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Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is
known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, andmood disorders, resulting in a reduced
quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves
quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal
abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation
therapy. Amajor association is suggested to exist between reproductive longevity and the DNA damage pathway response genes.
DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA
occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and
tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3)
pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an
important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian
reserve in a POImouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing
new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and
DNA damage and repair pathways and to discuss the stem cell–based therapies as potential therapeutic options for this gyneco-
logic pathology.
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Mesenchymal stem cells

Ovarian insufficiency and menopause

Menopause is a clinically defined condition determined retro-
spectively after a 12-month permanent cessation of menstru-
ation without other reasons for amenorrhea such as pregnancy,

hormonal therapy, or other medical conditions [1]. Most
women go through menopause between the ages of 49 and
52 years. Worldwide, a typical woman experiences meno-
pause at an average age of 50.5 years, although differences
exist between races and geographic areas [2]. Approximately
5% of women experience menopause between the ages of 40
and 45 years, and approximately 1%women enter menopause
before the age of 40 years [3, 4]. This clinical syndrome de-
fined by loss of ovarian function under the age of 40 is called
premature ovarian insufficiency (POI), formerly referred to as
“premature menopause” or “premature ovarian failure
(POF).” About 1 in 1000 women develops POI under the
age of 30, sometimes as early as the teenage years.

Menopause reflects a decline in follicular function. As es-
trogen decreases with great variability, women may experi-
ence the various signs and symptoms during the months or
years leading up to menopause or after menopause such as
irregular menstrual periods, hot flashes, night sweats, sleep
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disruption, and mood changes. In the postmenopausal state,
women sometime experience vaginal dryness, vulvovaginal
atrophy, lower urinary tract symptoms, thinning hair, and
dry skin [5]. Among these signs and symptoms, loss of men-
struation is the first or only symptom of POI, which can be
preceded by irregular menstrual cycles.

In addition, POI patients develop different health risks com-
pared to women undergoing natural menopause because they
are exposed to a longer hypoestrogenic state. Given that POI
occurs during childbearing ages, one of the most severe out-
comes associatedwith POI is severely reduced fertility with low
birth rates [6–8]. Women with POI also have a decreased life
expectancy, largely due to cardiovascular morbidity and mor-
tality [9–12]. Because POI leads to estrogen deficiency, pa-
tients have a higher risk of osteoporosis and bone fractures,
which is known to result in worsening quality of life later in
life [9, 13–18].Womenwho undergo “surgical menopause” to
remove both ovaries due to benign (adnexal masses and risk
reducing surgery) or malignant (endometrial cancer and ovar-
ian cancer) diseases undergo abrupt POI, if not given hormone
replacement therapy, with subsequent cognitive decline as a
result of Alzheimer’s disease [19–21]. Often unexpected di-
agnosis of POI leads to psychological confusion in young
women, resulting in higher rates of depression compared to
their healthy controls due to reduced self-esteem and social
anxiety [22].

Genetic, autoimmune, and chemo/radiation
causes

The etiology of POI is known to be related to chromosomeX–
associated abnormalities, single genetic mutations, autoim-
mune factors, and iatrogenic factors, but the cause of many
cases goes unidentified [7]. Genetic factors are major determi-
nants of menopausal age in the general population and have
been associated with approximately 7% of POI cases [23–25].
Chromosomal abnormalities causally related to POI are fragile
X chromosome syndrome (FXS) [26–28] and Turner syn-
drome [29]. FXS leads to the most common cause of inherited
intellectual disability, caused by a loss-of-functionmutation in
the fragile X mental retardation 1 (FMR1) gene located on the
X-chromosome, locus Xq27.3. Turner syndrome is a condi-
tion of partial or complete absence of the X chromosome, such
as 45XO or 45X/46XX mosaicism in females. Notable X-
linked genetic mutations associated with POI involve growth
differentiation factor-9 (GDF-9) and bone morphogenetic
protein-15 (BMP-15) [30, 31], whereas autosomal abnormal-
ities were found in forkhead box l2 (FOXL2) [32], follicle-
stimulating hormone receptor (FSHR) [33], stromal antigen
3 (STAG3) [34], x-Ray repair cross complementing 2
(XRCC2) [35], and minichromosome maintenance 8 homol-
ogous recombination repair factor (MCM8) [36] genes.

Although the cause of POI has not been clearly identified,
about 10% of women with POI have a family history of the
condition [37].

