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Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related morbidity and mortality across the globe. Although 
serum biomarkers such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA-199) have been prevalently 
used as biomarkers in various cancers, they are neither very sensitive nor highly specific. Repeated tissue biopsies at dif-
ferent times of the disease can be uncomfortable for cancer patients. Additionally, the existence of tumor heterogeneity and 
the results of local biopsy provide limited information about the overall tumor biology. Against this backdrop, it is neces-
sary to look for reliable and noninvasive biomarkers of CRC. Circulating tumor cells (CTCs), which depart from a primary 
tumor, enter the bloodstream, and imitate metastasis, have a great potential for precision medicine in patients with CRC. 
Various efficient CTC isolation platforms have been developed to capture and identify CTCs. The count of CTCs, as well as 
their biological characteristics and genomic heterogeneity, can be used for the early diagnosis, prognosis, and prediction of 
treatment response in CRC. This study reviewed the existing CTC isolation techniques and their applications in the clinical 
diagnosis and treatment of CRC. The study also presented their limitations and provided future research directions.
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Introduction

Despite recent advancements, colorectal cancer (CRC) 
is still one of the leading causes of cancer-related deaths 
worldwide. With 1.65 million new cases and about 835,000 
deaths annually, CRC is ranked as the third most prevalent 
cancer globally and second in terms of mortality [1, 2]. The 

5-year survival rate of CRC is as high as 90% when diag-
nosed at stage I or II, while it decreases to 13% when diag-
nosed at stage III or IV [1]. Although some patients can be 
cured by radical surgery, patients with heavy tumor burden, 
neurovascular invasion, and even distant metastasis exhibit 
an extremely poor prognosis. Carcinoembryonic antigen 
(CEA) is an established biomarker with reported efficacy 
for the treatment and monitoring of human cancers. It is the 
only biomarker recommended for monitoring and evaluating 
the prognosis of CRC in the current treatment guidelines 
[3]. Several blood tumor markers, including CA72-4 and 
CA19-9, are known to have limited sensitivity and specific-
ity [4]. The identification of novel noninvasive biomarkers 
in plasma for diagnostic and prognostic purposes is thus of 
critical importance.

Tumor biopsies are now regarded as the “gold stand-
ard” in the diagnosis, prognosis, and prediction of therapy 
response in treating patients with cancers [5]. However, 
cancer cells are highly heterogeneous at the single-cell 
level, and biopsy specimens containing a small amount of 
tumor tissue may not represent entire cancer as a whole [6]. 
Besides, in the course of disease progression, cancers may 
have escape mutations and epigenetic alterations as a result 
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of dynamic molecular changes [7, 8], which may also con-
tribute to the cancer progression and resistance to therapy. 
Nevertheless, it is impractical to perform repeat tumor tissue 
biopsies during the patient’s illness. Just as colonoscopy, 
while tumor biopsy can be used to examine the entire colon 
and diagnose CRC, it is also an invasive technique that can 
cause complications such as bleeding, perforation, and car-
diovascular accidents [9–11]. Not only are new biomarkers 
needed to evaluate the prognosis, treatment, and recurrence 
of CRC, but the search for these biomarkers with new mini-
mally invasive techniques is also essential.

Compared with traditional tissue biopsy, liquid biopsy 
is a revolutionary technique that presents a static snapshot 
of the tumor and offers unique and enormous advantages. It 
provides information on the cancer burden in “real time” and 
unveils the evolution and heterogeneity of the disease over 
time [12]. The main targets of liquid biopsy include circulat-
ing tumor cells (CTCs), circulating tumor DNA (ctDNA), 
and extracellular vesicles. Tumor cells that enter the blood-
stream from primary or metastatic cancers are called CTCs, 
the concept of which was first proposed by Ashworth at the 
end of the nineteenth century [13–15]. The abundance of 
CTCs in peripheral blood is incredibly low, with approxi-
mately 1 CTC per 106–107 white blood cells. Furthermore, 
the frequency of CTCs is even lower when solid tumors are 
confined to local growth [16], making the detection and iso-
lation of CTCs extremely difficult and challenging. However, 
these rare cells can provide a wealth of tumor-related clinical 
information. Prompting the development of more sensitive 
platforms for isolating, enriching, and investigating CTCs 
can provide a noninvasive alternative for diagnosing, moni-
toring treatment, and evaluating the prognosis of malignant 
tumors. In-depth analysis of CTCs provides useful informa-
tion for investigating the molecular characteristics of can-
cers, early detection of primary and metastatic lesions, and 
personalized treatment, mainly in terms of prognostic evalu-
ation, stratified targeting of patients and real-time monitor-
ing of treatment effects, identification of treatment targets, 
and drug resistance mechanisms [17]. This review presented 
the development of CTC isolation methods and their clinical 
applications in CRC and discussed their feasibility as poten-
tial biomarkers for the diagnosis and prognosis of CRC.

