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c-Jun N-terminal Kinase 1 ablation protects
against metabolic-induced hippocampal cognitive impairments
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Abstract
The development of metabolic alterations like insulin resistance has been associatedwith dysfunctions inmitochondrial oxidative
capacity, induction of neuroinflammatory responses, and the appearance of cognitive impairments in the brain. The c-Jun N-
terminal Kinase 1 (JNK1) is a potential key modulator of these mechanisms. The current study identifies a protective effect of
whole-body JNK1 knockout in the presence of a high-fat diet (HFD). Specifically, the data suggest that mice missing JNK1 show
increased insulin sensitivity and mitochondrial activity, as well as reduced body weight, and astrocyte and microglial reactivity.
Finally, these animals are also protected against HFD-induced cognitive impairments as assessed through novel object recogni-
tion test, the observation of dendritic spines, and the levels of BDNF or other proteins like spinophilin and ARC. Thus,
modulation of JNK1 activity seems like a promising approach for the design of therapies aimed at treating metabolic-induced
cognitive impairments.

Key messages
& JNK1 is a link between obesity/type 2 diabetes and cognitive loss
& Inhibition of JNK1 is neuroprotective
& JNK1 constitutes a therapeutic strategy for cognitive loss.
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Introduction

Mild cognitive impairment is a human syndrome character-
ized by the appearance of small cognitive complaints that do
not affect the performance of simple tasks [1]. It usually oc-
curs in patients over 65 years old, can aggravate over time, and
eventually leads to the appearance of dementia after 1 year [2].
Longitudinal studies in humans have observed how this pro-
gression is linked to dysregulations in the metabolism of glu-
cose, a characteristic of diabetic alterations [2].

The nervous system depends on the metabolism of glucose
to maintain its physiological activity [3]. In preclinical studies,
alterations in the oxidation of this carbohydrate have been
linked with a decrease in lifespan and the appearance of
slow-building affectations that cause neurodegeneration [4].
It has been described that the insulin receptor (IR) and its
signalling pathway play a role in the modulation of these
mechanisms. Also, IR has been studied for its importance in
the development of diabetic complications and proper func-
tionality of cognition-related areas like the hippocampus and
the prefrontal cortex [5]. On this note, Grillo and colleagues
showed how silencing of the gene for IR in the hippocampus
caused major spatial learning impairments when using anti-
sense sequences in lentivirus [6]. These results correlated with
previously reported studies in which sporadic forms of
Alzheimer’s disease have been associated with the desensiti-
zation of the IR [7, 8], a paradigm that has later been labelled
as type 3 diabetes (T3D) [9, 10]. Thus, investigating mecha-
nisms for the modulation of this pathway may prove relevant
to identify new approaches to treat these afflictions.

The c-Jun N-terminal Kinases (JNKs) are very active
stress-response elements that participate in the control of
many cellular mechanisms [11]. Short-term activation is be-
lieved to be necessary for survival and the maintenance of
physiological functions, while long-term activation has been
described to cause the appearance of cellular stress and the
induction of pathophysiological mechanisms. For example,
it has been reported that there is high JNK activity in the
hypothalamus during obesity [12, 13]. In 2010, Sabio and
colleagues reported that isoform 1 (JNK1) is a highly active
JNK isoform [14]. High JNK1 activity has been linked with
the appearance of reactive stress responses, conditions like
obesity, and pathologies like diabetes or anxiety and neurode-
generative disorders [15, 16]. On a molecular level, JNK1 is
activated by cytokines, mitochondrial and endoplasmic retic-
ulum stress, and hyperlipidaemia among many other stimuli,
all of which are hallmarks of metabolic pathologies [4].
Furthermore, JNK1 regulates inhibitory serine phosphoryla-
tion of the IR substrate (IRS) proteins, which impairs insulin
signalling. Yet, it has been observed that blocking of the
Ser307 residue, a point of JNK1 activity, does not avoid insu-
lin resistance but rather causes for a further increase, indicat-
ing the existence of multiple parallel and redundant

mechanisms through which JNK1 promotes metabolic alter-
ations when it is activated [15, 17].