About 20% of women with POI have a previous diagnosis
of an autoimmune disease affecting a variety of different or-
gans, including the heart, kidney, thyroid, pancreas, and the
gastrointestinal tract. The autoimmune etiologies for POI are
divided into two groups: endocrine and non-endocrine disor-
ders [38–40]. Endocrine diseases include Addison’s disease,
Hashimoto’s thyroiditis, hypophysitis, and diabetes mellitus
type 1, while non-endocrine diseases include chronic candidi-
asis, rheumatoid arthritis, idiopathic thrombocytopenic purpu-
ra, autoimmune hemolytic anemia, pernicious anemia, celiac
sprue, alopecia vitiligo, systemic lupus erythematosus,
Sjörgren’s syndrome, chronic active hepatitis, primary biliary
cirrhosis, and autoimmune polyendocrine syndromes I and II
[41, 42]. Autoimmune disease-triggered POI is mediated
through an antibody production against ovarian tissue that
harms developing follicles in the ovaries and causes ovarian
dysfunction [43].

Additional factors responsible for the development of
POI include chemotherapy and radiation. Chemotherapy
and radiotherapy cause POI by impairing follicle matura-
tion or loss of primordial follicles directly or indirectly [44].
In chemotherapy, alkylating agents such as cyclophospha-
mide and anthracycline are most well known to cause ovar-
ian dysfunction and POI [45]. The use of new targeted ther-
apies, such as bevacizumab and tyrosine kinase inhibitors
(imatinib, pazopanib), may also be associated with an in-
creased risk of POI [46, 47]. Vascular endothelial growth
factor A (VEGFA) is believed to play an important role in
regulating ovarian angiogenesis [48], and the use of anti-
angiogenesis drugs such as bevacizumab increases the risk
of POI by inhibiting follicle formation and oocyte matura-
tion [49]. Women receiving whole pelvic or spinal radiation
are also at increased risk for developing acute ovarian fail-
ure [50, 51]. In particular, age, the distance between the
irradiated site and the ovaries, the total dose, and the num-
ber of fractionation are important factors that determine the
risk of POI [9, 52]. Cranial radiation may cause
hypothalamic-pituitary disturbance resulting in amenorrhea
[53].

Premature ovarian insufficiencymanagement

POI is a challenging diagnosis that is associated with several
emotional and physical consequences (e.g., osteoporosis and
cardiovascular events). At the time of diagnosis, patients may
experience moderate to severe emotional distress due to the
unexpected nature and the health implications associated with
POI [54]. It is the physician’s role to deliver the news in a
caring manner and provide patients with the support and

638 J Mol Med (2021) 99:637–650



resources available. An early and timely diagnosis of POI
is essential for both treatment and prevention of long-term
complications of the hypoestrogenic state [6, 16]. Most
patients with POI present with irregular menstrual cycles
rather than amenorrhea, contributing to the delay in the
diagnosis. Given the varied presentation in menstrual ir-
regularities, it is prudent to consider POI in patients with
abnormal uterine bleeding. In addition, the levels of es-
trogen, FSH, and ovarian ultrasound findings may be used
to confirm the diagnosis [55]. Recent findings suggest
that anti-Müllerian hormone (AMH) is the best biomarker
of ovarian reserve currently available [56]. Its level in
circulation is significantly correlated with the number of
primordial follicles in healthy women [57].

After the diagnosis is confirmed, multidisciplinary ap-
proaches are pivotal in dealing with POI patients. Future fertil-
ity concerns and postmenopausal symptoms need to be ad-
dressed at the time of the diagnosis. Such concerns shape future
treatment plans for patients. For example, assisted reproductive
techniques like in vitro fertilization (IVF), cryopreservation,
follicle retrieval, and oocyte or embryo donation should be
discussed with patients who have future reproductive plans.
However, while the fertility strategies are important, the focus
on this paper is the management of the non-fertility issues as-
sociated with POI and the use of hormone replacement therapy
(HRT). Such non-fertility issues include vasomotor instability,
sexual dysfunction, and higher long-term risk of cardiovascular
diseases and osteoporosis [58].

Three HRT agents are commonly used and include ethinyl
estradiol, conjugated equine estrogen, and estradiol. Estradiol
is recommended for menopausal women because of fewer
side effects compared to ethinyl estradiol and conjugated
equine estrogen. All women with primary ovarian insufficien-
cy should be offered HRT unless there are contraindications to
HRT or they refuse HRT due to informed/shared decisions
[59]. However, in young women with an intact uterus, com-
bined hormonal therapy, including progesterone, is recom-
mended to prevent endometrial hyperplasia and carcinoma
[6].

Animal models of premature ovarian
insufficiency

The current knowledge of POI pathophysiology is based on
studies in animal models. A common murine model of POI
uses various anticancer drugs, including cyclophosphamide,
busulfan, doxorubicin, gemcitabine, and cisplatin [60–64].
Strong evidence demonstrates that exposure to these antican-
cer agents leads to follicular atresia and apoptosis of granulosa
cells [65, 66]. In addition, mice with exposure to high concen-
trations of galactose were used as a model for POI due to
galactose-triggered toxicity causing pituitary dysfunction,