Overview of the biological and clinical 
significance of CTCs

During tumor growth, individual or clusters of tumor cells 
detach from the primary site and pass through the blood 
vessels, eventually entering the circulation and forming 
“circulating tumor cells.” Moreover, tumor cells may move 
through channels formed by the proteolysis of other tumor 
cells or pre-existing channels formed by tissue structures 

[15]. In fact, most CTCs released in the bloodstream die in 
an early stage due to the combined effects of mechanical 
and environmental factors such as shear stress, oxidative 
stress, and immune system response [18]. As a result, the 
half-life of CTCs in the cycle is noticeably short, usually 
between 1 and 2 h [19], and only a few drug-resistant cells 
can extravasate and spread. CTCs must undergo a series 
of adaptations to survive in the changing environment. 
The most important of these adaptations is the process of 
epithelial-to-mesenchymal transition (EMT), which allows 
tumor cells to reduce epithelial characteristics, limit polar-
ity, and promote the transformation of mesenchymal phe-
notypes, characterized by higher migratory and invasive 
potential [20–23]. The activation of EMT in cancer cells 
has important functional consequences, given that mes-
enchymal tumor cells are more aggressive and resistant 
to treatment [24]. The proportion of mesenchymal CTCs 
increases with disease progression, eventually resulting  
in distant metastasis [25]. Over the recent years, it has 
been suggested that tumor cells must undergo a reverse 
mesenchymal-to-epithelial transition to acquire the ability 
to proliferate and thus develop metastatic tumors. There-
fore, it is believed that tumor cells with an intermediate 
phenotype can spread to distant sites and grow most effec-
tively [26]. Additionally, CTCs can form aggregates with 
leukocytes, endothelial cells, or platelets, called CTC clus-
ters [27]. Initially, it was hypothesized that CTC clusters 
arose from the co-invasion and propagation of oligoclonal 
populations of tumor cells [27, 28]. Nonetheless, recent 
studies have shown that these clusters can be formed by 
tumor cells aggregating in the vascular system induced by 
the affinity interaction of the hyaluronan receptor CD44 
[29]. Compared with a single tumor cell, CTC clusters are  
relatively rare in circulation but exhibit remarkably greater 
resistance to apoptosis and more metastatic potential [30, 
31]. Moreover, studies on CTC clusters in the peripheral 
blood of patients with CRC have shown that CTC clusters 
are not malignant, but rather tumor-derived endothelial 
cells associated with tumor vascular characteristics; nota-
bly, the isolation and counting of these CTC clusters can 
distinguish between healthy individuals and patients with 
early-stage CRC having a high degree of accuracy (≤ IIa) 
[32].

Precision medicine remains a realistic vision in the field 
of oncology. However, tumor cell heterogeneity is a huge 
obstacle; many factors contribute to it and affect several bio-
logical processes associated with tumor progression [33]. 
Therefore, detecting CTCs in the peripheral blood of patients 
with CRC should be considered not only as a less invasive 
option than actual biopsy but also as a new approach for a 
comprehensive understanding of the whole tumor heteroge-
neity. The in-depth study of CTCs may enable the unreveal-
ing of the molecular characteristics of tumors, identification 
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of biomarkers for targeted therapies, prediction of the effec-
tiveness of treatment, and precise assessment of tumor prog-
nosis, thus enabling precision medicine.

CTC enrichment techniques

The techniques for isolating CTCs can be divided into two 
categories according to the inherent physical characteristics 
of the cells or the specific antigens expressed on the sur-
face (Table 1). CTCs are usually identified by immunocy-
tochemistry, immunofluorescence, or other techniques after 
being captured [34]. CTC separation and capture techniques 
have been constantly updated with increasing efficiency and 
purity in recent years.

Isolation based on physical properties

CTCs usually exhibit low density and tend to be compara-
tively larger in diameter compared with other blood cells 
[52]. A large number of platforms for CTC isolation based 
on physical properties have satisfying capture efficiency, 
which can be roughly divided into the following categories.