In order to study these mechanisms, whole-body knockout
animals for JNK1 (Jnk1−/−) have been previously used by sev-
eral authors. It has been reported that JNK1 is necessary for the
accumulation of visceral fat, and thus, its absence is protective
against obesity, enhances sensitivity to insulin, and induces
antiinflammatory effects in models of obesity induced with a
high-fat diet (HFD) [16, 18]. Studies revealed that these ani-
mals showed metabolic protection against the effects of HFD
for over 40 weeks and maintained a high level of tolerance and
protection against oxidative damage in the adipose and hepatic
tissues [17]. Controversially, Becattini and co-workers reported
that this genetic modification, while beneficial for the control
of peripheral metabolic alterations, caused for mild oxidative
damage in the skin of mice at the age of 11 and 20 months
when exposed to a HFD, yet effects were lower than in previ-
ously studied models like Drosophila or Caenorhabditis
elegans [17]. Finally, researchers like Mohammad H and col-
leagues described how Jnk1−/− animals showed lower anxiety
levels and increased neurogenesis [15]. Similar results on the
differences of neurogenic activity of the JNK1 transgenic ani-
mals have been reported by our research group [19].
Complementarily, tissue-specific knockouts of the JNK1 in
the adipose tissue, muscle, and liver have also been described.
In all cases, animals showed amelioration of metabolic alter-
ations, but effects were not as significant as those produced by
the whole-body knockout [20–22]. Exceptionally, conditional
neuron JNK1 knockout mice showed dramatic sensitivity to
insulin in the brain and the periphery and reduced inflammato-
ry responses and complete protection against HFD in the hy-
pothalamus [23]. Authors described very high energy expendi-
ture rates, caused by the increased production of triiodothyro-
nine (T3) and thyroid-stimulating hormone (TSH) hormones
[23, 24].

Consequently, the present research is intended to validate
the hypothesis of a molecular regulatory factor linking meta-
bolic dysregulations and cognitive loss, to demonstrate the
role of JNK1 isoform in these mechanisms, and suggest a
putative target for future pharmacological strategies.

Research design and methods

Animals and diet

Male C57BL/6J wild-type (WT) and Mpak8 monotransgenic
knockout animals were used for this study. The Mapk8 gene
codifies for the protein JNK1 (Jnk1−/−). Transgenic animals
were obtained and characterized following the method de-
scribed by Dong and colleagues [25]. All animals used in this
study were obtained from established breeding couples in the
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animal facility (Pharmacy and Food Sciences Faculty,
University of Barcelona; approval number C-0032).

The animals were fed with either control (CT; 12% of Kcal
derived of fat content; Envigo; product 2016) or palmitic
acid–enriched diets (high-fat diets (HFD); 45% of Kcal de-
rived of fat content; Research Diets, Inc.; product D12451)
from their weaning until they were euthanized. Thus, four
experimental groups were established: WT CT, WT HFD,
Jnk1−/− CT, and Jnk1−/− HFD. Animals were randomly
assigned into each experimental group in a non-blinded man-
ner, and 12–15 animals were used per group. They were
grown until 9 months of age and underwent monthly weight
controls. Environmental conditions of temperature and hu-
midity were kept stable. Also, animals were kept under a 12-
h light/dark cycle and had food and water available at all times
(Pharmacy and Food Sciences Faculty, University of
Barcelona). During all procedures, the European Committee
bioethics directives were followed (European Communities
Council Directive 2010/63/EU) and all protocols were previ-
ously approved by the ethics committee from the University
of Barcelona. In all cases, it was made sure that animal num-
bers, stress, and pain were kept under a necessary minimum.

Glucose tolerance test–insulin tolerance test

Tests were conducted as previously described [26]. In short,
animals were fasted 6 h previous to the tests and posteriorly
injected with either glucose (1 g/kg) or insulin (0.75 UI/kg) in
the intraperitoneal cavity. Peripheral glucose concentrations
were calculated using a glucometer (Accu-Chek, Roche) at dif-
ferent time points right before (basal) and after the administra-
tion: glucose tolerance test (GTT) (5, 15, 30, 60, 120, and
180 min) and insulin tolerance test (ITT) (15, 30, 45, 60, and
90min). Animals weremonitored throughout the test, and if any
of the subjects dropped below 20 mg/dl in the ITT, they were
administered a dose of glucose (1 g/kg). Blood glucose levels
and behaviour where checked regularly until they were stable.