resulting in a persistent high levels of follicle stimulation hor-
mone (FSH) and low levels of estradiol (E2) [67]. Another
murine model utilizes thymectomy to trigger POI by causing
autoimmune oophoritis that progresses to acute oocyte loss
with massive infiltration of mononuclear cells [68].
Additional POI models have been established by knockdown
of genes involved in primordial germ cell migration and pro-
liferation, including G protein-coupled receptor 3 (GPR3),
basonuclin 1 (BNC1), C2HC-type zinc finger 3 (NANOS3)
[69–71], and knockdown ofFMR1 [72] involved in cell death.
An additional group of genes comprised of oocyte-specific
transcription factors such as folliculogenesis-specific basic he-
lix-loop-helix (FIGLA) [73], oocyte-specific TGF-beta family
such as GDF9 [74], and the transcription factors associated
with follicular development such asWilms tumor 1 (WT1) and
Forkhead box protein L2 (FOXL2) [75, 76]. Finally, knock-
down of genes involved in follicular development and their
receptors such as follicle stimulation hormone receptor
(FSHR) [77] and AMH [78] have been used to establish the
POI in an in vivomodel. Different models of POI are summa-
rized in Table 1.

Cell death

In mammalian females, the formation of primordial follicles,
comprised of oocytes surrounded by granulosa cells, is com-
pleted prenatally, and the number decreases with aging [79].
Most of primordial follicles remain dormant after birth, but
some initiate meiosis through reproductive age, as part of
initial recruitment. The primordial follicles that have begun
meiosis grow into primary and secondary follicles, undergo
cyclic recruitment, and finally ovulate by the appropriate stim-
ulation of gonadotropins [80]. In the absence of gonadotropin
stimulation, the follicles undergo atresia and apoptotic cell
death [81].

Apoptosis is closely associated with POI, and it is be-
lieved to be the major mechanism of cell death associated
with oocyte loss in the process of maturation from primor-
dial to antral follicles, or secondary due to chemothera-
peutic treatments [82]. Trends of follicles in POI patients
cannot be ethically studied. Thus, the effects of chemo-
therapy on ovarian follicles have only been studied in
gene knockout mouse and human ovarian xenograft
models [62, 83–85]. In human ovarian xenograft models,
cyclophosphamide directly damages resting follicles,
resulting in a reduced number of primordial follicles
[84]. This phenomenon induces significant apoptosis of
granulosa cells, which is the cellular basis of ovarian fol-
licular atresia [86, 87], as it leads to reduced levels of sex
hormones secreted by non-resting follicular granulosa
cells [88].
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In addition to apoptosis, inhibition of autophagy has
been shown to be involved in follicular loss. Germ cell–
specific knockout of the autophagy-inducing gene (Atg7)
leads to reduced fertility due to severe ovarian follicular
loss in female mice. Germ cell-specific Atg7 knockout
causes excessive germ cell loss at the neonatal transition
period [89].

Cell-programmed necrosis (necroptosis) is a programmed
cell death pathway that exhibits necrotic morphology and is
executed by a defined cell signaling cascade that shares some
key important members with apoptosis [90–93]. Necrosis and
necroptosis have been shown to be the molecular mechanism
of germ cell depletion in aging ovaries, but their role in POI
has not been studied. In addition to apoptosis and autophagy,

necrosis and necroptosis are involved in germ cell depletion
from the mammalian ovarian cohort [94]. Oxidative stress and
cytokines induce necrosis and necroptosis in the mammalian
oocyte. Also, high levels of cytokines and oxidative stress
induce necrosis and necroptosis in granulosa cells, resulting
in follicular atresia. In granulosa cells, necrosis, as well as
apoptosis, increases with the progression of follicular atresia
[95]. Dehydroepiandrosterone (DHEA), reported to improve
oocyte quality and pregnancy rates in patients with diminished
ovarian reserve [96, 97], can attenuate starvation-induced up-
regulation of receptor interacting protein kinase 1 (RIPK1)
and RIPK3 that transmit necroptosis signaling in human gran-
ulosa cells without the induction of mitochondrial reactive
oxygen species (ROS) production [98]. The necrostatin1

Table 1 POI in vivo models

Animal Background Regimen Assessment Reference
Chemotherapy Period Route

Mouse C57BL/6 Busulfan 12 mg/kg,
cyclophosphamide 200
mg/kg

Single dose IV Number of immature follicles in the ovary [60]

Mouse C57BL/6 Busulfan 12 mg/kg,
cyclophosphamide 120
mg/kg

Daily, 2
weeks

IP Number of zygotes retrieved and embryo
development rate to blastocyst of zygotes

[61]

Mouse C57BL/6 Cisplatin (2 mg/kg) Daily, 10
days

IP [61]

Mouse ICR Cisplatin (2.0 mg/kg) Daily, 15
days

IP Number of immature follicles in the ovary [63]

Mouse ICR Doxorubicin (7.5 mg/kg) Single dose IP Ovulation rate [64]

Rat Sprague-Dawley Gemcitabine (200 mg/kg) Single dose IP Number of blastocysts in the uterus [65]