Based on size  Isolation by size of epithelial tumor cells 
(ISET) is the platform for capturing CTCs after blood filtra-
tion based on the difference in cell size; it can capture CTCs 
from 1 mL of peripheral blood samples for counting and 
immunomorphological analysis [35]. Su et al. [53] devel-
oped a new integrated microfluidic device to isolate CTCs 
based on the difference in size and deformability between 
tumor cells and normal blood cells. CTCs were successfully 
captured in the peripheral blood samples of all patients with 
advanced CRC within 3 h. Cohen et al. [36] proposed the 
Parsortix PR1 system, which allows CTC enrichment based 
on cell size and membrane deformability; also, the expres-
sion of more than 2000 cancer-related genes can be obtained 
in the downstream analysis of captured CTCs using the HTG 
EdgeSeq nuclease protection assay. Ribeiro Samy et al. [54] 
developed a size- and deformability-based microfluidic chip 
for capturing CTCs. Moreover, the droplet digital patho-
logic complete response (PCR) (ddPCR) was used for the 
CTC molecular characterization, revealing the existence of 
APC gene mutations in most patients with CRC. Likewise, 
ScreenCell [41], CellSieve [42], and FMSA (Flexible Micro 
Spring Array) [43] are all microfluidic platforms that capture 
CTCs based on the principle of cell size difference.

Based on a density gradient  This separation method takes 
advantage of the principle that cells differ in density from 
each other. It can cause stratification of cells, with CTCs 
remaining in the monocyte-enriched layer, by adding the 

separation medium to the blood and centrifuging it. Density 
gradient centrifugation is a simple, reliable, and inexpen-
sive method. Nonetheless, the disadvantages of this method 
include the loss of large amounts of CTCs and the fact that 
leukocytes cannot be readily removed. This results in consid-
erably low purity of obtained CTCs, which is not conducive 
for further downstream experimentation [55]. Ficoll-Paque 
was not initially used to isolate CTCs, but later, it was used 
to capture CTCs in the peripheral blood of cancer patients 
with satisfactory results [37]. Rosenberg et al. [38] proposed 
a device to achieve higher CTC purity, called OncoQuick, 
which uses porous membranes to reduce the number of 
blood cells with similar size to CTCs and has been shown 
to have a high CTC recovery rate.

Based on inertia  The differences in the size and density of 
CTCs from other blood cells reflect different cell dynamics. 
Di Carlo et al. [56] proposed an inertial microfluidic system 
to isolate CTCs without antibody labeling, and the capture 
efficiency of the device was as high as 90%; it could process 
2.5 mL of blood every minute.

Based on electrophoresis  Gascoyne et al. [39] proposed die-
lectrophoretic field-flow fractionation (DepFFF) to isolate 
CTCs; it works on the principle that CTCs can be separated 
in the presence of an electric field due to the different sizes 
and charges of cells. Thus, the platform exploits the intrinsic 
properties of CTCs without adding biomarkers to the cell 
surface and can provide unmodified live CTCs for in vitro 
culture and downstream analysis [57, 58]. The shortcomings 
of this device include the low capture rate of approximately 
70% and the low efficiency of processing the peripheral 
blood of approximately 1 mL per hour [59].

Based on photoacoustic effect  Bhattacharyya et al. [60] 
used photoacoustic flow cytometry (PAFC) to detect CTCs 
in the peripheral blood of patients with breast cancer. It 
works by the absorption of laser light through nanoparticles 
labeled with antibodies on target cells. They also found that 
this method could be used to study the response of patients 
with breast cancer to treatment as well as in vitro drug tri-
als [60].

Isolation based on immune affinity

Besides the capture methods based on physical principles, 
the immunoaffinity-based capture methods take advantage 
of the expression of specific biomarkers on the surface of 
CTCs. CellSearch is a CTC capture platform developed by 
Veridex and approved by the Food and Drug Administra-
tion (FDA). It works by using immunomagnetic beads with 
EpCAM antibodies modified on the beads to capture CTCs 
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through immunoaffinity with the EpCAM antigen expressed 
on the surface of CTCs and then subsequently generating 
a shunt under the action of a magnetic field. The captured 
CTCs can then be counted and immunoassayed [45]. Based 

on this, the CTC counts and dynamic changes may pro-
vide prognostic information in patients with cancers [45]. 
Recently, several studies used this platform to capture CTCs 
and found correlations with the poor prognosis of patients 

Table 1   CTC detection technologies

Subcategory Key features Capture yield Reference

Biophysical property
ISET Microfiltration Based on the principle that CTCs differ in size from other blood cells, 

isolation is performed using an 8-µm microporous polycarbonate 
membrane filter

N/A [35]

Parsortix PR1 Microfiltration The system allows CTC enrichment using cell size and membrane 
deformability

68% [36]