Novel object recognition test

Experimental procedure was adapted from a publication by
Bevins and Besheer [27]. The week previous to the test, ani-
mals were handled for a few minutes every day in order to
reduce manipulation stress. To reduce environmental cues, tests
were conducted in an open-field box (50 × 50 × 20 cm)
surrounded by black curtains. Initial testing consisted of 3 days
in which the animals were introduced to the open-field box for
10 min and were allowed to explore it freely (habituation peri-
od). Motor activity and stress for each animal were evaluated
by the quantification of the speed, total distance, and time spent
in the inner quadrant. On the following day, two identical ob-
jects were introduced into the open field and the exploration
time for each object was quantified. Animals that showed

significant preference for one of the objects over the other were
excluded. The next day, one of the objects was substituted by a
new one and exploration time was quantified again.

During the experimental procedure, all spaces and objects
were properly cleaned previous to the introduction of the an-
imals in order to eliminate odour cues. Objects were random-
ized by blindly choosing from a box in each session so as to
reduce any possible preference effects caused by colour or
shape. All recordings and data were obtained using the pro-
gram Smart 3.0 (Panlab). Motor activity and stress data was
presented as a curve in which the mean and standard deviation
were presented. Area under the curve was extrapolated for
posterior statistical analysis. Discrimination ratio (DI) was
calculated using the following formula: DI = (time spent ex-
ploring the new object – time spent exploring the known ob-
ject)/total exploration time.

Western blot

Protein detection was performed from protein extracts of hip-
pocampal tissue of mice euthanized by neck dislocation.
Protein extraction and posterior western blot assays were per-
formed as previously described [26]. References for the anti-
bodies used for these assays have been described in
Supplementary Material 1. Detections were performed
through chemoluminescence using Pierce® ECL Western
Blotting Substrate (#32106, Thermo Scientific, USA), a Bio-
Rad Universal Hood II Molecular Imager, and the Image Lab
v5.2.1 software (Bio-Rad Laboratories). Measurements were
expressed in arbitrary units and all results were normalized
with the corresponding loading control (glyceraldehyde-3-
phosphate dehydrogenase (GAPDH)).

Immunofluorescence

Prior to perfusion with 4% paraformaldehyde, animals were
anaesthetized through an intraperitoneal injection of ketamine
(100mg/kg) and xylazine (10mg/kg). Posterior brain fixation,
sectioning, and labelling through immunofluorescence have
been previously described [26].

Antibodies used for IF have been included in
Supplementary Material 1. Images were acquired from an
epifluorescence microscope (Olympus BX61 laboratory mi-
croscope, Melville, NY-Olympus America Inc.). The number
of SOD1-positive cells was quantified in the hilus of the den-
tate gyrus of the hippocampus.

Real-time polymerase chain reaction

Gene expression was quantified after hippocampal RNA ex-
traction. Posteriorly, RNA samples were retrotranscribed into
cDNA and used for real-time polymerase chain reaction (RT-
PCR) [26]. Specific protocol details are described in a
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previous publication from our research group. Primer se-
quences for the RT-PCR are in Supplementary Material 2.

Citrate Synthase Activity Colorimetric Assay Kit

Activity was detected from tissue homogenates as described
in the protocol by BioVision, Inc. (Citrate Synthase Activity
Colorimetric Assay Kit, K318) and corrected for sample-
protein content through a Pierce™ BCA Protein Assay Kit
(Thermo Scientific™, Waltham, MA, USA).

Golgi stain

Protocol was followed as described by the manufacturer ((FD
Rapid GolgiStain™ Kit; Cat #PK401; FD Neurotechnologies,
Inc.) and images were obtained from a BX61 laboratory mi-
croscope (Melville, NY-Olympus America Inc.).

