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Corticosteroid enhances epithelial barrier function in intestinal
organoids derived from patients with Crohn’s disease
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Abstract
Corticosteroids (CS), first-line therapeutics for Crohn’s disease (CD) with moderate or severe disease activity, were found to
restore intestinal permeability in CD patients, whereas the underlying molecular events are still largely unknown. This study
aimed to investigate the effect and mechanisms of CS prednisolone on epithelial barrier using CD patient-derived intestinal
organoids. 3D intestinal organoids were generated from colon biopsies of inactive CD patients. To mimic the inflammatory
microenvironment, a mixture of cytokines containing TNF-α, IFN-γ, and IL-1β were added to the organoid culture with or
without pre-incubation of prednisolone or mifepristone. Epithelial permeability of the organoids was assessed by FITC-D4 flux
from the basal to luminal compartment using confocal microscopy. Expression of junctional components were analyzed by qRT-
PCR, immunofluorescence staining, and western blot. Activity of signaling pathways were analyzed using western blot.
Exposure of the cytokines significantly disrupted epithelial barrier of the intestinal organoids, which was partially restored by
prednisolone. On the molecular level, the cytokine mixture resulted in a significant reduction in E-cadherin and ILDR-1, an
increase in CLDN-2, MLCK, and STAT1 phosphorylation, whereas prednisolone ameliorated the abovementioned effects
induced by the cytokine mixture. This study demonstrates that prednisolone confers a direct effect in tightening the epithelial
barrier, identifies novel junctional targets regulated by prednisolone, and underscores intestinal barrier restoration as a potential
mechanism that contributes to the clinical efficacy of prednisolone in CD patients.

Key messages
& Prednisolone confers a direct preventive effect against cytokine-induced barrier dysfunction.
& Prednisolone regulates the expression of CLDN-2, E-cadherin, and ILDR-1.
& The effect of prednisolone is GR-, MLCK-, and STAT1-dependent.
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Introduction

The intestinal epithelium functions as a permeable and dy-
namic interface that permits the absorption of water, electro-
lytes, and dietary nutrients, while also serving as a critical
barrier that protects the intestinal surface from numerous

microorganisms and foreign antigens that harbor in the gut
lumen [1, 2]. The integrity of gut barrier is maintained through
the formation of complex protein-protein networks that me-
chanically link neighboring cells and regulate paracellular per-
meability. On the ultrastructural level, these are composed of
three types of junctional complexes: tight junctions (TJs),
adherens junctions (AJs), and desmosomes [3]. Over the last
decade, a strong correlation has been established between
disrupted gut barrier and the presence of several inflammatory
disorders, such as Crohn’s disease (CD). CD belongs to the
inflammatory bowel diseases (IBD), and is characterized by
chronic recurrent inflammation of the gastrointestinal tract [4].
A defective intestinal barrier has emerged as an important
pathogenic factor contributing to the development and pro-
gression of CD. It is proposed that a disrupted mucosal barrier
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results in increased intestinal permeation of luminal toxins and
triggers an immunological response that promotes intestinal
inflammation. As part of enhanced inflammation, systemic
concentrations of several cytokines including e.g. TNF-α,
IFN-γ, and IL-1β, were found to be markedly increased in
patients with CD when compared to healthy control subjects
[5], and were shown to disrupt epithelial barrier in different
cells or animal models. In fact, a comprised intestinal perme-
ability has been well recognized in CD patients and correlates
with disease activity [6–9]. Altered expression of different TJs
and AJs were also noted in patients with CD [10]. In particu-
lar, a few studies demonstrated that medical therapies that
tighten a disrupted epithelial barrier were shown to promote
the resolution of active inflammation in CD patients [11, 12],
demonstrating that strengthening a leaky gut barrier is a po-
tential therapeutic strategy in CD therapy.

Systemic corticosteroid (CS), i.e. prednisolone, is indicated
as first-line therapeutic for the treatment of CD patients with
moderate to severe disease activity. CS is efficient in improv-
ing the inflammatory responses through a variety of mecha-
nisms, including suppression of cytokine gene transcription,
eicosanoid biosynthesis, and intercellular adhesion molecules
[13]. Moreover, one study showed that CS therapy restores
disrupted intestinal barrier function in CD patients [14].
However, the molecular events underlying the CS actions
are still not fully understood. In particular, it remains largely
unclear whether CS, in addition to its anti-inflammatory ef-
fects on reducing inflammatory mediators that regulate barrier
function, confers a direct effect on tightening the epithelial
barrier in the human intestinal epithelium.