Ficoll-Paque Density gradient centrifugation It was not used to isolate CTCs initially; it was later used to 
capture CTCs in peripheral blood of various cancers and easy to 
be used in combination with other techniques with satisfactory 
results

84% [37]

Oncoquick Microfiltration Porous membranes are used to reduce the number of blood cells 
similar to the size of CTCs

87% [38]

DepFFF Electrophoresis CTCs can be separated under the action of the electric field due to 
the different sizes and charges of blood cells

70% [39]

PAFC In vivo imaging It works by absorbing laser light through nanoparticles labeled 
with antibodies on the target cells and enables the real-time 
detection of CTCs in veins by laser technology

N/A [40]

ScreenCell Microfiltration A microfluidic platform for CTC separation based on cell size 
difference, which uses track-etched membranes with nano- to 
micron-sized pores in thin polycarbonate films

74–91% [41]

CellSieve Microfiltration With the help of the array of precision pores, the platform can 
capture CTCs in a low-pressure state and protect the intracellular 
structure at the same time

83–91% [42]

FMSA Microfiltration CTCs can be rapidly enriched directly from whole blood, and the 
cell damage is reduced to a minimum with the help of flexible 
polymer microsprings

90% [43]

CanPatrol Microfiltration Cells are microfiltered and then detected using multiplex RNA 
in situ hybridization for biomarkers representing the CTC 
phenotype

89% [44]

Immunoaffinity
CellSearch Immunomagnetic It combines the EpCAM expressing on the surface of CTCs with 

immunomagnetic beads containing antibodies and produces 
shunt under the action of a magnetic field

85% [45]

MagSweeper Immunomagnetic It uses a magnetic rod to capture CTCs in vivo using the immune 
affinity principle and then releases CTCs in vitro, and finally 
obtains high-purity CTCs

86% [46]

CTC-Chip Microfiltration It is a platform consisting of anti-EpCAM antibody-coated 
microposts, which can capture CTCs under precisely controlled 
laminar flow conditions without pre-labeling or pre-processing

60% [47]

HB-Chip Microfiltration This technique increases the contact between CTCs and antibodies 
on the chip surface by generating microvortices, thus improving 
the capture efficiency and purity of CTCs

74–84% [48]

CTC-iChip Microfiltration, immunomagnetic The device removes the cells except CTCs and blood cells through 
a micro-column structure and then quickly separates and captures 
CTCs using the immunomagnetic beads

97% [49]

IsoFlux Microfiltration, immunomagnetic This platform controls the flow of cell suspensions in the microfluidic 
system and uses immunoaffinity to capture CTCs

N/A [50]

AdnaTest Immunomagnetic This platform uses a combination of three antibodies (EpCAM, 
EGFR, and MUC1) for CTC capture and allows gene detection 
by multiplex RT-PCR gene panel

N/A [51]
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with CRC, thus demonstrating the potential of CTC as a 
prognostic biomarker [61–67]. Furthermore, the CTC count 
has been approved by the FDA as a standard for evaluating 
the prognosis of metastatic CRC [61], showing that liquid 
biopsy has a great potential for clinical application in the 
future. However, the CellSearch is limited by the amount of 
blood taken. The expression of EpCAM could be reduced 
due to the EMT process, resulting in the false-negative rate 
of this single antibody capture system. Therefore, other types 
of antibodies, such as N-cadherin, Vimentin, and combina-
tions of multiple antibodies [68–70], which have immunoaf-
finity to cells with mesenchymal properties, have also been 
introduced into the CTC capture platform for capturing cells 
expressing low quantities of EpCAM. In addition, antibodies 
that do not depend on epithelial and mesenchymal proper-
ties have also been developed for CTC capture. A subunit 
of the VAR2CSA protein called rVAR2 was recombinantly 
expressed in E. coli by Agerbaek et al. and successfully used 
to capture CTCs from tumor patients [71, 72].