Rat Sprague-Dawley Cisplatin (50 mg/kg) Single dose IP [65]

Rat Sprague-Dawley Cyclophosphamide (200
mg/kg)

Single dose IP [65]

Pituitary dysfunction Period Route

Rat Sprague-Dawley Food pellet with 35%
galactose

Every day Food pellet Number of oocytes in the oviduct [67]

Surgery

Mouse C57BL/6 Thymectomy Vaginal opening day and continuous diestrus
cycle

[68]

Gene knockdown

Mouse Gpr3-/- GPR3 Number of immature follicles in the ovary [69]

Mouse Bnc1tr/tr BNC1 Measuring the ovary weight relative to body
weight and ovary size

[70]

Mouse Nanos3Neo/Neo NANOS3 Number of pups [71]

Mouse Fmr1-/- FMR1 Number of primordial germ cells [72]

Mouse Figαtm/tm FIGLA Number of growing follicles [73]

Mouse Gdf9-/- GDF9 Number of live births, number of growing
follicles

[74]

Mouse Foxl2-/- WT1 Total number of oocytes [75]

Mouse Wt1+/R394W FOXL2 Ratio of pregnancy, the ovulation rate [76]

Mouse Fshr-/- FSHR Total number of follicles and the number of
antral follicles

[77]

Mouse Amh-/- AMH Number of follicles [78]

IV tail vein injection, IP intraperitoneal injection
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(NEC-1) inhibits RIPK1 in human granulosa cells affecting
RIPK1 kinase activity [99]. Necrosulfonamide (NSA) inhibits
mixed lineage kinase domain-like protein (MLKL) and pre-
vents necroptosis in primary cultured human granulosa cells
[100]. These necroptosis inhibitors have been suggested to
play a role in protecting granulosa cells, resulting in preven-
tion of germ cell depletion, and may be useful in the treatment
of POI.

DNA damage and repair

No consistently modified gene variants exist across the POI
cohort due to the small sample size of POI patients and their
ethnic heterogeneity. Interestingly, genome-wide associa-
tion studies (GWAS) and array-based comparative genomic
hybridization (CGH) have revealed genes that are potential-
ly associated with POI and have proposed relevant candi-
dates [101]. These techniques revealed a large number of
genetic mutations in genes involved in DNA damage and
repair, homologous recombination (HR), and meiosis.
These genes include stromal antigen 3 (STAG3) ,
synaptonemal complex central element 1 (SYCE1), scaf-
folding protein involved in DNA repair (SPIDR), protea-
some 26S subuni t ATPase 3- in teract ing prote in
(PSMC3IP), ATP-dependent DNA helicase homolog
(HFM1), mutS homolog (MSH) 4, MSH5, MCM8, MCM9,
cockayne syndrome B-piggyBac 3 (CSB-PGBD3) ,
nucleoporin-107 (NUP107), and breast cancer susceptibil-
ity genes (BRCA1 and BRCA2) [102]. In addition, a meta-
analysis of 53 GWASs within 70,000 women identified 44
loci associated with POI [103]. Interestingly, two-thirds of
harbored genes are involved in the DNA damage and repair
pathway, including exonuclease 1 (EXO1), helicase, POLQ
Like (HELQ), MCM8, MSH5, Abraxas 1, BRCA1 A
Complex Subunit (FAM175A), fanconi anemia complemen-
tation group I (FANCI), tousled like kinase 1 (TLK1), DNA
polymerase gamma, catalytic subunit (POLG), and BRCA1.
A major association between reproductive longevity and
the DNA damage pathway response genes has been
suggested.

While many types of DNA damage exist, double-strand
breaks (DSBs) are considered to be the most severe form
[104]. Endogenous and exogenous factors trigger forma-
tion of DNA DSBs in primordial follicles. DNA damage
accumulates in primitive follicles due to changes in cellular
metabolism and elevated oxidative stress as part of ovarian
aging. In the process of oxidative respiration in the primor-
dial follicles, a small amount of oxygen is first converted to
superoxide in the mitochondria and then to hydroxyl radi-
cals. These hydroxyl radicals cause DNA single-strand
breaks, which can cause DSBs and loss of primordial fol-
licles if DSBs occur in multiple adjacent lesions [105].

Exogenous factors that cause DSBs include X-rays, chemo-
therapy, and environmental toxins [106]. Cisplatin, cyclo-
phosphamide, and doxorubicin induce DNA DSBs in pri-
mordial follicles in human ovarian xenograft models and
in vitro, causing apoptotic oocyte death associated with the
activation of ataxia telangiectasia mutated (ATM) in most
cases [66, 85, 107, 108]. Gamma rays and X-ray-generated
photons form free radical clusters along their path through
the body, which can directly damage DNA duplexes and
cause DSBs [109].