Dendritic spines were quantified as previously described
[26]. Briefly, granular neurons from the dentate gyrus of the
hippocampus were chosen and measurements were performed
at least 50 μm from the soma. At minimum, 5 consecutive
10-μm sections were collected and 5 neurons were quantified
per animal. Neurons were chosen from those that showed
clear staining. No neurons were included in the analyses if
their dendritic arborisation crossed paths with those nearby.
Four animals per experimental group were used.

Statistical analysis

Results were presented as interleaved boxes and whiskers with
each of the obtained values being represented. The box repre-
sents themedian and the 25th to 75th percentiles in the extremes.
Maximum and minimum values were represented as whiskers.
All experimental groups were tested through two-way ANOVA
and Tukey’s. All analyses and graph representations were per-
formed in the program GraphPad Prism for Windows version
6.01 (GraphPad Software, Inc.). Experimenters were blinded to
data sets when calculating statistical differences. Only relevant
significant values were represented with their corresponding p
value. In all figures and graph representations, the f value and
degrees of freedom for ANOVAwere included.

Results

Transgenic JNK1 knockout mice show lower body
weight, higher insulin sensitivity, and no negative
insulin-related or inflammatory alterations
after long-term HFD feeding

Evaluation of periphery parameters demonstrated how lack of
JNK1 reduced animal body weight and increased responsive-
ness to insulin when evaluated in the ITT. WT HFD animals

showed significant increases in body weight, as well as in-
creased blood glucose concentrations both in the GTT and in
ITT. HFD caused for mild increases in weight and glucose
concentrations in the Jnk1−/− HFD experimental group, but
values were similar to those of WT CT animals (Fig. 1).

On a molecular level, the IR/AKT signalling axis showed a
significant increase of the activating phosphorylation rates in
the Jnk1−/−s when compared with that in WTs. GSK3β auto-
phosphorylated inhibitory Ser9 residue showed similar tenden-
cies. Additionally, IDE protein levels were significantly re-
duced in the WT HFD experimental group versus that in the
WT CT. Finally, protein levels for the PTP1B were strongly
increased in theWTHFD animals while Jnk1−/−s experimental
groups showed non-significant, slightly lower values than WT
CT (p = 0.1143 and p = 0.0816 respectively) (Fig. 2a).

Analysis of the profiles of both astrocytes and microglia
revealed that cells were more reactive in the WT HFD when
compared against the control. Reactiveness was evaluated re-
garding the size, colour intensity, number, and ramification
rates of the detected cells. In the Jnk1−/− experimental groups,
a reduction in these same characteristics was observed even
below control levels (Fig. 2b).

Lack of JNK1 increases mitochondrial oxidative
phosphorylation and antioxidant enzymes
and protects against HFD-induced dysregulations

Detection of OXPHOS complexes showed an overall tendency
towards higher protein levels in the Jnk1−/− animals, especially
when comparing against the WT HFD mice, which present sig-
nificant reductions on CI and CII versus WT CT. Exceptionally,
CII was strongly affected by HFD even in the Jnk1−/− HFD
experimental group. Importantly, CIII is highly upregulated in
both Jnk1−/− experimental groups. Similar upward tendencies
were observed in PGC1α and PPARγ, as well as in antioxidant
enzymes SOD1 and GPX1 (Fig. 3a). Evaluation of gene expres-
sion rates for Pgc1α, Pparγ, Sod1, and Gpx1 showed a signifi-
cant upregulation in the Jnk1−/− animals (Fig. 3b). Additionally,
quantification of the number of SOD-positive cells in the hilus
region of the dentate gyrus of the hippocampus showed the same
trends (Fig. 4a, b). Finally, 4HNE levels were significantly in-
creased in WT HFD and reduced in Jnk1−/−s (Fig. 3) and the
activity of citrate synthase was mildly higher in the Jnk1−/− ex-
perimental groups (Fig. 4c).