The development of microfluidic-based CTC capture 
platforms is also a hot research topic in recent years. It can 
use not only the difference in cell size, but also immunoaf-
finity, to separate CTCs, and thus has certain advantages 
over ordinary immunomagnetic beads. CTC-Chip [47], 
HB-Chip [48], and CTC-iChip [49] are a few representa-
tive capture platforms of such microfluidic systems that 
use immunoaffinity for CTC capture based on the principle 
that target cells can specifically bind to microchannels or 
structurally modified bioactive molecules in microfluidic 
devices. Although CTCs can be easily captured by combin-
ing cell surface − specific antigens with bioactive molecules 
via immunoaffinity, the purity of CTCs may be compro-
mised because, in addition to white blood cells, the whole 
blood contains platelets, neutrophils, eosinophils, lympho-
cytes, and other cells, resulting in nonspecific capture [73]. 
To solve this problem, negative selection platforms were 
designed to remove non-target cells such as white blood cells 
and red blood cells [74]. Since the enrichment process is not 
affected by the expression of cell surface antigen, this type 
of device has a high capture efficiency and thus facilitates 
further downstream experiments. However, the limitation is 
that the purity of isolated CTCs is lower than that of positive 
enrichment and is prone to the loss of CTCs [75]. Although 
studies have suggested that CTC counting and differentiation 
of CTC subtypes by immunostaining may be effective in 
evaluating the prognosis of various cancers, a comprehen-
sive molecular and functional analysis of CTC may better 
characterize the metastatic potential of tumors to develop 
precise treatment plans. Several capture platforms allow for 
downstream analysis after CTCs are isolated. For example, 
IsoFlux uses flow control and immunomagnetic capture to 
achieve high purity of CTCs for downstream analysis; also, 
the platform can effectively reduce the damage of CTCs 

during the capture process [50]. AdnaTest is a CTC cap-
ture platform that has been modified with three antibodies 
(EpCAM, EGFR, and MUC1), allowing for the identification 
of tumor-associated transcripts by RT-PCR [51]. As of now, 
many studies have used this category of platforms for CTC 
capture and downstream analysis to investigate the associa-
tion between gene expression and cancer prognosis [76–78]. 
Nowadays, with the rapid development of nanotechnology, 
nanomaterials have been successfully introduced into the 
study of CTC isolation. The basic principle is based on the 
strong interaction between CTCs and nano-substrates, such 
as nanocolumns, nanofibers, nanoparticles, nanotubes, and 
nanorough surfaces, all of which exhibit satisfactory capture 
sensitivity and efficiency [79].

Clinical applications of CTCs

Traditional diagnostic and staging detection strategies for 
CRC have many limitations, resulting in an inadequate 
understanding of disease progression. Therefore, the explo-
ration of representative biomarkers is urgently needed for 
early diagnosis, recurrence prediction, and prognostic evalu-
ation of patients with CRC. A wealth of information on pri-
mary tumor prediction, disease progression, and prognostic 
follow-up can be obtained by detecting CTCs in peripheral 
blood (Table 2).

Early diagnosis  Tsai et  al. [80] used the self-developed 
platform called CellMax to isolate and subsequently count 
CTCs from the peripheral blood of 667 Taiwanese adults 
who underwent enteroscopy. A predefined algorithm was 
then used for early diagnosis. The result showed that the 
platform had high specificity (86%) and sensitivity (95%) 
to distinguish between benign and malignant tumors. This 
also indicated that CTC detection had a good application 
prospect in the early diagnosis of CRC. Baek et al. [81] set 
the cutoff value of CTCs to 5/7.5 mL and used this as a 
criterion to differentiate between patients with CRC and 
healthy people with good sensitivity (75%) and specificity 
(100%). The results of these two studies showed the promis-
ing application of CTC detection in the early diagnosis of 
CRC. However, uniform criteria for differentiating benign 
from malignant tumors are still lacking.