Signaling pathways involved in the loss
of the ovarian reserve

The phospha t a se and t ens in homolog (PTEN) /
phosphoinositide 3-kinase (PI3-K)/protein kinase B
(AKT)/forkhead transcription factor 3 (FOXO3) signaling
pathway plays an important role in the recruitment from
oocytes of primary and further developed follicles.
FOXO3a-deficient mice develop initially normal primordi-
al follicles, which later undergo spontaneous global activa-
tion, leading to premature loss of all oocytes [110, 111].
FOXO3a suppresses development of the oocyte, granulo-
sa cells, and thecal cells in the follicle at early stages
[112]. Downregulation of FOXO3a fails to rescue the ap-
optotic death of granulosa cells, resulting in oocyte loss
[113]. Oocyte-specific deletion of PTEN causes global
primordial follicle activation, similar to FOXO3a-knock-
out mice, resulting in POI [114]. Oocyte-specific deletion
of PTEN activates phosphatidylinositol-dependent kinase
1 (PDK1) through PI3K-induced conversion of secondary
messengers, resulting in AKT activation [110]. AKT acti-
vation causes hyperphosphorylation of FOXO3a, leading
to activation of primordial follicles. Therefore, PTEN
downregulation may lead to follicular activation and ex-
cessive primordial follicle atresia. Furthermore, the
PTEN/PI3K/AKT/FOXO3 pathway has been shown to
be responsible for chemotherapy-induced POI [63].

The Hippo signaling pathway has been shown to specif-
ically inhibit activation of primordial follicles. Fragmenting
ovarian cortex increases actin polymerization and disrupts
Hippo signaling, causing [115] increased nuclear localiza-
tion of Hippo signaling effector and yes-associated protein
(YAP), and its decreased phosphorylation leads to in-
creased expression of connective tissue growth factor
(CCN), resulting in accelerated follicular development
[116].

Recently, an in vitro activation (IVA) model was de-
veloped based on the activation of primordial follicles
using manipulation of the PTEN/PI3K/AKT/FOXO3 and
Hippo pathways by fragmenting ovarian tissue to activate
mechanical forces. In this methodology, the surgically
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obtained ovarian cortex is first fragmented and incubated
with AKT stimulators for 2 days. Next, fragments are
ectopically transplanted under the serosa of the oviduct
[115]. Utilizing this methodology, POI patients were able
to deliver healthy babies [117]. IVA appears to be a
promising treatment for patients with POI who desire im-
proved fertility. However, IVA for POI patients is still
highly experimental and pregnancy rates are low. In ad-
dition, special attention should be paid to potential carci-
nogenic effects, given this method stimulates the
PTEN/PI3K/AKT/FOXO3 signaling pathway, which is
involved in tumorigenesis [118].

Mesenchymal stem cells to restore ovarian
function

Mesenchymal stem cells (MSCs) are multipotent adult stem
cells that have capacity to self-renew preserving their
stemness as well as capacity to differentiate into various cell
types such as osteoblasts, chondrocytes, and adipocytes [119,
120]. One of MSCs properties is growing attached to plastic
under standard culture conditions. MSCs express various cell
surface markers including cluster of differentiation (CD)73,
CD90, CD44, and CD105 and lacking expression of CD34,
CD45, CD14 or CD11b, CD79a or CD19, and human leuko-
cyte antigen (HLA) class II. MSCs are derived from various
sources: bonemarrow, adipose tissue, amniotic fluid, amniotic
membrane, placenta, menstrual blood, endometrium, and um-
bilical cord [60, 121–129]. Cellular therapy using MSCs has
been in the limelight in recent years as a promising treatment
for various degenerative diseases, such as acute renal failure
[130], acute lung injury [131, 132], myocardial infarction
[133], and cerebral ischemia [134]. It has been reported that
MSCs have a role in regulating different populations of im-
mune cells such as T cells, B cells, NK cells, dendritic cells
(DCs), and macrophages [135]. MSCs can migrate to dam-
aged tissues by inducing peripheral immune tolerance. They
can block the release of inflammatory cytokines, such as tu-
mor necrosis factor-alpha (TNFα) and interleukin-6 (IL-6),
and promote the survival of damaged cells [136]. Recently,
MSC-based cellular therapy has been studied to restore ovar-
ian function in POI patients. Transplantation of bone marrow-
derived MSCs in a mouse POI model restored ovarian func-
tion, suggesting that MSCs were the regenerative factor re-
sponsible for the bone marrow transplantation phenomenon
[137, 138]. Its effectiveness has been evaluated and confirmed
in the mouse model of POI. In addition, the therapeutic effect
of stem cells on POI has already begun to be demonstrated by
clinical trials. Transplantation of human umbilical cord–
derived MSC (hUCMSC) into the ovaries of POI patients
increased estradiol levels, improved follicle development,
and increased follicular follicle numbers. Some of the POI

