological 
single antiplatelet [173] and lipid lowering [174] therapies 
reduce VGF rates, there remains an unmet clinical need to 
improve long-term SVG outcomes.

Pre-clinical studies have shown that gene therapy is an 
attractive strategy to prevent experimental NF in rodent 
vascular injury models [175–178]. From a translational 
point of view, lumenal Ad-mediated transgene delivery to 
human SVGs ex vivo pre-implantation may be achieved [81], 
thereby eliminating off-target effects. George et al. showed 
that RAdTIMP-3 (E1-deleted HAd-5 expressing tissue inhib-
itor of metalloproteinase-3 from a CMV promoter) inhibited 
NF in ex vivo human pre-implantation SVG organ cultures 
and in porcine SVGs for 28 days following carotid artery 
interposition grafting, a translationally relevant large animal 

surgical model [179]. TIMP3 inhibits matrix metalloprotein-
ase activity and is pro-apoptotic in vascular smooth muscle 
cells leading to inhibition of NF [179, 180]. A subsequent 
study by George et al. confirmed that ex vivo RAdTIMP-3 
delivery to porcine SVGs reduced NF 3 months after carotid 
artery interposition graft procedures [9]. This is a significant 
observation with the knowledge that transgene expression 
following first-generation HAd-5 delivery is typically lost 
by 28 days due to the host immune response [69] and sug-
gests that early and acute intervention to prevent NF might 
be sustained. In parallel to the development of HAd-based 
gene therapy for VGF, the PREVENT trials (Project of Ex-
Vivo Vein Graft Engineering via Transfection) provided the 
first proof of concept for ex vivo delivery of a the none viral-
based gene therapy to SVGs in human CABG patients [181, 
182]. Despite showing favourable results in the PREVENT 
II trial (N = 200 CABG patients), the larger PREVENT IV 
trial (N = 3014 CABG patients) revealed that ex vivo deliv-
ery of edifoligide, an oligodeoxynucleotide decoy known to 
block vSMC proliferation, did not significantly impact on 
SVG restenosis rates at early time points (12–18 months) 
[182] and at 5 years [181]. It is noteworthy, that although 
there is no clinical data available to support this hypothesis, 
it is likely that delivery efficiency and subsequent efficacy 
of a therapeutic agent is much higher when using Ad-based 
gene therapy compared to employing oligodeoxynucleo-
tide decoys in SVGs. Overall, HAd-5-based gene therapy 
strategies warrant future clinical trials investigating VGF in 
CABG patients.

Hereditary pulmonary arterial hypertension

Hereditary PAH (HPAH) is a rare genetic class I PAH disor-
der which causes abnormal pressure elevation (> 25 mmHg) 
within the pulmonary vasculature resulting in impaired 
blood oxygenation, breathlessness, impaired exercise toler-
ance, and right heart strain [183, 184]. Disease management 
focuses on symptom relief including oxygen supplementa-
tion, diuretics for right HF, calcium channel blockers, phos-
phodiesterase inhibitors, endothelin receptor antagonists, 
guanylate cyclase stimulators, prostacyclin analogues, and 
prostacyclin receptor agonists [183]. Apart from lung trans-
plantation, no curative therapies are available for HPAH 
patients to date. Approximately 75% of HPAH patients har-
bour mutations within the BMPR2 gene (encodes bone mor-
phogenetic protein receptor 2) [185] shown to drive disease 
onset and progression [186]. Hence, targeted Ad-mediated 
BMPR2 transgene delivery to defective pulmonary endothe-
lium may be a potential causal therapeutic approach to repair 
endothelial BMPR2 signalling. Feng et al. demonstrated that 
intravenous delivery of AdBMPR2-myc to transgenic mice 
harbouring a dominant negative BMPR2 mutation (R889X), 
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known to cause PAH, reversed right ventricular systolic 
pressure and right ventricular hypertrophy highlighting a 
therapeutic effect [4]. AdBMPR2-myc is a first-generation 
E1/E3-deleted HAd-5 expressing human BMPR2 from a 
CMV promoter [187]. To improve transgene delivery to 
murine pulmonary endothelium, a bi-specific conjugate 
was formed between the antigen-binding fragment of the 
1D6.14 antibody (binds to knob on AdBMPR2-myc) and 
the murine 4B10 antibody which recognises the angiotensin-
converting enzyme which is highly expressed on pulmonary 
endothelial cells (ECs) [188]. In addition, systemic HAd-5 
delivery may be circumvented by tracheal administration of 
nebulised VPs [189]. Pozeg et al. showed that tracheal deliv-
ery of nebulised replication-deficient HAd-5 Kv1.5 (encodes 
Kv1.5 potassium channel, an O2-sensitive channel which is 
downregulated in chronic pulmonary hypoxia) normalised 
pulmonary vascular constriction/resistance in a rat model 
of PAH [189]. Watanabe et al. demonstrated that nebulised 
delivery of AAV-1 SERCA2A via the trachea ameliorated 
pulmonary vascular remodelling and resistance in a porcine 
model of PAH [190]. Together, these findings may warrant 
a study investigating tracheal administration of nebulised 
recombinant HAd-5 BMPR2 in a porcine model of PAH.

