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Abstract
Development and progression of many kidney diseases are substantially influenced by aberrant protein acetylation modifica-
tions of gene expression crucial for kidney functions. Histone deacetylase (HDAC) expression alterations are detected from 
renal samples of patients and animal models of various kidney diseases, and the administrations of HDAC inhibitors display 
impressive renal protective effects in vitro and in vivo. However, when the expression alterations of multiple HDACs occur, 
not all the HDACs causally affect the disease onset or progression. Identification of a single HDAC as a disease-causing 
factor will allow subtype-targeted intervention with less side effect. HDAC3 is a unique HDAC with distinct structural and 
subcellular distribution features and co-repressor dependency. HDAC3 is required for kidney development and its aberrations 
actively participate in many pathological processes, such as cancer, cardiovascular diseases, diabetes, and neurodegenerative 
disorders, and contribute significantly to the pathogenesis of kidney diseases. This review will discuss the recent studies 
that investigate the critical roles of HDAC3 aberrations in kidney development, renal aging, renal cell carcinoma, renal 
fibrosis, chronic kidney disease, polycystic kidney disease, glomerular podocyte injury, and diabetic nephropathy. These 
studies reveal the distinct characters of HDAC3 aberrations that act on different molecules/signaling pathways under various 
renal pathological conditions, which might shed lights into the epigenetic mechanisms of renal diseases and the potentially 
therapeutic strategies.
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Introduction

Kidney performs important biophysiological functions of 
human body, including removing extra water from the blood 
(as urine), keeping the balance of ions through filtration, 
reabsorption, and secretion, and generating hormones that 
regulate the functions of extrarenal organs. Kidney diseases 
are emerging as serious health problems with increasing 
morbidities [1]. In addition to the original etiologies, devel-
opment and progression of many kidney diseases are sub-
stantially associated with epigenetic modifications, such as 
DNA methylation, protein/histone modification, or small 

interfering RNA interference, of gene expressions [2]. In 
particular, protein/histone acetylation alterations seemly play 
a mechanistic role in the onset or progression of kidney dis-
eases. Histone deacetylase (HDAC) alterations are detected 
from renal samples of clinical patients and experimental ani-
mals of various kidney disease models, and HDAC inhibitors 
exhibit impressive renoprotections in cell and animal studies 
[3, 4], suggesting that the increased HDAC expressions or 
activities potentiate or exacerbate the pathological processes 
that lead to kidney diseases.

Human HDACs include 18 members subdivided into 
four major classes, namely class I (1, 2, 3, 8), class II (4, 
5, 6, 7, 9, 10), class III HDACs (Sirt1–7), and class IV (11) 
HDACs, based on their homology to yeast HDACs, subcel-
lular localization, and enzymatic activities [5]. Class I, II, 
and IV HDACs require  Zn2 as cofactor and are sensitive to 
so-called pan- or respective class-selective HDAC inhibitors, 
whereas class III HDACs (Sirt1–7) are NAD (nicotinamide 
adenine dinucleotide)-dependent and irresponsive to the 
classic HDAC inhibitors [6]. HDACs can modify histone or 
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non-histone proteins and HDAC-incurred lysine deacetyla-
tion of histone cores around the gene promoter causes chro-
matin condense, blocks the access of transcription factors, 
and inhibits gene transcription [7, 8].

HDAC3 belongs to class I HDAC family and consists of 
428 amino acids (aa) with a highly conserved N-terminal 

deacetylase catalytic domain. Intriguingly, it contains a 
variable C terminus with no apparent similarity with other 
HDACs that is required for both deacetylase and transcrip-
tional repression activity [9, 10] (Fig. 1).

Unlike the other family members mainly appearing in 
cell nucleus, HDAC3 can be found in the nucleus, the cyto-
plasm, and at the plasma membrane [11, 12] and exists 
exclusively in multi-subunit complexes [13] often contain-
ing transcriptional repressor NCoR (nuclear receptor co-
repressor), SMRT (silencing mediator of retinoic and thyroid 
receptors) [14], or Ski [15], which separates it from other 
known HDACs and suggests that HDAC3 may have some 
unique properties that are not completely redundant with 
other HDACs [10, 14]. Moreover, a protein–protein inter-
action network analysis by STRING (https:// string- db. org) 
indicates that HDAC3 directly or indirectly interacts with a 
number of transcriptional regulatory proteins (Fig. 2), sug-
gesting that HDAC3 acts on multiple signaling pathways in 
a broad spectrum of cellular processes.