women after transplantation of hUCMSC achieved success-
ful clinical pregnancies [139]. However, there are some
ethical and methodological issues regarding treatment with
stem cells such as protracted safety concerns that need to be
resolved during the process of purification and transplanta-
tion of stem cells. These concerns include the potential for
the emergence of dangerous clones, the risk of contamina-
tion with undifferentiated cells, genomic instability, and the
possibility of epigenetic abnormalities [140]. MSCs from
adipocytes, placenta, or umbilical cord can be extracted
using minimally invasive procedures that do not harm do-
nors, but samples are limited. Also, intra-ovarian injections
into patients are invasive and can cause side effects such as
an immune response [141]. There are limited clinical stud-
ies of MSC transplantation in patients with POI status. Only
10 clinical trials in this field have been conducted
(ClinicalTrial.gov) (Table 2). In these clinical trials, autol-
ogous bone marrow–derived stem cells and hUCMSCs
were used. These therapies restored ovarian function in
POI patients, showing increase in AMH levels and follicle
development and improved oocyte collection [142, 143].
Several of the POI patients whose ovarian function im-
proved following transplantation of MSCs had successful
clinical deliveries [139, 142–144].

Differentiation of MSCs into granulosa cells within ovary
and reactivation of ovarian function through the paracrine
pathway are two mechanisms that MSCs utilize to improve
chemotherapy-induced ovarian dysfunction [145]. Adipose-
derived MSCs injected into ovaries of cyclophosphamide-
treated rats and mice were later located in the thecal layers
but not in the follicles [123]. In addition, intraperitoneally
transplanted human amniotic epithelial (hAECs)–derived
green fluorescent protein (GFP)–positive cells migrate to
mouse ovary and differentiate into granulosa cells, but not into
follicles [125]. Therefore, restoration of ovarian function is
achieved due toMSC differentiation into granulosa cells with-
in the injured ovary, and not due to oocyte differentiation.
MSCs secrete various cytokines, such as hepatocyte growth
factor (HGF), vascular endothelial cell growth factor (VEGF),
insulin-like growth factor-1 (IGF-1), epidermal growth factor
(EGF), fibroblast growth factors 2 (FGF2), granulocyte-
colony stimulating factor (G-CSF), and interleukin (IL)-6,
IL-8, IL-10, IL-11, and IL-15 [123, 146, 147, 138, 148,
149]. MSCs have been shown to inhibit apoptosis of granulo-
sa cell in mammalian model of POI [150] due to increased
secretion of steroid hormone and inhibition of apoptosis in
g ranu losa ce l l s th rough IGF-1 pa thway [151] .
Transplantation of MSCs overexpressing microRNA-21, in-
volved in apoptotic regulation, repaired the ovarian function
and inhibited the apoptosis of granulosa cells by targeting
PTEN and programmed cell death 4 (PDCD4) [152].
Transplantation of human placenta–derived mesenchymal
stem cell (hPMSC) restored ovarian function in chemotherapy
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and autoimmune-induced POI mice model by regulating cy-
tokines associated with regulatory T cells (Treg) via the PI3K/
AKT signaling pathway [153, 126]. Also, hAEC transplanta-
tion promoted ovarian function by reducing inflammation and
inhibiting the TNFα-mediated apoptosis [154]. MSCs secrete
cytokines that promote angiogenesis, such as VEGF, FGF2,
and angiogenin, causing recovery of damaged ovaries follow-
ing transplantation of cryopreserved ovarian cortex [155].
Injection of hUCMSCs to mice with chemotherapy-induced
POI increases total and phospho-AKT as well as VEGF ex-
pression, which promotes ovarian angiogenesis [127].
Moreover, EGF secreted by hPMSCs quenches ROS in POI
by upregulating the nuclear factor erythroid 2 related factor 2
(NRF2)/heme oxygenase 1 (HO1) pathway that is involved in
DNA repair and aging, apoptosis, and embryonic cell death
[149]. Transplantation of human amniotic fluid-derived MSC
(hAMSCs) attenuated the DNA damage as assessed by phos-
phorylation of variant histone H2A (p-γH2AX), BRCA1,
PARP1, and X-Ray repair cross complementing 6
(XRCC6)) in granulosa cells of aged mice [156]. Based on
the above findings, MSCs may play an important role in

regenerating granulosa cells and restoring ovarian function
through an anti-inflammatory and immunomodulatory effect,
as well as through DNA repair. MSC regenerative therapies
that have been evaluated in vivo in improving ovarian function
are summarized in Table 3.