Therefore, the main aim of this study is to investigate the
effect of corticosteroid prednisolone on intestinal barrier and
to elucidate the underlying molecular mechanisms using CD
patient-derived intestinal organoid model. Our results demon-
strate that prednisolone confers a direct preventive effect
against cytokine-induced barrier dysfunction. This beneficial
effect is glucocorticoid receptor (GR)-dependent, and is ac-
companied by normalized expression of CLDN-2, ILDR-1,
and E-cadherin on both mRNA and protein levels, through
regulating the MLCK and STAT1 signaling pathways.
Collectively, we provided insights into the mode of action of
prednisolone in tightening epithelial barrier function, and the
mechanism that contributes to the therapeutic efficacy of cor-
ticosteroids in the treatment of CD.

Methods and materials

Patient inclusion

The inclusion of CD patients is based on the IBD South
Limburg (IBDSL) cohort study, which has been approved
by the Medical Ethics Committee of the Maastricht

University Medical Center+ (MUMC+), and was conducted
in accordance with the Declaration of Helsinki (Seoul, South
Korea, Oct. 2008). All subjects signed informed consent be-
fore participation. Intestinal biopsies were collected from the
uninflamed ascending colon in patients undergoing diagnostic
endoscopy with CD involved in the terminal ileum (L1 ac-
cording to the Montreal classification), colon (L2), or
ileocolon (L3). Characteristics of the participants are listed
in Supplementary Table 1.

Human intestinal crypt isolation and organoid culture

Intestinal organoids were established and cultured following
previously described protocol with minor modifications [15].
In short, directly after collection, the biopsies were washed
four times with cold 1% antibiotic-antimycotic (Invitrogen,
CA, USA) in PBS for 2 min, followed by three times of wash-
ings with 10 mMDTT/PBS for 2 min. Thereafter, the samples
were incubated with 2 mM EDTA in PBS for 1 h (4 °C, 5
rpm). After removal of EDTA, the biopsies were vigorously
shaken several times in cold PBS to obtain a supernatant frac-
tion that contains intestinal crypts. To collect RNA from the
crypts, small amount of supernatant that contains around 100
crypt particles was portioned, and the remaining supernatant
was used for organoid generation. The supernatants were cen-
trifuged at 400g for 8 min at 4 °C to enrich crypt particles. To
generate organoids, the crypt pellets were washed with cold
basal medium (DMEM/F12medium containing 1%GlutMax,
1% Hepes, and 5% FBS), centrifuged at 400g for 3 min at 4
°C, and then embedded in Matrigel hESC-Qualified LDEV-
free Matrix (Corning BV, Amsterdam, the Netherlands) on a
pre-warmed 4-well glass chamber (Ibidi GmbH, DE) at 37 °C,
and then supplemented with IntestiCult™ Organoid Growth
Medium (Stem Cell Technology, GmbH, DE) to form intes-
tinal organoids. Organoids were maintained in a 37 °C 5%
CO2 atmosphere with media changed every 3 days. After
around 15 days of culture, primary intestinal organoids exhibit
a mature morphology with thickened epithelium layer, multi-
ple lumens, and columnar buddings. Those organoids were
then passaged following previously described procedures
[16]. At around day 5 to 7, the organoids grow into hollow
morphology with a single layer of cells, which allow real-time
barrier function assessment [17].

Cytokines and chemicals exposed to intestinal
organoids

Recombinant human cytokines TNF-α, IFN-γ, and IL-1β
were purchased from Sigma-Aldrich (Saint Louis, USA).
Prednisolone was obtained from PeproTech (Rocky Hill,
USA). Clarithromycin (CAM) was kindly provided by the
Hospital Pharmacy of MUMC+. Mifepristone (RU486) was
purchased from Sigma-Aldrich. Intestinal organoids were
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exposed basolaterally to a cytokine complex containing
TNF-α, IFN-γ, and IL-1β (20 ng/mL of each) for 24 h, with
or without the incubation of prednisolone (10 μM),
clarithromycin (80 μM), or mifepristone (10 μM) for 12 h at
37 °C. Control wells were left untreated.

Paracellular permeability measurement in intestinal
organoid

Upon the indicated exposure, paracellular permeability was
determined by co-incubating organoids with 1 mg/mL, 10%
(v/v) FITC-D4 (Sigma) at 37 °C for 24 h. Permeation of the
marker FITC-D4 from the basal to luminal side of the
organoids was assessed using confocal microscopy (Leica
Microsystems GmbH, DE) and the Image J software.
Permeability was determined by calculating the luminal/
basolateral ratio (L/BL) based on the density of FITC-D4 in
the lumen and basal compartment. Given the high biological
variance of the organoids within each group as reflected by the
variable size of individual organoid, at least 25 organoids
(with diameter within 100 ~ 150 μm) were included per group
for quantification.