Fig. 1  Structural characters of class I HDACs

Fig. 2  A schematic of HDAC3-
protein interaction network 
analyzed by STRING. BFD4 
(bromodomain-containing 
protein 4), NFKB1 (NF-kappa-
B inhibitor alpha),CREBBP 
(CREB binding protein), 
polycomb protein EED, EP300 
(histone acetyltransferase p300), 
HDAC4, HIST1H4F (histone 
cluster 1 H4 family member 
f), histone acetyltransferase 
KAT2A, Myc proto-oncogene 
protein, NCOR1 (nuclear recep-
tor co-repressor 1), NCOR2, 
NR1D1 (nuclear receptor 
subfamily 1 group D member 
1), NFKB1 (NF-kappa-B p105), 
RELA (NF-kappa-B p65), 
PPARG (peroxisome prolifera-
tor-activated receptor gamma), 
histone-binding protein RBBP4, 
TBL1XR1 (F-box-like/WD 
repeat-containing protein recep-
tor 1), and YY1 (transcriptional 
repressor protein Yin Yang 1)
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HDAC3 is critical for mammalian embryonic develop-
ment and aging [16], and its aberrant activities potentially 
relate or directly lead to human diseases, including cancer 
[17, 18], epithelial-mesenchymal transition (EMT) [19], 
macrophage function/inflammation [20–22], type I and type 
II diabetes mellitus [23, 24], cardiovascular disease [25], 
bone [26–28], and different neurodegenerative disorders 
[29]. The evidences that HDAC3 aberrations contribute to 
other cellular processes and diseases are also rapidly emerg-
ing. HDAC3 is proposed as a drug target to treat patients 
with various diseases [13]. This review will discuss accu-
mulating studies that investigate the critical roles of HDAC3 
in the renal physiology and pathogenesis of kidney diseases 
(Fig. 3).

HDAC3 is required for kidney development

Kidney development is a sophisticated morphogenetic pro-
cess involving interaction between nephric duct and the sur-
rounding mesenchyme and formation of pronephros (E8 in 
mice), mesonephros (E9 in mice), and metanephros (E10.5 
in mice), which are tightly controlled by gene transcription 
regulations and epigenetic modifications [30]. Accumulating 
data have demonstrated that HDACs regulate fundamental 
biological processes, such as cell proliferation, differentia-
tion, and apoptosis during kidney development, likely via 
genomic and nongenomic effects [31]. However, little is 
known about the role that individual HDAC plays during 
the process.

Expressions of several class I (1–3) and class II (4, 7, and 
9) HDACs are developmentally regulated and HDAC1–3 
are highly expressed in nephron precursors, and in addition, 

HDAC3 is also localized to the glomerular podocytes [32]. 
Early studies have shown that germline global HDAC3 
knockout in mice is embryonically lethal by E9.5 due to a 
delay in cell cycle progression and developmental defects [8, 
33]. Cux1 (Cut Like Homeobox 1) is a transcription repres-
sor and a developmentally regulated protein, and capable of 
preventing binding of positively activing CCAAT factors 
to gene promoters to promote cell proliferation [34]. Dur-
ing kidney development, Cux1 is highly expressed in the 
nephrogenic region. Chromatin immunoprecipitation (ChIP) 
and promoter reporter analysis showed that Cux1 inhibited 
the transcription of p27kip1 by forming a transcriptional 
repressor complex with Grg4 (Groucho 4), HDAC1, and 
HDAC3 [35]. Protein p27kip1 is a critical cell cycling kinase 
inhibitor which binds to cyclinE/cdk2, blocking the G1/S 
transition step required for cell cycle progression. There-
fore, p27kip1 inhibition by HDAC3 will negatively affect the 
renal cell proliferation and kidney development.

Increased HDAC3 accelerates renal aging

Renal aging is a slow process manifesting as declined renal 
functions and increased susceptibility to various acute or 
chronic kidney diseases [36], and its development is greatly 
affected by epigenetic modifications of numerous gene 
expressions. It has become increasingly clear that protein/
histone acetylation plays a crucial role in aging and aging-
associated diseases [37, 38]. HDAC inhibitors beneficially 
regulate aging-related processes likely by targeting non-
histone proteins, activating pro-longevity proteins, and/or 
de-activating anti-longevity proteins [5, 39].