Secondary lymphoedema

Approximately, 20% of breast cancer patients who undergo 
axillary lymph node dissection and radiotherapy develop 
secondary lymphoedema [191]. The mechanical interrup-
tion of upper limb lymph drainage leads to accumulation of 
interstitial fluid and pitting oedema resulting in irreversible 
accumulation of fibro-adipose tissue and non-pitting oedema 
[192]. Although surgical vascularised lymph node transfer 
(VLNT) is effective in reducing secondary lymphoedema 
[193], implanted lymph nodes incorporate at low frequency 
into existing lymphatic vasculature, requiring patients to 
continue wearing compression garments [194]. A phase I 
trial sponsored by Herantis Pharma Plc. (Espoo and Turku, 
Finland) aimed to investigate the safety and tolerability of 
perinodal AdAptVEGF-C ex vivo injection during VLNT 
in 15 breast cancer patients [192]. AdAptVEGF-C (Lymfac-
tin®) is a first-generation replication-deficient E1/E3-deleted 
HAd-5 which contains the CMV promoter driving human 
VEGFC transgene expression [195] shown to induce lym-
phangiogenesis in lymph node-excised mice [196]. After 
a 12-month follow-up, the phase I trial demonstrated that 
Lymfactin® appeared to be well tolerated [192]. Impor-
tantly, the investigators did not detect viral DNA in patients’ 
bloods or an increase in Lymfactin®-specific antibodies 
following perinodal ex vivo injection. This phase I trial 
is continuing with a planned 3-year efficacy and a 5-year 
safety follow-up. Since this study is not placebo-controlled, 

it cannot determine whether perinodal ex vivo Lymfactin® 
injection during VLNT has a beneficial effect compared to 
VLNT alone. Hence, Herantis Pharma Plc. has initiated a 
larger randomised placebo-controlled phase II trial (AdeLE) 
which aims to determine Lymfactin® efficacy in 39 breast 
cancer patients.

Barriers to successful adenoviral 
cardiovascular gene therapy in humans 
and potential solutions

Despite considerable advances in cardiovascular gene ther-
apy research, many barriers remain in place. Potential strat-
egies of overcoming these hurdles will be discussed in the 
following section.

Evading host immune response 
and targeted delivery

Immune-mediated vector clearance and targeted transgene 
delivery to cardiovascular tissue remain significant obstacles 
for cardiovascular gene therapy. Local delivery routes for 
HAd-5 vectors such as intracoronary injection and direct 
myocardial injection as well as ex vivo perinodal injec-
tion or intralumenal transduction of SVGs circumvent the 
need for systemic vector delivery which reduces the risk of 
potentially deleterious side effects. Specifically cardiac gene 
therapy trials in humans relying on local vector delivery 
have, if at all, only ever shown modest therapeutic effects. 
One reason for this may be explained by immune-mediated 
clearance of therapeutic vectors before they arrive at their 
respective targets. Given the high prevalence of HAd-5 and 
AAV nAbs in the population, it would be beneficial to inte-
grate nAb screening as a potential exclusion criteria into 
all future cardiovascular gene therapy trials. Importantly, 
it may be speculated that introduction of immune modu-
lators such as tacrolimus [93], cyclophosphamide [92], or 
imlifidase [94] to future cardiovascular gene therapy trial 
designs may enhance transgene delivery. This may prove to 
be particularly useful in settings where repeated local HAd-5 
gene therapy vector delivery may be necessary to maintain 
a treatment effect given the limitation of transient transgene 
expression. In addition, the use of rare human or even xeno-
genic Ads (low levels or absence of nAbs) as well as Ad cap-
sid/fibre modifications (pseudotyping) potentially in combi-
nation with immunomodulation may avoid immune-driven 
clearance and enable more targeted transgene delivery to 
cardiovascular tissues and should, therefore, be considered 
for future trials in humans. It is noteworthy to mention that 
the manufacturing process for these alternative Ad sero-
types has matured and that authorised adenoviral-based 
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COVID-19 vaccines have provided the evidence that alter-
native Ad serotypes (including non-human) are clinically 
applicable in humans (see Table 4).