Conclusion

Overall, POI is a condition of estrogen deficiency that causes
both short-term and lifelong implications for health and psy-
chosocial well-being, compared to undergoing menopause at
a later age. Healthcare professionals need to effectively man-
age these complex entities to ensure that physical, psycholog-
ical, and emotional challenges resulting from POI
diagnosis are addressed, and that the short and long-term
wellbeing of these young women is preserved. Considering
the lifelong health of POI patients, development of treatments
to restore ovarian function earlier is essential to improve qual-
ity of life. Recent development of regenerative medicine
allowed transplantation of various types of human MSCs

Table 2 Clinical trials of MSC treatment for POI women

Identifier Patients Phase Source of cells Method of injections

NCT03816852 Meet diagnostic criteria of ESHRE
No HRT and Chinese traditional medicine within 3 months

2 Human umbilical cord Intravenous

NCT03069209 Women between age 20–40 years
FSH > 20 IU/mL

1/2 Autologous bone marrow Intraovarian

NCT03877471 Under 40 years of age
Have established regular menstrual cycle,

oligomenorrhea/amenorrhea ≥ 4 months
FSH ≥ 25 IU/mL
Bilateral ovaries are visible by ultrasound

1 Embryonic stem cell Intraovarian

NCT02062931 Post-menarche female less than 40 years old
FSH > 20 IU/mL
Women with normal karyotyping

1/2 Autologous bone marrow Intraovarian

NCT01742533 Between age 18–39 years
Diagnosed with POI and currently receiving HRT

1/2 Human umbilical cord N/A

NCT03033277 Diagnosed with POI
Women between age 20–40 years
Have fertility requirements, husband has sperm

1/2 Human umbilical cord Intraovarian

NCT02603744 Women between age 20–40 years
FSH > 20 IU/mL

1/2 Adipose Intraovarian

NCT02644447 Diagnosed with POI
Patients show no response to drug treatment
Women between age 20 and 39 years

1/2 Human umbilical cord Intraovarian

NCT02779374 Women with POI
Less than 40 years
Has amenorrhea ≥ 4 months
FSH > 25 IU/mL

Not Applicable Autologous bone marrow Intravenous

NCT02372474 Post-menarche female less than 40 years
Normal karyotyping female
POI women
FSH >20 IU/mL

1/2 Autologous bone marrow Intraovarian

ESHRE European Society of Human Reproduction and Embryology, HRT hormone replacement therapy, FSH follicle-stimulating hormone, POI
premature ovarian insufficiency

643J Mol Med (2021) 99:637–650



Ta
bl
e
3

M
SC

us
ed

to
im

pr
ov
e
PO

I
an
d
ov
ar
ia
n
fu
nc
tio

n

M
SC

so
ur
ce

A
ni
m
al

B
ac
kg
ro
un
d

PO
I-
in
du
ce
d
re
gi
m
en

R
eg
im

en
(h
ow

in
je
ct
ed
,

nu
m
be
r
of

ce
lls
,d
ur
at
io
n)

M
SC

lo
ca
tio

n
af
te
r
in
je
ct
io
n

H
ow

ov
ar
ia
n
fu
nc
tio

n
w
as

im
pr
ov
ed

R
ef
.

M
ur
in
e
bo
ne

m
ar
ro
w

M
ou
se

C
57
B
L
/6

B
U
S
(1
2
m
g/
kg
),
C
T
X
(1
20

m
g/
kg
),
si
ng
le
,I
P

Si
ng
le
IV

,2
–5

×
10

7
ce
lls

O
oc
yt
es

N
um

be
r
of

fo
lli
cl
es

[1
21
]

M
ur
in
e
pe
ri
ph
er
al
bl
oo
d

Si
ng
le
IV

,2
–4

×
10

7
ce
lls

O
oc
yt
es

N
um

be
r
of

fo
lli
cl
es

[1
21
]

M
ur
in
e
bo
ne

m
ar
ro
w

M
ou
se

C
57
B
L
/6

B
U
S
(1
2
m
g/
kg
),
C
T
X
(1
20

m
g/
kg
),
si
ng
le
,I
P

Si
ng
le
IV

,2
–3

×
10

7
ce
lls

O
oc
yt
es

N
um

be
r
of

im
m
at
ur
e
fo
lli
cl
es

[6
0]

M
ur
in
e
ad
ip
os
e

M
ou
se

C
57
/B
L
6

C
T
X
(5
0
m
g/
kg
)
fo
r
15

co
ns
ec
ut
iv
e
da
ys
,I
P

Si
ng
le
IV

,1
×
10

6
ce
lls

O
va
ri
an

st
ro
m
a

N
um

be
r
of

fo
lli
cl
es

[1
22
]

M
ur
in
e
ad
ip
os
e

S
in
gl
e
IV

,1
×
10

5
ce
lls

O
va
ri
an

st
ro
m
a

N
um

be
r
of

fo
lli
cl
es

[1
22
]

R
at
or

m
ur
in
e
ad
ip
os
e

R
at

W
is
ta
r–
Im

am
ic
hi

C
T
X
(5
0m

g/
kg
)
on

th
e
fi
rs
td

ay
an
d
th
en

8m
g/
kg

fo
r
13

co
ns
ec
ut
iv
e
da
ys
,I
P

S
in
gl
e
in
je
ct
io
n
in
to

th
e

ov
ar
y,
2
×
10

6
ce
lls

U
nk
no
w
n

N
um

be
r
of

liv
e
bi
rt
h

[1
23
]