NM_026333 is a newly identified anti-aging gene (no 
gene name yet) and down-regulated in the kidneys of cou-
pling factor 6 (CF6) transgenic and high salt-fed mice, which 
had sustained intracellular acidosis due to reduced proton 
export through Na + -K + ATPase inhibition and displayed 
shortened lifespan and early senescence-associated pheno-
types, such as signs of hair greying and alopecia, weight 
loss, and/or reduced organ mass [40]. NM_026333 protein 
directly bound plasma membrane Na + -Ca2 + exchanger 1 
(NCX1) to suppress its reverse mode. Endogenous induction 
or exogenous supplementation of NM_026333 rescued CF6 
transgenic cells or CF6-treated human cells from aging by 
inhibiting the HDAC3-associated suppression of autophagy 
protein Atg7 and the impaired autophagy, supporting that 
HDAC3 dysregulation of autophagy promotes renal aging.

Moreover, several known anti-aging proteins, such as tel-
omerase, Klotho, and Nrf2, are also down-regulated in aging 
kidneys [41], and Klotho suppressions in fibrotic and CKD 
kidneys are mediated by HDAC3 aberration [42, 43]. Whether 
their suppressions in renal aging involve HDAC3-associated 
transcriptional inhibition are currently under investigation.

Fig. 3  HDAC3 regulates many physiopathological processes, includ-
ing embryonic development, aging, cancer, macrophage/inflamma-
tion, diabetes, cardiovascular, neurodegenerative, and bone disorders
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Aberrant HDAC3 induces renal cell 
carcinoma

It has been well established that HDACs play critical roles 
in renal cancer progression, since the expression changes 
in HDACs, especially the class I HDACs, or inappropriate 
recruitment of these enzymes has been observed in a num-
ber of human renal cancers [13, 17], and HDAC inhibitors 
have been shown to induce growth arrest, apoptosis, and 
differentiation in a number of kidney tumor cell lines as 
well as in mouse tumor models.

Overexpression of HDAC3 is correlated with poor prog-
nosis in various cancers [44]. Inhibition of HDAC3 by I-7ab 
induces the acetylation process of p53 and p21 expression 
that results in G1 phase arrest in triple-negative breast can-
cer [45], and inhibition of HDAC3 may lead to the enhance-
ment of apoptosis of human maxillary cancer [46], sug-
gesting that controlling of cancer cell growth and apoptosis 
might be the anti-cancer functions of HDAC3 inhibition.

Renal cell carcinoma (RCC), a cancerous disease arising 
from malignant epithelial cells in the kidneys, is responsible for 
about 90% of kidney cancers in adults and appears to arise from 
both genetic defects and environmental influences [47]. HDAC3 
is overexpressed in the human RCC tumor tissues [48]. A class I 
histone deacetylase inhibitor (HDACi) LBH589 displayed anti-
tumor effect on RCC cell lines partially by inhibiting HDAC3 
and inducing the degradation of Aurora A and B kinase, leading 
to G2-M phase arrest and tumor cell apoptosis [48].

BRM (Brahma) is a key subunit of SWI/SNF (switch/
sucrose non-fermenting) chromatin remodeling complex and 
an important tumor suppressor silenced in many tumor types 
[49–51]. BRM knockdown promoted RCC cell prolifera-
tion, migration, and invasion. HDAC3-selective inhibitor 
RGFP966 inhibited the tumor progression of clear cell RCC 
by restoring BRM expression in vivo and in vitro [52]. Thus, 
HDAC3 dysregulation of chromatin remodeling facilitates 
renal cancer progression.

Coactivator activator (CoAA) not only regulates steroid 
receptor-mediated transcription and alternative RNA splic-
ing but is also a potential tumor suppressor in RCC, which 
inhibits G1-S transition of human renal cells and suppresses 
anchorage-independent growth and xenograft tumor forma-
tion. The suppression occurs in part by down-regulating 
C-myc and causing accumulation of p27Kip1 protein. In this 
cellular setting, CoAA directly represses the proto-oncogene 
C-myc by recruiting HDAC3 protein and decreasing both the 
acetylation of histone H3 and the presence of RNA polymer-
ase II on the C-myc promoter [53].

The developments of renal cancer are complex and might 
be associated with aberrations of multiple HDACs. Several 
pan- or class-selective HDAC inhibitors, namely Vorinostat, 
Romidepsin, Belinostat, and Panobinostat, are approved for 
treatment of patients with hematological malignancies [54]. 