Absence of JNK1 increases motor activity and protects
against cognitive impairment by maintaining
dendritic spines and synapse-related proteins even
after chronic exposure to HFD

During the habituation period, three parameters related to mo-
tor activity were quantified: time spent in the open-field inner
quadrant, total distance, and mean speed. In all three
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measures, Jnk1−/− animals showed higher values than their
controls (Fig. 5a–c). Assessment of long-term memory con-
solidation through the novel object recognition test (NORT)
determined that only WT HFD animals had reductions in the
discrimination ratio index (Fig. 5d).

Detection of the protein levels of BDNF demonstrated a
significant increase in the Jnk1−/− mice. Synapse-related pro-
teins ARC, neurexin 2, and neuroligin 3 showed tendencies
towards an increase in animals lacking JNK1 (Fig. 5e).
Additionally, significant reductions were observed for the
WT HFD exper imenta l group versus WT CT in
synaptophysin, neurexin 2, and neuroligin 3 protein levels
while Jnk1−/− HFD showed no diet-induced effects (Fig.
5e). Finally, alterations on neurexin 2 and neuroligin 3 were
confirmed in an immunofluorescence detection in the cornu
ammonis 3 region of the hippocampus (Fig. 6).

Moreover, spinophilin, P-Pyk2, and DBN1, found in den-
dritic arborisations and spines, showed similar upward tenden-
cies in Jnk1−/−s (Fig. 5e), which were correlated with the
values in the PAK1/LIMK1 axis (Fig. 7a). Similarly, quantifi-
cation on the number of dendritic spines showed clear reduc-
tions in the WT HFD experimental group while Jnk1−/−s
showed no differences against WT CT (Fig. 7b).
Furthermore, WT HFD spines showed smaller and shorter
profiles.

Discussion

The results from the present investigation demonstrate, for the
first time, the role of JNK1 in the context of the appearance of
cognitive deficits linked to metabolic alterations [28].

Fig. 1 Periphery metabolic
parameters: a weight: WT CT=
13, WT HFD = 12, Jnk1−/− CT =
13, Jnk1−/− HFD= 14; b GTT:
WT CT= 8, WT HFD = 11,
Jnk1−/− CT= 11, Jnk1−/− HFD =
10; c ITT: WT CT= 9, WT
HFD = 11, Jnk1−/− CT= 11,
Jnk1−/− HFD = 10. [x]/time
progression curves are presented
as the mean and standard
deviation. Results are presented
as interleaved boxes and
whiskers. The box represents the
median in the middle and the 25th
to 75th percentile in the extremes.
The maximum and minimum
values were represented as
whiskers. Statistical analysis:
two-way ANOVA and Tukey’s
(**p < 0.01 and ***p < 0.001)
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The appearance of hyperglycaemia and loss of insulin
sensitivity in the periphery and central tissues has been

previously reported in models of HFD both by us and
by other research groups [26, 29]. It is believed that this

Fig. 3 Detection of mitochondrial oxidative phosphorylation complexes
and antioxidant enzymes through a protein levels and b gene expression.
Results are presented as scatter plots representing individual values.Mean

± SD. n = 4. Statistical analysis: two-way ANOVA ($p < 0.05 and
$$p < 0.01) and Tukey’s (*p < 0.05, **p < 0.01, and ***p < 0.001)

Fig. 2 a Evaluation of biomarkers associated with the cellular signalling
of insulin through the detection of protein levels. Results are presented as
scatter plots representing individual values. Mean ± SD. n = 4. Statistical
analysis: two-way ANOVA and Tukey’s (*p < 0.05, **p < 0.01, and

***p < 0.001). b Analysis on the reactive profiles of astrocytes (GFAP;
green; first column) and microglia (IBA1; green; second column) in the
dentate gyrus of the hippocampus. Representative images were present-
ed. Scale bar 200 μm. mol, molecular layer; gl, granular layer; h, hilus
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situation derives from the development of mitochondrial
and endoplasmic reticulum stress which in turn increases
the activity of the JNKs, kinases responsible for the inhib-
itory phosphorylation of the IRS1. Moreover, other mole-
cules like PTP1B and SOCS3, which are phosphatases of
the tyrosine activation points, also become upregulated
[30–32]. These mechanisms were confirmed in a previous
publication from our group in which the effects of the
removal of JNK2 were studied [26]. Additionally, other
alterations like the increased production of ceramides fa-
vour the appearance of metabolic dysfunctions, impair-
ments of neuronal plasticity, reduced myelin maintenance,
glial and neuronal cell death, neurodegeneration, and cog-
nitive affectations [33].