R
at
bo
ne

m
ar
ro
w

S
in
gl
e
in
je
ct
io
n
in
to

th
e

ov
ar
y,
2
×
10

6
ce
lls

U
nk
no
w
n

N
um

be
r
of

liv
e
bi
rt
h

[1
23
]

H
um

an
am

ni
ot
ic
fl
ui
d

M
ou
se

C
57
B
L
/6

B
U
S
(3
0
m
g/
kg
),
C
T
X
(1
20

m
g/
kg
),
si
ng
le
,I
P

Si
ng
le
IP
,2
–5

×
10

3
ce
lls

O
va
ri
an

st
ro
m
a
or

an
tr
al
fo
lli
cl
es

A
M
H
ex
pr
es
si
on

in
th
e
ov
ar
y

[1
24
]

H
um

an
am

ni
ot
ic

ep
ith

el
iu
m

M
ou
se

C
57
B
L
/6

B
U
S
(3
0
m
g/
kg
),
C
T
X
(1
20

m
g/
kg
),
si
ng
le
,I
P

Si
ng
le
IP
,2

×
10

6
ce
lls

O
va
ri
an

tis
su
e

ne
ar

th
e

fo
lli
cl
es

A
M
H
ex
pr
es
si
on

in
th
e
ov
ar
y

[1
25
]

H
um

an
m
en
st
ru
al
bl
oo
d

M
ou
se

C
57
B
L
/6

C
T
X
(7
0m

g/
kg
),
si
ng
le
,I
P

U
nk
no
w
n,
ap
pr
ox
im

at
el
y

1×
10

3
ce
lls

O
va
ry

N
um

be
r
of

fo
lli
cl
es

[1
28
]

H
um

an
en
do
m
et
ri
al
ce
ll

M
ou
se

C
57
B
L
/6

B
U
S
(3
0
m
g/
kg
),
C
T
X
(1
20

m
g/
kg
)
si
ng
le
,I
P

Si
ng
le
IV

,2
×
10

6
ce
lls

O
va
ri
an

st
ro
m
a

N
um

be
r
of

fo
lli
cl
es

[1
29
]

R
at
bo
ne

m
ar
ro
w

R
at

W
is
ta
r

C
T
X
(2
00
m
g/
kg
)
on

th
e
fi
rs
td

ay
an
d
th
en

8
m
g/
kg
/d
ay

fo
r
th
e
15

co
ns
ec
ut
iv
e
da
ys
,I
P

S
in
gl
e
IV

,4
×
10

6
ce
lls

T
he

ov
ar
ia
n

hi
lu
m

an
d

m
ed
ul
la

Se
ru
m

es
tr
ad
io
ll
ev
el
s,
nu
m
be
r
of

pr
im

or
di
al
,

de
ve
lo
pi
ng
,a
nd

pr
eo
vu
la
to
ry

fo
lli
cl
es

[1
45
]

H
um

an
pl
ac
en
ta

M
ou
se

C
57
B
L
/6

pZ
P3

(1
00

μ
g)
,s
in
gl
e,
IV

Si
ng
le
SC

,1
×
10

6
ce
lls

U
nk
no
w
n

N
um

be
r
of

he
al
th
y
fo
lli
cl
es

[1
26
]

H
um

an
um

bi
lic
al

co
rd
–d
er
iv
ed

m
ic
ro
ve
si
cl
es

M
ou
se

IC
R

B
U
S
(2
0
m
g/
kg
),
C
T
X
(2
00

m
g/
kg
),
si
ng
le
,I
P

Si
ng
le
IV

,u
nk
no
w
n

T
he

cy
to
pl
as
m

of
gr
an
ul
os
a
ce
lls

N
um

be
r
of

pr
im

or
di
al
,d
ev
el
op
in
g,
an
d

pr
eo
vu
la
to
ry

fo
lli
cl
es

[1
27
]

P
O
I
pr
em

at
ur
e
ov
ar
ia
n
in
su
ff
ic
ie
nc
y,

B
U
S
bu
su
lf
an
,C

TX
cy
cl
op
ho
sp
ha
m
id
e,
pZ

P
3
zo
na

pe
llu

ci
da

gl
yc
op
ro
te
in

3
pe
pt
id
e,
IV

ta
il
ve
il
in
je
ct
io
n,

IP
in
tr
ap
er
ito

ne
al
in
je
ct
io
n,

SC
su
bc
ut
an
eo
us

in
je
ct
io
n,

A
M
H
an
ti-
M
ül
le
ri
an

ho
rm

on
e

644 J Mol Med (2021) 99:637–650



improving the ovarian function in POI mice. Transplantation
ofMSCs shows a significant positive effect in an animal mod-
el of POI and in some clinical studies, but it has not yet been
applied to clinical practice due to methodological and ethical
issues. TheMSC transplantation regimen should be optimized
to identify optimal injection site, frequency of each procedure,
and cell number used to make MSC transplantation more
effective.
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