Moreover, Vorinostat (SAHA, a pan-HDAC inhibitor) [55] 
and Entinostat (a strong inhibitor of HDAC1 and HDAC3) 
[56] have been in combination therapy in phase I and II 
clinical trials for renal cell carcinoma patients. These stud-
ies set the stage for possible future application of HDAC3-
selective inhibitors for treating patients with renal cancers.

HDAC3 is a key epigenetic player of renal 
fibrosis

Renal fibrosis is a histological hallmark of renal aging and 
chronic kidney diseases and characterized by renal cell 
injury-incurred inflammatory macrophage infiltration, acti-
vation of TGF-β signaling, and subsequent myofibroblast 
trans-differentiation (MTD) with excessive extracellular 
matrix protein deposition in renal interstitium [57]. Previ-
ous studies have established that MTD and renal fibrosis 
are significantly affected by HDAC aberrations [2, 3]. Mice 
with HDAC3 knockout resist renal fibrosis induced by UUO 
(unilateral ureteral obstruction), suggesting that HDAC3 is 
a pro-fibrogenic factor [42]. HDAC3 among other class I 
HDAC members was preferentially up-regulated in renal 
tubular epithelial cells of mouse fibrotic kidneys incurred by 
UUO [42]. HDAC3 promoter contains a functional Smad3 
binding motif and its up-regulation in fibrotic kidney is pro-
moted by TGF-β/Smad signaling, since inhibitors of TGF-β 
receptor I SB431542 and Smad3 phosphorylation SIS3 
(specific inhibitor of SMAD3) block the fibrotic HDAC3 
up-regulation in both UUO kidney and TGF-β-treated renal 
epithelial cells. HDAC3 promotes renal fibrosis, at least in a 
significant part, by inhibiting the transcription of a kidney-
enriched anti-aging and anti-fibrotic protein Klotho, which 
is markedly suppressed in fibrotic kidney. The up-regulated 
HDAC3 forms a transcriptional repressive complex with 
NCoR and NF-κB that inducibly binds to Klotho promoter, 
resulting in Klotho transcriptional inhibition. Consistently, 
RGFP966, a selective HDAC3 inhibitor, relieves the Klotho 
suppression and Klotho restoration dependently allevi-
ates the renal fibrotic injury in UUO and aristolochic acid 
nephropathy [42]. Since renal fibrosis is an indispensible 
histopathological character of chronic kidney diseases, these 
observations have broad implications.

HDAC3 might also regulate macrophage functions during 
renal fibrogenesis. Renal fibrosis is featured by activation of 
TGF-β and the associated macrophage M2 polarization [58, 
59], which supposedly promote kidney repair and remodeling 
after renal injury, but these processes are dysregulated during 
renal fibrosis. TIMAP (TGF-β-inhibited membrane-associ-
ated protein) is originally identified from TGF-β-treated renal 
vascular endothelial cells [60]. Later, TIMAP is also found 
highly expressed in macrophages and mediates macrophage 
M2 polarization upon TGF-β stimulation [61]. TIMAP is a 
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subunit of myosin phosphatase that presumably regulates myo-
sin filament contraction and cell motility by dephosphorylating 
myosin light chain [62]. TIMAP is repressed in UUO kidney 
and specific HDAC3 inhibition can reverse the repression and 
inhibit macrophage M2 polarization and the associated phago-
cytic activities [61], suggesting that HDAC3 inhibition might 
improve renal fibrosis by targeting macrophage functions.

HDAC3 elevation promotes chronic kidney 
diseases (CKDs)

CKD is a slow process of gradual loss of kidney function 
over time incurred by a variety of different causes, including 
diabetes, hypertension, polycystic kidney disease, obstruc-
tive uropathy, glomerular nephrotic, and nephritic syn-
dromes such as focal segmental glomerulosclerosis, mem-
branous nephropathy, and lupus nephritis, and potentially 
leads to renal failure [63].