Prognosis evaluation  Several relevant studies have dem-
onstrated a strong correlation of CTC counts with cancer 
progression and prognosis [102–105]. Additionally, FDA 
has approved the use of CTC counting as a prognostic tool 
for metastatic prostate, colon, and breast cancers [61]. In a 
prospective multicenter study involving 430 patients with 
mCRC, the baseline CTCs were counted using immunomag-
netic beads. Then, the patients were divided into positive and 
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negative groups according to the cutoff value of 3/7.5 mL. 
The result showed that the median progression-free survival 
(PFS: 4.5 months vs 7.9 months; P = 0.0002) and the over-
all survival (OS: 9.4 months vs 18.5 months; P = 0.0001) 
was shorter in the positive group than in the negative group 
[61]. A recent study of 121 patients with CRC found that 
71 patients were positive for baseline CTCs, and the posi-
tivity rate highly correlated with the depth of tumor inva-
sion, lymphatic metastasis, distant metastasis, TNM stage, 
and serum CEA levels [51]. Moreover, the Kaplan–Meier 
survival curve showed that PFS (14 months vs 23 months, 
P = 0.001) and OS (18 months vs 25 months, P = 0.003) of 
baseline CTC-positive patients were significantly shorter 
than those of negative patients [82]. Yang et al. [83] pro-
posed that the positive rate of preoperative CTCs in CRC 
positively correlated with the tumor stage and serum CEA 
level while the positive rate of postoperative CTCs positively 
correlated with the tumor stage and independently corre-
lated with the tumor recurrence-free survival (RFS) rate. 
Additionally, the study demonstrated that postoperative CTC 
positivity was an independent indicator of poor prognosis 
in patients with CRC [76]. Moreover, the risk of recurrence 
was higher in postoperative CTC-positive patients than in 
preoperative CTC-positive patients [83]. Many studies have 
confirmed that the CTC count is an independent factor for 
PFS and OS in CRC [67, 84–87]. However, Le et al. [106] 
performed CTC isolation from the pulmonary venous blood 
of 24 patients with CRC treated with pulmonary metasta-
sectomy. The results revealed no significant correlation of 
PFS and OS with CTC counts. Although CTC counts have 
attracted widespread interest as a useful marker for cancer 
prognosis, they are still not widely available for clinical 
application. Moreover, uniform cutoff values for assessing 
the prognosis and progression of cancer are still lacking. 
Therefore, studies have been conducted to investigate the 
genes expressed by CTCs and correlate their expression with 
the clinicopathological features of cancers [78, 107–109]. 
Chen et al. [82] reported that the epithelial cell transform-
ing sequence 2 (ECT2) oncogene expressed by CTCs in 
peripheral blood had higher sensitivity than the serum CEA 
level; it was highly expressed in patients with advanced-
stage CRC. Furthermore, the ECT2 gene expressed on the 
surface of CTCs can be used as a marker for the prognosis of 
patients with CRC [89]. Another study including 70 patients 
with CRC showed that the expression level of MAGEA1-6 
or hTERT genes in CTCs was significantly higher in patients 
with T3 and T4 stages than in patients with T1 and T2 stages 
[90]. Ning et al. [110] showed that the expression of the 
Akt-2 gene in CTCs of patients with CRC predicted shorter 
PFS and OS; also, the median survival time of patients with 
CTC​Akt−2+ was significantly shorter than that of patients 
with CTC​Akt−2−. Nowadays, the expression of CK20 [92], 
CEACAM5 [93], COX-2 [94], and LGR-5 [95] has also been 

used to monitor the progression and prognosis in patients 
with CRC.

Treatment monitoring  CRC is overly aggressive and prone 
to metastasis. Hence, the selection of the most appropriate 
treatment and the best time for patients is highly challenging. 
Therefore, reliable biomarkers for accurate monitoring of the 
treatment effect are urgently required. Additionally, CTC 
subclones can reflect the heterogeneity of cancers in real 
time and show their different abilities to evade treatment; 
thus, CTCs can be monitored dynamically to understand the 
response to treatment in time [98]. Shi et al. [97] proposed 
that the number of CTCs in the peripheral blood of patients 
with liver metastases from CRC significantly reduced 7 
and 30 days after cryotherapy. Moreover, the expression of 
serum CEA, EpCAM, CK18, and CK19 gradually decreased 
with time. Delgado-Urena et al. detected the CTCs of 77 
patients with mCRC treated with FOLFOX and bevaci-
zumab before treatment and 12 and 24 weeks after treat-
ment. The patients were divided into good response group 
(complete response group, partial response group, or stable 
group) and poor response group. The final results revealed 
that the positive rates of CTCs and CTC​VEGFR+ decreased in 
the group with good treatment response [98], suggesting that 
the dynamic detection of CTCs could monitor the treatment 
in a timely manner, allowing physicians to understand the 
treatment response and change the treatment regimen early. 
In another study of 35 patients with gastrointestinal cancer, 
Yue et al. [99] reported that CTCs with high expression of 
PD-L1 could be used as a biomarker to predict the PD-1/
PD-L1 treatment response. In yet another study of preopera-
tive neoadjuvant therapy for CRC, Troncarelli Flores et al. 
reported that the baseline CTCs TYMS+/ RAD23B+ were asso-
ciated with poor reactions of neoadjuvant chemoradiation 
(NCRT) therapy. CTCs TYMS−/RAD23B− were detected in all 
PCR patients after neoadjuvant therapy, 83.5% of partial 
response (PR) patients, but not in no response (NR) patients; 
in comparison, CTCsTyms+/RAD23B+ were not detected in PCR 
or PR patients but could be detected in 83.5% of NR patients 
[100].