Stable transgene expression

Stable transgene expression may be desirable in non-angiogenic 
cardiac gene therapy. Although, in theory, the use of LV vectors 
enables stable long-term transgene expression, the heightened 
risk of mutagenesis and the fact that no gene therapy to date 
is 100% cardiac-specific disqualify the use of LV vectors in 
human cardiac gene therapy trials at present. Based on stable 
long-term transgene expression and low mutagenesis risk, 
AAV-based vectors theoretically appear to be good candidates 
for cardiac gene therapy aiming for stable long-term transgene 
expression. However, the CUPID-2 trial did not detect a signifi-
cant therapeutic benefit of AAV-1/SERCA2A for patients with 
HFrEF. The authors detected low vector DNA levels in a small 
number of cardiac samples suggesting that transgene delivery 
was inefficient following intracoronary vector administration 
(1 × 1013 VPs). Furthermore, the absence of AAV-1 nAbs and 
mostly negative CD8 + T-cell responses made immune-driven 
vector elimination unlikely. One may argue that a higher VP 
dose may be viable and could potentially improve transgene 
delivery. Contrasting these findings, Kawase et al. demonstrated 
that intracoronary administration of AAV-1/SERCA2A at the 
lower dose of 1 × 1012 VPs was enough to reverse volume over-
load HF and induce sustained cardiac SERCA2A expression 
in pigs, admittedly at 2-month follow-up [155]. As mentioned 
in the previous section, repeated intracoronary administration 
of HAd-5 or alternative Ad-based vectors ± , the potential use 
of immunomodulators to overcome the limitation of transient 
transgene expression may provide a more effective strategy to 
achieve a stable long-term cardiac transgene expression.

With regard to detecting cardiac transgene expression fol-
lowing vector administration in humans, it must be pointed 
out that the inability to routinely determine transgene expres-
sion in cardiac tissue remains a major limitation. Investiga-
tors of previous cardiac gene therapy trials were only ever 
able to determine transgene expression in a limited number 
of samples obtained from either deceased patients or patients 
having to undergo surgical procedures. The significant risk 
associated with cardiac biopsies, especially in HF patients, 
has led to the view that this method cannot be routinely 
used to ascertain cardiac tissue samples from trial partici-
pants. Given the absence of safe routine sampling, there 
remains a large unknown for the foreseeable future. With 
regard to angiogenetic cardiac gene therapy, one potential 
way of addressing this issue would be to introduce myocar-
dial perfusion imaging (MPI) by positron emission tomog-
raphy (PET) as a surrogate marker of angiogenesis to future 

trials. PET is considered the gold standard of MPI (reviewed 
in) [197]. Compared to SPECT used in the AGENT4 trial, 
PET provides superior image quality, higher spatial resolu-
tion enabling detection of smaller/subtle perfusion defects, 
higher temporal resolution allowing for absolute quantifica-
tion of perfusion, lower radiation burden, and acquiring rest 
and stress images within a single scanning session.

Pro‑oncogenic safety concerns in angiogenic 
cardiac trials

Delivery of first-generation replication-deficient HAd-5 
vectors carrying therapeutic transgenes via intracoronary 
infusion and minimally invasive transthoracic/catheter-
based intramyocardial injection has been shown to be at 
least safe in the short term in humans. Angiogenic cardiac 
gene therapy trials to date have relied on HAd-5-mediated 
delivery of the pro-angiogenic proteins VEGF, FGF4, and 
HGF which all also display pro-oncogenic characteristics. 
Hence, there remains a real concern around potentially pro-
moting a pro-oncogenic environment following transgene 
delivery. Encouragingly, the development of AdVEGF-
All6A + (XC001) which drives expression of the less pro-
oncogenic VEGF isoform 189 may reduce the potential risk 
of creating a pro-oncogenic environment. A trial sponsored 
by Weill Medical College of Cornell University will help to 
determine long-term safety (10 years)/efficacy of XC001.

Study design and disease burden

Major limitations of most previous cardiovascular gene ther-
apy trials included low numbers of trial participants, short-
term follow-up, and advanced disease burden. In combination 
with likely inefficient gene transfer, these conditions make it 
very difficult to detect a significant treatment effect which 
may only be small. This is especially true in advanced HF 
with severe disease burden in often co-morbid study partici-
pants which may partially explain the discrepancy between 
pre-clinical and clinical findings using the same gene therapy 
vector at comparable doses. This bias may be addressed two-
fold. On the one hand, it would be beneficial to be able to 
include patients with less HF burden and less co-morbidities 
in future trials. On the other hand, pre-clinical animal models 
may have to change to more accurately reflect human disease. 
In addition, larger cohorts (similar to CUPID-2, N = 250) will 
facilitate subgroup analysis and potentially elicit small/subtle 
parametric changes. The AFFIRM study aims to recruit 160 
participants to determine the safety/efficacy of Generx® in 
a larger population.
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Summary

Gene transfer vectors based on human adenovirus serotype 5 
were some of the first developed viral gene therapy products 
which were translated into human clinical trials in a range of 
cardiovascular diseases. As knowledge about adenoviruses 
increased, other alternative serotypes have been identified 
in experimental research, some of which have been trans-
lated into clinical use. Robust and optimised manufacturing 
processes which meet all regulatory release requirements 
are well established for GMP adenoviral vector production, 
and the recent COVID-19 pandemic has demonstrated the 
highly significant potential that gene transfer vectors based 
on adenoviruses have for use as mass medicines in the 
human population.
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