RNA extraction and quantitative RT-PCR analysis

Total RNA was isolated from intestinal crypts and organoids
using RNeasy Micro Kit (Qiagen, Valencia, CA) or from
Caco-2 monolayers using the RNeasy Mini Kit (Qiagen) ac-
cording to the manufacture’s protocol. For reverse transcrip-
tion, 500 ng RNA from intestinal crypts and organoids or 1 μg
RNA from Caco-2 cells was used to convert into cDNA using
iScript Select cDNA Synthesis Kit (Bio-Rad, CA, USA).
Quantitative PCR was performed via CFX384 Real-Time
PCR Detection System (Bio-Rad) using SYBR Green
Supermix (Bio-Rad) according to the manufacturer’s instruc-
tions. For GR expression analysis, pre-designed TaqMan gene
expression assays (Applied Biosystems, Amsterdam, the
Netherlands) targeting GR-α (cat. # Hs00230818_m1),
GR-β (cat. # Hs00354508_m1), and housekeeping gene
HPRT (cat. # Hs02800695_m1)were used following the man-
ufacturer’s instructions. Primer sets used are listed in
Supplementary Table 2. The relative expression of the target
genes was normalized to the housekeeping gene 18S.

Protein extraction and western blot

After the exposure, intestinal organoids were lysed in 100 μL
RIPA buffer and the extracted proteins were denatured using
SDS loading buffer (125 mM Tris–HCl pH 6.8, 4% sodium
dodecyl sulfate, 20% glycerol, 0.04% bromophenol blue, and
100 mM β-mercaptoethanol) at 95 °C for 5 min. For each
sample, 10 μg protein was loaded and separated on 10% or
12% mini-protein TGX precast protein gels (Bio-Rad) and

transferred to polyvinylidene difluoride membranes (GE
Healthcare, Chicago, USA). The membranes were incubated
overnight at 4 °C with appropriate primary antibodies,
subsequently with specific secondary antibodies and
visualized using the enhanced chemiluminescence reagent
(Thermo Scientific). The following antibodies were used:
Rabbit anti-alpha-TUBULIN, mouse anti-E-cadherin, and
rabbit anti-NF-κB p65 were from Abcam; rabbit antibodies
against p38, phospho-p38, JNK, phospho-JNK, ERK,
phospho-ERK, MLC, phosphor-MLC, phospho-NF-κB p65,
STAT1, and phospho-STAT1 (Tyr701) were from Cell
Signalling Technology; mouse anti-CLDN-2 and rabbit anti-
ILDR-1 were from Invitrogen; anti-mouse/rabbit IgG horse-
radish peroxidase-linked secondary antibodies were from Cell
Signalling Technology. Original western blot images were
included in Supplementary Figures 7, 8, and 9.
Densitometric quantification analyses of the western blots
were performed using the Image J software.

Immunofluorescence staining and imaging of
junctional proteins

After the exposure, organoids were rinsed with PBS, fixed
with 4% (w/v) paraformaldehyde, permeabilized with 0.5%
(v/v) Triton X-100 in PBS at RT for 30 min, and then blocked
with 1% (w/v) BSA at RT for 1 h. Afterwards, the organoids
were incubated at 4 °C for 36 h with mouse anti-CLDN-2
(1:100 dilution, Invitrogen) or overnight with mouse anti-E-
cadherin (1:200 dilution, Abcam) following 1-h incubation of
Alexa Fluor 488 goat anti-mouse IgG secondary anti-
body (1:200 dilution, Thermo Fisher Scientific).
Organoids were then washed three times with PBS and
stained with diamidino-2-phenylindole (DAPI, Sigma) at
1:1500 dilution. After another two washings with PBS,
organoids were mounted using VectaShield mounting
medium (Vector Laboratories, Burlingame, USA).
Confocal images were obtained using a confocal micros-
copy (Leica Microsystems GmbH) with identical acqui-
sition settings (laser power, objectives, magnifications)
for each acquired image and condition. Images were
then analyzed using the Image J software.