Renal protective proteins play essential roles in maintaining 
kidney homeostasis. PPARγ (peroxisome proliferation-acti-
vated receptor gamma) is a nuclear hormone transcriptional 
factor with eminent renal protective properties. PPARγ pro-
tects renal cells and kidney likely via beneficially regulating 
transcription of genes involved in insulin action, lipid/protein 
metabolisms, oxidative stress, and inflammation [64]. HDAC3 
regulation of CKD seemly involves PPARγ/Klotho pathway. 
Klotho is not only a kidney-enriched anti-aging protein and a 
PPARγ target but also a biomarker and proposed therapeutic 
target of CKD [65]. Klotho is markedly suppressed during CKD 
development and its levels inversely correlate with the severity 
and progression of CKD [66]. The lysine residues K240 and 
K265 on PPARγ are HDAC3-sensitive sites. Administration 
of a pan-HDAC inhibitor trichostatin A (TSA) and a HDAC3-
selective inhibitor RGFP966 extent similarly increases PPARγ 
acetylation and reverses Klotho suppression in adenine-induced 
CKD mouse kidney, resulting in improved CKD pathologies in 
wild-type, but not siRNA-mediated Klotho, knockdown mice 
[43]. Thus, targeting HDAC3/Klotho axis by HDAC3-selective 
inhibition might bring clinical benefits.

EMT contributes to the development of peritoneal fibrosis 
after long-term peritoneal dialysis in patients of end-stage CKD 
[67–69]. Administration of 1,25-dihydroxy vitamin D3 can 
reduce the EMT of cultured peritoneal mesothelial cells by down-
regulating HDAC3 and up-regulating vitamin D receptor (VDR) 
[70], suggesting a potential role of HDAC3 in this process.

Up‑regulated HDAC3 potentiates diabetic 
nephropathy

Diabetic nephropathy (DN) is a major cause of CKD. 
In high-fat diet (HFD) combined with low-dose strep-
tozotocin (STZ)-fed mice mimicking DN, HDAC3 is 

up-regulated in the mouse kidney accompanied by sup-
pression of miR-10a, which inhibits kidney diabetic 
alterations by targeting CREB1 (cAMP response ele-
ment binding protein 1) and its downstream extracellu-
lar matrix protein fibronectin (FN). Knockdown (KD) 
of HDAC3 by siRNA significantly increases miR-10a, 
resulting in decrease of CREB1 and FN expression in 
kidney of HFD/STZ mice, while HDAC3 overexpression 
mediated by lentivirus decreases miR-10a and induces 
diabetic alterations in naïve mice [71]. In another study 
of similar DN mouse model, Juglanin, a natural com-
pound extracted from crude polygonumaviculare, exhib-
its marked anti-DN effects via inhibiting NF-κB/HDAC3 
signaling accompanied by increased nephrin and podocin 
expression levels, and the associated inflammation and 
dyslipidemia [72]. These studies suggest that HDAC3 
aberrations likely worsen the development of DN through 
multiple signaling pathways.

HDAC3 aberration associates with polycystic 
kidney disease (PKD)

PKD is a kidney disease involving both genetic and epi-
genetic mechanisms [73]. The multiple cysts filled with 
fluid in the kidney dilate and impair renal function that 
might eventually lead to renal failure. HDAC3 is seemly 
involved in PKD development; however, its exact roles are 
not conclusive. P27Kip1 is known to be down-regulated by 
Cux1-associated HDAC3 activities during kidney devel-
opment [35]. One study treated Pkd1-targeted pregnant 
mice with TSA or vehicle beginning at E10.5 until E18.5. 
Newborn Pkd1 mutant mice receiving vehicle exhibited 
extensive collecting duct cysts, while the mice receiving 
TSA showed a significant reduction in cysts. The expres-
sion of p27Kip1 was up-regulated in TSA-treated Pkd1 
mice [74], suggesting that HDAC3 promotes the cyst for-
mation. On the other hand, Prothymosin α (ProT) is an 
important regulator of CKD and its overexpression induces 
PKD [75]. ProT is up-regulated in cyst-lining epithelial 
cells and the suppression of ProT is sufficient to reduce 
cyst formation [76]. ProT activation involves its interac-
tion with STAT3, a transcription factor normally associ-
ated with HDAC3 [77]. The interaction between ProT and 
STAT3 causes the deprivation of HDAC3 from STAT3 
[76], resulting in STAT3 acetylation and activation. This 
is a good example how HDAC3 is passively due to a com-
petitive mechanism involved in an important signal trans-
duction pathway. Notably, this study was performed with 
neither pharmacological nor genetic HDAC3 inhibition. 
Future studies are necessary to determine the exact role 
of HDAC3 in PKD.
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HDAC3 aberration mediates glomerular 
podocyte injury