Culture of CTCs in vitro  The establishment of permanent 
CTC cell lines in vitro has been one of the challenging stud-
ies in recent times. Indeed, CTC cell lines can be used to 
identify proteins and pathways associated with cancer cell 
stemness and metastasis, as well as to test the sensitivity 
of cancers to anti-cancer drugs [111]. Cayrefourcq et al. 
[112] successfully cultivated a CTC cell line isolated from 
a patient with colon cancer named CTC-MCC-41, which 
had been cultured for more than 1 year by the time the study 
was published. The cell line has been characterized at the 
genome, transcriptome, proteome, and secretome levels. 
More importantly, functional studies revealed that the CTC 
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cell line could quickly form tumors after transplantation in 
immunodeficient mice. Pantel et al. performed a follow-up 
study on the CTC-MCC-41 cell line and found that CTC-
MCC-41 had the following characteristics besides the abil-
ity to expand in vitro for more than 2 years: (A) stem cell-
like epithelial characteristics, (B) epithelial/mesenchymal 
phenotype, (C) potential for rapid initiation of angiogenesis 
in vitro, and (D) bone-like characteristics. Moreover, the cell 
line had characteristics similar to those of primary tumors 
and metastatic lymph nodes in patients with CRC [113]. De 
et al. [114] proposed a scheme for the 3D culture of CTCs 
in vitro, which used a polycaprolactone scaffold to deposit 
an extracellular matrix on it. The study also confirmed the 
existence of a CTC mixed phenotype, thus helping to bet-
ter understand the relationship between CTC phenotype and 
CRC prognosis. Grillet et al. [115] conducted downstream 
experiments after culturing CTCs of patients with CRC 
in vitro. The results showed that the patients who success-
fully established CTC-MCC-411 died soon after receiving 
chemotherapy with the FOLFIRI regimen. The drug sensi-
tivity test also revealed that the cell line established in vitro 
was resistant to the FOLFIRI regimen. Notably, the results 
revealed significant overexpression of genes associated with 
xenograft resistance in their cultured CTC lines. Cytotoxic-
ity assays further confirmed the potential use of the model 
in predicting drug response in patients with CRC.

CTC single‑cell analysis  TC single-cell analysis. Tumor cells 
have a high degree of heterogeneity at the single-cell level, 
which may be one of the factors responsible for increas- 
ing the incidence of cancer recurrence and metastasis [33, 
116]. Single-cell technology can help unravel the heteroge-
neity of tumors. Therefore, an in-depth analysis of a single 
CTC allows the real-time monitoring of somatic mutation 
profiles and genomic expression of drug-resistant clones in 
patients with cancer, contributing to a deeper understand- 
ing of the treatment of human cancers such as CRC [33, 
117]. Comparing a single CTC with primary and metastatic 
tumors may help identify the clones that cause metastasis 
and reveal the molecular biomarkers of metastasis [118]. 
Single-cell RNA sequencing (scRNA-seq) can be used as 
a powerful tool to discover new tumor progression mark-
ers in CTCs. Recent studies have reported the genomic and 
transcriptomic analyses of single CTC using next-generation 
sequencers [118, 119]. Abouleila et al. [6] reported a method 
of combining single-cell mass spectrometry with microflu-
idic cell enrichment and obtained a nontargeted molecular 
map of a single CTC from the peripheral blood of patients 
with gastrointestinal cancer. This revealed the differences in 
metabonomic characteristics among CTCs from different 
tumor populations. Pei et al. [120] reported an integrated 
microfluidic device for the phenotypic analysis of a single 
CTC. This device can allow the automatic isolation of CTCs 

from whole blood after sequential single-cell phenotyping 
with high-purity (92% ± 3%) cell sorting and high-throughput 
processing capacity (5 mL/3 h). This study reported the col-
lection of a single CTC from xenografted mice and patients 
with different stages of CRC and obtained the correlations of 
CTC characteristics with clinical tumor stage and treatment 
response. Single-cell transcriptomics can detect the expres-
sion levels of a single cell in a given population, and hence 
the interest in this area of research has increased [121]. Bian 
et al. [122] established a platform called the single-cell triple 
omics sequencing (SCTrio-seq) technique. This platform is 
capable of detecting gene mutations, transcription, and meth-
ylation simultaneously at the single-cell level. Ten patients 
with CRC underwent SCTrio-seq. The results provided 
insight into tumor evolution and linked DNA methylation to 
genetic genealogy. Additionally, the results confirmed that 
DNA methylation levels were consistent within the gene-
alogy but might differ significantly between clones [122]. 
Using single-cell analysis techniques, it is now possible to 
deconstruct cancers into their constituent cell types and thus 
enable the understanding of the biological characteristics 
of cancer. The analysis of CTC gene expression patterns of 
CRC at the single-cell level can help find key information for 
evaluating prognostic biomarkers and developing precise and 
personalized cancer therapies.