Cell death assay

Cell death assay was determined by measuring the release of
lactate dehydrogenase (LDH) into the culture medium using
the LDH assay kit (CytoTox ONEtm; Promega, the
Netherlands) according to manufacturer’s instructions.
Maximum LDH release was induced by using lysis solution.
The percentage of LDH activity was calculated as the percent-
age of the maximum LDH release from fully lysed cells.
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Caco-2 cell culture

Human epithelial Caco-2 cells were obtained from ATCC
(Rockville, USA) and were cultured (passage 47 to 57) in
Dulbecco’s modified Eagle’s medium (DMEM, Lonza Benelux
BV, NL), with 10% (v/v) fetal calf serum (FBS, Invitrogen), 1%
(v/v) solution of non-essential amino acids (NEAA, Invitrogen),
and 1% (v/v) solution of antibiotic-antimycotic mixture (anti-anti,
Invitrogen) in an atmosphere of 5% CO2 at 37 °C.

Statistical analysis

Data are expressed as mean values ± standard error of the mean
(SEM) and indicating n as the number of biological samples or
measurements. All FITC-D4 permeability assays, qRT-PCR,
and western blots were performedwith at least three independent
biological replicates and three technical replicates for each reac-
tion. Statistical analysis was performed using Student’s t-test or
one-way ANOVA and Tukey’s post hoc test (Prism 6
GraphPad). Significant differences between two groups were
noted by asterisks (*p < 0.05, ** p < 0.01, ***p < 0.001).

Results

Prednisolone ameliorates intestinal barrier disrupted
by pro-inflammatory cytokines

We previously observed that intestinal organoids from active
and inactive CD patients showed no difference in baseline

epithelial permeability (unpublished data). This is in line with
previous report indicating the loss of inflammatory status from
the intestinal tissue to the stem cell-derived organoids [18]. To
recreate a more physiological microenvironment, we used a
cytokine cocktail that contains TNF-α, IFN-γ, and IL-1β (20
ng/mL each), the aberrant productions of which have been
implicated as critical contributors in perpetuating intestinal
inflammation in CD [19]. First, the expression levels of recep-
tors for TNF-α, IFN-γ, and IL-1β in CD patient-derived in-
testinal organoids were evaluated. QRT-PCR analysis demon-
strated that TNFRSF1A and IFNGR and IL-1R1/2 showed
similar mRNA expression in the organoids as compared to
the colonic crypts, while most of those receptors showed sig-
nificantly different profiles in Caco-2 cells (Fig. 1a). To fur-
ther investigate the effect of these pathophysiological stimuli
on epithelial barrier, intestinal organoids were exposed to the
cytokine cocktail for 24 h. FITC-D4 was also added in the
culture medium for real-time barrier function evaluation.
Under confocal microscopy, we observed an increased
intraluminal FITC-D4 signal post cytokine exposure com-
pared to the control treatment (Fig, 1b-c, 1.000 ± 0.098 vs.
2.021 ± 0.151, p < 0.05).

In one previous study, CS was shown to restore an in-
creased intestinal permeability as determined by the urinary
lactulose/mannitol ratio in CD patients [14]. To verifywhether
a similar effect could be observed in the in vitro organoid
culture, synthetic prednisolone was chosen as an example
and exposed to the organoids at 10 μM post cytokine cocktail
treatment. Under unchallenged condition, prednisolone expo-
sure did not alter basal FITC-D4 permeation of the organoids
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Fig. 1 Prednisolone ameliorates intestinal barrier disrupted by pro-
inflammatory cytokines. a Expression levels of TNFRSF1A, IFNGR,
IL-1R1, and IL-1R2 receptors, calculated as percentage (%) relative to
18S, in colonic crypts (n = 4) and organoids (n = 4) and Caco-2 cells (n =
4) analyzed by RT-PCR. Data expressed as means ± SEM. **p < 0.01
and ***p < 0.001 by Student’s t-test. b-c Representative FITC-D4
permeation or bright-field (BF) microscopy images (b) and
quantification of FITC-D4 permeation (c) in control (n = 6) and

cytokine cocktail (20 ng/mL each of TNF-α, IFN-γ, and IL-1β, n = 6)
treated intestinal organoids. The bar indicates 50 μm. The mean
fluorescence intensity of FITC-D4 was measured and expressed as the
L/BL ratio of the luminal (L) over the basal (BL) compartment. Data
expressed as means ± SEM with at least 25 organoids per subject and 6
subjects per group. *p < 0.05 and **p < 0.01 by one-way ANOVA and
Tukey’s post hoc test
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(Supplementary Figure 1), but significantly reduced
intraluminal FITC-D4 signals that were increased by cytokine
cocktail (Fig. 1b-c, 2.021 ± 0.1505 vs. 1.321 ± 0.1271, p <
0.05). In contrast, clarithromycin (CAM), an antibiotic that
can be used to treat primary active CD, exhibited no effect
in ameliorating the disrupted epithelial barrier (Supplementary
Figure 2), indicating that the epithelial barrier of intestinal
organoids is functionally dynamic to stimuli and selectively
responds to different therapeutics.