Podocytes are integrated parts of glomeruli that maintain 
the glomerular structural integration and functionality [78]. 
HDAC3 aberration seems to cause glomerular podocyte 
injury by down-regulating microRNA-30 family members 
(miR-30a-30e), which are abundantly expressed in podo-
cytes and crucial for podocyte homeostasis [79]. Down-
regulations of miR-30s in podocytes are observed from rats 
treated with puromycin aminonucleoside and from patients 
with focal segmental glomerulosclerosis (FSGS) that causes 
podocyte foot process effacement and proteinuria, like via 
calcium/calcineurin signaling, in the animal model [80]. 
Excessive and persistent TGF-β elevations after kidney 
injury are deleterious for podocytes [81]. HDAC3 is up-
regulated in cultured podocytes upon TGF-β stimulation and 
assists TGF-β-incurred suppression of miR-30s. TSA and 
HDAC3-selective inhibitor RGFP966 significantly alleviates 
the miR-30d suppression and reduces podocyte injury [82]. 
Thus, HDAC3 inhibition of miR-30s likely contributes to 
podocyte injury-associated renal diseases.

Conclusions

We have discussed the studies demonstrating HDAC3 as an 
important epigenetic regulator in kidney development, renal 
aging, renal cell carcinoma, renal fibrosis, CKD, diabetic 
nephropathy, PKD, and glomerular podocyte injury. These 
studies reveal the distinct characters of HDAC3 aberrations 
that not only act on different molecules/signaling pathways 
under various pathological conditions (Table 1) but also 
raise many important questions. For example, in addition 
to renal tubular epithelial cells, what are the other cell types 

in which HDAC3 is aberrantly up-regulated and exerts its 
adverse functions? TGF-β seems to be one upstream factor 
that up-regulates HDAC3 in fibrotic mouse kidney [42, 43, 
61, 82]: but under different renal pathological conditions, 
what are the other common or specific upstream initiators 
that lead to the HDAC3 aberrations? What are the co-repres-
sors or co-regulators that assist HDAC3-sssociated gene 
transcriptional inhibition? And how does HDAC3 achieve 
its target selectivity and specificity? These intriguing ques-
tions await future studies to answer.

In addition, kidney diseases are often accompanied by 
altered expressions of multiple HDACs. Under any circum-
stance, the results from pan- or class-selective HDAC inhibi-
tors should be validated by genetic gene knockout approach 
to identify the causal HDAC subtype, as HDAC inhibitors 
tend to have non-enzymatic or off-target effects. Identifica-
tion of a single HDAC subtype as a key causal HDAC criti-
cally involved in a particular renal disease setting will allow 
HDAC subtype-targeted therapeutic design and avoid the 
side effects associated with pan- or class-HDAC inhibitors. 
RGFP966, reportedly inhibiting HDAC3 with  IC50 value of 
80 nM while having no effective inhibition on other HDACs 
up to 15 μM [83], is potent and highly selective for HDAC3, 
but not in clinical uses. Lately, examination of HDAC3 inhi-
bition as potential therapeutic targets and development of 
effective HDAC3 inhibitors have received increasing atten-
tions [84, 85]. Future exploration of the precise mechanisms 
of HDAC3 aberrations in disease pathogenesis and the effec-
tive HDAC3-selective inhibitors with tolerable side effects 
might benefit patients with various diseases of kidney or 
extrarenal organs.
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Table 1  HDAC3 aberrations 
and kidney diseases

Animals/cells HDAC inhibitors Associated factors Targets References

Kidney development - Cux1, Grg4 p27Kip1 [35]
Renal aging - NM_026333 Atg7 [40]
RCC/xenograft LBH589 - Aurora A/B [48]
RCC cells RGFP966 - BRM [52]
RCC - CoAA C-myc [53]
UUO/renal fibrosis RGFP966 TGF-β/Smad Klotho [42]
UUO/macrophage RGFP966 TGF-β/Smad TIMAP [61]
CKD TSA/RGFP966 PPARγ Klotho [43]
DN HDAC3KD miR-10a CREB1 [71]
DN Juglanin NF-κB Nephrin [72]
PKD TSA Cux1 p27Kip1 [74]
Cyst epithelia cell - ProT STAT3 [76]
Podocyte TSA/RGFP966 TGF-β/Smad miR-30 s [82]
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