ctDNA analysis in CRC​

Plasma ctDNA refers to DNA fragments of tumor origin and 
is a subset of plasma cell–free DNA (cfDNA). The cfDNA 
also includes DNA from other sources in the circulation, 
mainly germline DNA due to hematopoietic cell death [123, 
124]. Hence, figuring out the origin of cfDNA may be a 
challenge. Besides, the shedding of ctDNA is extremely var-
ied; it may be as little as 0.01%, or it might account for the 
majority of total plasma cfDNA [125]. Studies demonstrated 
that the amount of ctDNA was primarily associated with 
tumor burden and tumor type [126]. From a heterogeneous 
viewpoint, ctDNA offers a more comprehensive overview 
of the range of mutations present in a patient’s tumor [127]. 
Originally, the real-time quantitative PCR (qPCR) detection 
system was used to identify ctDNA-specific mutations [128]. 
However, limited by its sensitivity and specificity, PCR can 
only be performed in patients with advanced cancer having 
high ctDNA levels [129]. In contrast, digital PCR (dPCR) 
has a higher sensitivity in detecting and quantifying ctDNA 
and is currently widely used in bodily fluid biomarker stud-
ies [128, 130]. Still, one limitation of PCR-based techniques 
is that they cannot be used to investigate a wide range and 
diverse types of genomic alterations [131]. With the devel-
opment of RNA sequencing technology, next-generation 
sequencing (NGS) has overcome these shortcomings and 
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can detect copy number alterations, mutations, and other 
chromosomal rearrangements, including inversions, translo-
cations, and reversals [132]. The recent growth in the studies  
demonstrates the value of ctDNA in the early diagnosis [133, 
134], prognosis [135, 136], and response to treatment [137, 
138] in CRC.

Compared with ctDNA, which is extensively fragmented 
and compounded by significant background, CTCs are intact 
cells providing more genetic information about the origin of 
tumors and potentially allowing for more specific diagno-
sis and more precise treatment plans for patients with CRC 
[139].

Summary and future prospects

Thanks to the continuous advancements in diagnostic and 
treatment technologies, the prognosis of patients with CRC 
has improved remarkably in recent decades. Nonetheless, 
the early diagnosis, treatment monitoring, and prognostic 
evaluation of CRC still have some limitations; therefore, a 
large number of patients with CRC still die every year. At 
present, a variety of sensitive, high-throughput, and efficient 
CTC isolation platforms have been successfully established, 
which can be used to count CTCs in the peripheral blood 
of patients with CRC dynamically. Additionally, genes and 
proteins expressed by CTCs can be detected to evaluate the 
prognosis and recurrence of CRC. However, a uniform CTC 
cutoff value for clinical assessment of CRC progression and 
prognosis still lacks due to the differences in sampling, stor-
age time, and enrichment methods. The downstream analysis 
of CTCs in patients with CRC and the single-cell technology 
have also improved the understanding of tumor formation, 
development, metastasis, and heterogeneity, which is con-
ducive to the development of a personalized drug detection 
platform. Despite several CTC detection methods, the appli-
cation of CTCs in clinical practice is not yet widespread 
due to the lack of a standardized detection platform with 
uniform high sensitivity and specificity. Most of the studies 
are single-center studies with a small number of cases. This 
has eventually led to many studies with different results due 
to interindividual differences, such as pathogenic factors, 
tumor stage, ethnicity, and geographical factors, to name 
a few. Against this backdrop, an important research direc-
tion for the future is to include a large number of cases and 
conduct multicenter prospective studies. Besides the number 
of CTCs and expressed genes or proteins as the criteria for 
cancer diagnosis and prognosis, CTCs in combination with 
other indicators such as CA-199 or ctDNA are worth inves-
tigating because they can increase the accuracy of diagnostic 
and prognostic assessments [69, 140]. Tumor immunother-
apy has recently attracted much attention and is one of the 
hot spots in the field of tumor treatment. The expression of 

immune checkpoints on the surface of CTCs is also associ-
ated with the effect of immunotherapy. Therefore, the block-
ing of these checkpoints can be used as an immunotherapeu-
tic approach. Lian et al. successfully targeted PD-L1 and 
CD47 on the surface of CTCs, which eventually caused a 
significant inhibition of tumor growth and metastasis [141]. 
Although CTCs are not prevalently used and promoted in 
clinical practice, their role in tumor prognostic assessment 
cannot be ignored. Therefore, one of the future research 
directions should be to develop a CTC capture platform with 
higher efficiency, specificity, and sensitivity. Additionally, 
more comprehensive and in-depth studies of CTCs from a 
new perspective must be conducted to develop a more per-
sonalized and precise treatment plan for each cancer patient.
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