To evaluate whether altered FITC-D4 permeation was due
to cell death, we first performed lactate dehydrogenase (LDH)
assay to evaluate the effects of cytokine cocktail or predniso-
lone on cell viability. Triton X-100 was used as a positive
control to induce maximum LDH leakage. Compared to the
control treatment, no significant difference in LDH activity
was detected post cytokine cocktail or prednisolone
treatments (Supplementary Figure 3A). In addition,
qRT-PCR analysis revealed no significant changes on
the expression of apoptosis markers BAX and BCL-2,
as well as necroptosis markers MLKL and IL-8 in the
intestinal organoids by cytokine cocktail or prednisolone
stimulations (Supplementary Figure 3B).

Prednisolone decreases CLDN-2 and increases E-
cadherin, ILDR-1

To further investigate the molecular effects of prednisolone,
we performed qRT-PCR analysis to evaluate the expression of

receptors TNFRSF1A and IFNGR and IL-1R1/2, which
showed no significant changes upon prednisolone exposure
compared to the control treatment (Supplementary Figure 4).
We then evaluated whether prednisolone exerts a direct effect
on the epithelial barrier junctional components. RT-PCR anal-
ysis showed that 24-h treatment of the cytokine cocktail re-
sulted in a significant decrease of claudin (CLDN)-1, E-
cadherin (E-CAD), ILDR-1, and CTNNB1, accompanied by
an increase in CLDN-2 on the mRNA levels (Fig. 2a). The
transcripts of OCCLUDIN (OCLDN), TJP-1, CLDN-3,
CLDN-4, CLDN-7, CLDN-12, CLDN-15, MUC-2, and
MARVELD2 were not affected by the stimulation of pro-
inflammatory cytokines (Fig. 2a). Incubation of prednisolone
(10 μM) could partially restore the altered expression of
CLDN-2, E-CAD, and ILDR-1 (Fig. 2a). These findings were
also confirmed on protein level as evidenced by western blot
analysis and immunofluorescence staining (Fig. 2b-d). In ad-
dition, no significant distortion of CLDN-2 and E-CAD belts
was observed (Fig. 2d).

Prednisolone augments epithelial barrier function in
a GR-dependent manner

We then examined whether the beneficial effect of predniso-
lone on epithelial barrier was mediated via the intracellular
activation of glucocorticoid receptor (GR) on its expression
or activity levels. QRT-PCR analyses demonstrated that
GR-β showed undetectable expressing level in intestinal
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organoids. GR-α isoform was abundantly expressed but not
significantly changed under the cytokine cocktail or prednis-
olone exposures (Fig. 3a). To evaluate the activity of GR
signaling, we analyzed the transcript of ICAM-1, which is
demonstrated to be expressed in human epithelial cells [20]
and serves as a downstream target marker for GC responsive-
ness [21, 22]. We observed that cytokine cocktail exposure
resulted in a significant increase of the ICAM-1 transcripts,
while prednisolone treatment hampered this induction (Fig.
3b). In addition, administration of 10 μMmifepristone, a mol-
ecule that specifically inhibits GR transactivation, repressed
the beneficial effects of prednisolone in restoring the cytokine-
induced epithelial barrier disruption (Fig. 3c and
Supplementary Figure 5) indicating that the effect of prednis-
olone on epithelial barrier function is GR-dependent.

Prednisolone treatment decreases the activity of
MLCK and STAT1 signalings

We then performed western blot to analyze the involvement of
MAPK, MLCK, and STAT1 signaling pathways, which were
shown to be downstream cascades responding to GR
transactivation in IBD patients, and have been implicated in the
regulation of epithelial barrier function in immobilized cells. As
shown in Fig. 4a and Supplementary Figure 6A, cytokine expo-
sure increased the phosphorylation levels of MAPK p38, but not
p-JNK and p-ERK. However, treatment of prednisolone showed
no significant effect on p38 phosphorylation. Notably, we ob-
served a significant activation of MLCK downstream targets
MLC andNF-kB p65 isoform, and an increased phosphorylation
of STAT1 when the organoids were exposed to the cytokine
mixture. The increase in p-MLC, p-p65, and p-STAT1 was fur-
ther prevented by prednisolone (Fig. 4b-c, Supplementary
Figure 6B-C), which suggested a distinct involvement of the
MLCK and STAT1 signalings in the mediation of epithelial
barrier function by prednisolone.

Discussion

In the present study, using a CD patient-derived 3D intestinal
organoid model, we evaluated the effects and underlying
mechanisms of prednisolone on epithelial barrier function.
In the organoids, the expression of cytokine receptors
TNFRSF1A and IFNGR and IL-1R1/2 were detected and
showed similar mRNA levels as that in the colonic crypts.
Exposure of a cytokine mixture containing 20 ng/mL each
of TNF-α, IFN-γ, and IL-1β triggered an increased in
paracellular permeability, accompanied by a disruption of ep-
ithelial junctional components. These effects could be partial-
ly rescued by prednisolone in a GR-dependent manner,
through modulating CLDN-2, E-cadherin, and ILDR-1 ex-
pression, with the involvement of MLCK and STAT1 signal-
ing pathways (Fig. 5).

Previous studies showed that CD patients often have ele-
vated levels of various pro-inflammatory cytokines, including
e.g. TNF-α, IFN-γ, and IL-1β, and increased intestinal per-
meability [5–9]. In immortalized cells, TNF-α, IFN-γ, and IL-
1β are able to disrupt epithelial barrier function, while the
mechanistic regulations of those cytokines on junctional com-
ponents vary (often conflict) between different studies, which
could be associated with the cell models that were applied. For
instance, TNF-α induces CLDN-1 expression in IEC-18 cells
[23], but reduces CLDN-1 expression in Caco-2 cells [24]. In
T84 cells, TNF-α/IFN-γ reduces CLDN-2 expression [25],
while their combination induces CLDN-2 in Caco-2 cells
[26]. In T84 monolayer, IFN-γ induces a significant loss of
paracellular integrity through regulating CLDN-1 and
OCLDN expression, whereas no effect is observed by the
same authors in Caco-2 cell monolayer [27]. Notably, most
of the previous findings on cytokine-regulated epithelial bar-
rier function were performed using immortalized colorectal
cancer cell lines, especially the Caco-2 cells, which are known
to have tighter cell junctions and are more resistant to stressors
than the human intestinal epithelium [28, 29]. Benefiting from
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the recently advanced stem cell technologies, ex vivo culture
of patient-derived intestinal organoid has been shown to be
more physiological compared to the widely used immortalized
cells [30]. In comparison to the widely used Caco-2 cells,
patient-derived intestinal organoids were shown to develop a
multicellular phenotype [31–33]. RNA-seq analysis also re-
vealed that the transcriptional profile of primary intestinal
organoids was distinct from Caco-2 cells [34], which is in line
with our observation that the receptors for TNF-α, IFN-γ, and
IL-1β were differently expressed in intestinal organoids and
Caco-2 cells. In addition, a cytokine cocktail was applied in
our study, which most likely better reflects the endogenous
cellular microenvironment, as the target cells are exposed to a
variety of cytokines under physiological inflammatory condi-
tions and synergistic effects were reported upon stimulation of
combined cytokines [35–38]. Different from most of the pre-
vious studies that exposed the cytokine cocktail to immortal-
ized cell lines, we hereby applied the cocktail in the patient-
derived intestinal organoids. As a result, we observed that
exposure of the cytokine complex compromises epithelial bar-
rier function in human intestinal organoids, supporting the

notion that TNF-α, IFN-γ, and IL-1β, in addition to their
well-established function in regulating inflammatory re-
sponses, have a crucial pathological effect on intestinal barrier
function. The detrimental effects of cytokines on epithelial
permeability are in line with previous reports from immortal-
ized colorectal cell lines. However, on the molecular level, we
revealed that the cytokine cocktail treatment resulted in a sig-
nificant decrease of CLDN-1, E-cadherin, CTNNB1, and
ILDR-1, accompanied by an increase in CLDN-2. Previous
studies showed that CLDN-1 is a downstream target of cyto-
kine TNF-α in Caco-2 cells [24] and IFN-γ in T84 cells [39].
It has also been demonstrated that TNF-α, IFN-γ, or IL-1β
regulate CLDN-2 expression in HT-29 cells [40], T84 cells
[41], or Caco-2 cells, respectively [26]. To the best of our
knowledge, we for the first time identified E-cadherin,
CTNNB1, and ILDR-1 as junctional genes that are regulated
by the cytokine mixture in the human intestinal epithelium.
Notably, we previously have identified OCLDN and TJP-1 as
downstream targets regulated by TNF-α in Caco-2 cells [42].
As a contrast, this effect was not observed in patient-derived
organoids by TNF-α (unpublished data) or cytokine cocktail.
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Previous studies on corticosteroids in CD have mainly re-
vealed their anti-inflammatory or immune-suppressive func-
tions. Although one study showed that treatment with pred-
nisolone resulted in a significant decrease of epithelial perme-
ability as measured by the lactulose/mannitol ratio, little is
known on their direct effect on epithelial integrity and under-
lying mechanisms. In the current investigation, we showed
that CD patient-derived intestinal organoid strongly expresses
glucocorticoid receptor (mainly the GR-α isoform), the activ-
ity of which could be induced by prednisolone. Incubation of
prednisolone prevented the barrier disruption induced by the
cytokine cocktail, and this effect was abolished by pre-
incubation with the GR antagonist mifepristone, indicating
that the beneficial effect of prednisolone is GR-dependent.
Within the included six inactive CD patients, one received
steroid budesonide at the time of biopsy collection, while the
other five patients did not receive any steroid treatment in the
past 5 years at the time of biopsy collection. In the intestinal
organoids derived from those patients, we did not observe
significant differences on their GR expression levels, as well
as their response to cytokine cocktail or prednisolone. This is
most likely due to the fact that the intestinal organoids are
developed from multipotent stem cells residing at the base of
intestinal crypts. When cultured in the presence of specific
conditioned medium, the epithelial stem cell containing crypts
will lose the inflammatory characters [18], which are present
in the biopsy origin and shown to be related to glucocorticoid
responsiveness [13, 43]. While intestinal organoids represent
as a novel complementary model to dissect the pathogenic and
therapeutic molecular events associated with CD disease, fur-
ther development of the model is needed to expand its trans-
lational potential (i.e., drug prediction).

So far, only a few studies have investigated the effect and
molecular regulation of junction complexes in response to
glucocorticoid exposure in cultured cell models. For instance,
in human retinal endothelial cells, hydrocortisone and dexa-
methasone induced OCLDN and CLDN-5 expression [44].
Dexamethasone treatment enhanced the epithelial barrier
function and promoted ZO-1 distribution along the plasma
membrane in human corneal epithelial cell line [45], while it
promotes apical tight junction reorganization in rat mammary
epithelial tumor cells through mediating the Ras-fascin axis
[46, 47]. Data in intestinal epithelial cells are limited. In Caco-
2 cells, Fischer et al. showed that dexamethasone attenuates
CLDN-2 expression that is upregulated by TNF-α/IFN-γ
treatment [26]; Boivin et al. revealed that prednisolone and
dexamethasone prevented barrier dysfunction induced by
TNF-α [48]. Here, using CD patient-derived intestinal
organoids, we showed that prednisolone suppressed CLDN-
2 and restored E-cadherin and ILDR-1 expression that was
impaired by the cytokine mixture. CLDN-2, a member of
the claudin family, regulates paracellular water permeability
and ion selectivity by forming cation-selective pores.

Expression of CLDN-2 is highly upregulated in colonic biop-
sies of CD patients [49, 50]. In the present study, the observed
effect of prednisolone on CLDN-2 in the intestinal organoids
is akin to previous findings by Fischer et al. [26]. In contrast to
the finding by Bardenbacher et al., who showed a reduced
full-length CLDN-2 protein and an increased CLDN-2 cleav-
age fragment in murine small intestinal organoids upon IFN-γ
treatment [51], we did not observe a cleaved CLDN-2 frag-
ment in human colonic organoids upon cytokine mixture ex-
posure. We speculate this difference could be attributed to the
different models or cell lysate fragmentation protocols that
were applied in our and their studies. Furthermore, ILDR-1
(encoding gene for angulin-2) belongs to the family of
tricellular tight junction, which is a specialized structure that
seals the extracellular space between epithelial cells at
tricellular contacts (TCs). In cultured epithelial cells, ILDR-1
recruits tricellulin to TCs, where it is required for the estab-
lishment of a strong barrier of the epithelium [52]. As a re-
cently discovered tight junction protein, the biological func-
tions of ILDR-1 in epithelial cells are still largely unclarified.
Mutations in ILDR-1 were found to be associated with non-
syndromic autosomal recessive hearing impairment [53].
Another report showed that ILDR-1 contributes to fish gill
epithelium barrier properties [54]. Herein, our data revealed
that ILDR-1 transcripts were detected in patient-derived intes-
tinal organoids. In particular, we for the first time showed that
ILDR-1 is a downstream target of the pro-inflammatory cyto-
kines and prednisolone, unraveling its new regulatory mech-
anisms in the maintenance of intestinal epithelial barrier func-
tion. Further investigations are needed to better understand the
involvement of ILDR-1 in IBD pathogenesis. In addition, we
also identified E-cadherin as another novel downstream target
that is regulated by prednisolone. E-cadherin is a predominant
component of the adherens junctions that support the forma-
tion of epithelial barrier. In patient with CD, the expression of
E-cadherin is downregulated in the colonic mucosa.
Polymorphisms in the E-cadherin gene are also associated
with CD [55]. Our data highlight the relevance of E-
cadherin in the pro-inflammatory cytokine-mediated CD path-
ogenesis, as well as its potential contribution to the
prednisolone-induced epithelial barrier augmentation. In addi-
tion, exposure of the cytokine cocktail also led to a decrease in
CLDN-1 and CTNNB1, the expression of which was not af-
fected by the incubation of prednisolone, indicating multiple
mechanisms were involved upon by the cytokine and were not
fully attenuated by prednisolone.

In this study, exposure of CD patient-derived intestinal
organoids to the cytokine complex activated the MAPK p38
pathway, and the MLCK signaling as evidenced by increased
phosphorylation of NF-kB p65 and MLC, as well as the
STAT1 pathway. However, supplementation of prednisolone
prevented the activation ofMLCK and STAT1 signalings, but
did not affect the MAPK signaling, indicating the beneficial
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effects of prednisolone on epithelial barrier function are main-
ly attributable to the activated MLCK and STAT1 pathways.
Previous evidence has demonstrated a crucial role of MLCK
and JAK-STAT1 pathways in the pathogenesis of CD. In CD
patients, the expression of MLCK was significantly increased
in intestinal tissues and correlated with the disease activity
[56–58].MLCK has also been implicated as a prominent play-
er in the regulation of barrier junctions by different cytokines.
For instance, TNF-α, IFN-γ, and IL-1β were all shown to
induce MLCK activation [35, 36, 59, 60]. Increased transcrip-
tional expression or enzymatic activity of MLCK impairs the
interaction between the actin-myosin cytoskeleton and junc-
tion proteins, which subsequently disrupts the junction scaf-
fold and eventually leads to the loss of barrier integrity. Our
results further revealed that an engagement of the MLCK
pathway is essential for prednisolone-induced permeability
enhancement in the intestinal organoids. Furthermore, the
JAK/STAT signaling pathway is highly involved in the path-
ological processes associated with CD. A number of pro-
inflammatory cytokines contribute to CD pathogenesis
through converging the JAK-STAT machinery [61]. Several
small molecules that inhibit the JAK-STAT pathway have
shown efficacy in early phase trails of CD treatment. In addi-
tion to its strong linkage to intestinal immunity, emerging
evidence also revealed the implication of JAK-STAT signal-
ing in intestinal epithelial barrier function. Hereby, exposure
of the cytokine cocktail to the intestinal organoids led to in-
creased phosphorylation of STAT1, which was hampered by
the incubation of prednisolone, assigning a potential role of
JAK-STAT1 axis in the regulation of barrier function by
prednisolone.

In the current study, we did not observe a difference in the
effect of cytokines or prednisolone on epithelial barrier func-
tion in intestinal organoids derived from female or male pa-
tients. However, it is worth noting that we have included only
6 inactive CD patients, being 3 male and 3 female subjects.
This small size of the subgroups precluded us from
performing additional analyses to investigate whether the fac-
tor of gender has an effect on the regulation of epithelial bar-
rier function by cytokines or prednisolone. Further studies
including a larger number of patients are warranted.

In conclusion, our study for the first time demonstrated that
prednisolone is able to restore epithelial barrier function that
was attenuated by combined cytokine TNF-α, IFN-γ, and IL-
1β exposure in CD patient-derived intestinal organoid. On the
molecular level, this effect is GR-dependent with a pro-
nounced involvement of MLCK and STAT1 signaling path-
way. Moreover, we revealed that supplementation of prednis-
olone could restore the expression of CLDN-2, E-cadherin,
and ILDR-1. These findings highlight the relevance of pro-
inflammatory cytokines as key pathogenic factors in inducing
intestinal barrier dysfunction that contribute to disease devel-
opment, identify new molecular junction targets regulated by

prednisolone, and underscore intestinal barrier restoration as a
potential mechanism that contributes to the clinical efficacy of
prednisolone in CD patients.
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