Alternatively, modulation of the activity of the JNK1 seems
like a promising approach to reverse this situation. As it has
been summarized in “Introduction,” the whole-body inactiva-
tion of JNK1 or the neuron-specific silencing of this kinase
causes mice to become significantly more sensitive to insulin
even when fed chronically with HFD [21, 23]. In the brain,
when analyzing hippocampal extracts, significant increases in
the phosphorylation rates of the IR, AKT, and GSK3β pro-
teins were observed when comparing against the control, thus
indicating higher activation of the IR axis. Thus, higher activ-
ity of the insulin signalling pathway after the negative modu-
lation of JNK1 favours the maintenance of glucose homeosta-
sis and increases cell survival and activity, allowing for the
protection of brain function against metabolic diseases.

Fig. 4 a Representative images of labelling against SOD1 (red) in the
dentate gyrus of the hippocampus. Cellular nuclei were stained with
Hoechst (blue). Scale bar (1) 200 μm and (2) 100 μm. mol, molecular
layer; gl, granular layer; h, hilus. b Quantification of the number of

SOD1-positive cells/10 mm2. n = 6. c Results of the citrate synthase ac-
tivity assay. n = 6. Results are presented as scatter plots representing in-
dividual values. Mean ± SD. Statistical analysis: two-way ANOVA and
Tukey’s (*p < 0.05, **p < 0.01, and ***p < 0.001)
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When evaluating the state of mitochondria, a reduction in
oxidative capacity was observed in WT HFD mice. This con-
clusion was drawn from the detection of a decrease in the
levels of the OXPHOS complexes, levels and expression of
antioxidant enzymes, and PGC1α and PPARγ agents. Similar
observations in other tissues have already been reported by
other researchers [34] which have described a relationship
between impairments in PGC1α and the appearance of cog-
nitive affectations through the downregulation of BDNF [35].
Furthermore, evidence suggests that PPARγ has protective
roles through the regulation of SOD activity [36], and conse-
quently, its alteration might participate in mitochondrial dys-
regulation. Importantly, animals that lacked JNK1 showed
increased mitochondrial function, even when detecting the
activity of citrate synthase enzyme, a component of the
Krebs cycle. So, higher mitochondrial activity will account
for increased energy expenditure. This conclusion, together
with the fact that JNK1 is involved with anxiety behaviours

and other mechanisms like the maintenance of reservoirs in
the adipose tissue, and the observed increased motor activity
of the Jnk1−/−, could account for the reduction in the total
body weight of these animals. Jnk1−/− HFD animals showed
high resilience to the negative effects of HFD in the mitochon-
dria, thus indicating the protective potential derived from the
inhibition of this kinase.

As a result of metabolic affectations, there is also an in-
creased release of molecules like cytokines (TNFα, IL6, etc.)
and eicosanoids by adipocytes [37, 38], which induce inflam-
matory responses. In the brain, astrocytes and microglia re-
spond strongly to those molecules [39]. The appearance of
chronic inflammatory reactions in the brain leads to degener-
ation due to the induction of apoptotic mechanisms in neurons
and other neural types [40, 41]. It has been described that
HFD, as a method to cause environmentally induced obesity
in preclinical models, induces increased cellular reactivity [26,
42]. In our study, these same observations were made and,

Fig. 5 Behavioural assessment through NORT in an open field. a Time
spent in open-field inner quadrant (s), b total distance (cm; × 1000), c
mean speed (cm/s), and d discrimination ratio. The first three measure-
ments (a–c) were quantified during the habituation period. WT CT= 12,
WT HFD = 11, Jnk1−/− CT= 11, Jnk1−/−HFD= 11; [x]/time progression
curves are presented as the mean and standard deviation. Results are
presented as interleaved boxes and whiskers. The box represents the

median in the middle and the 25th to 75th percentile in the extremes.
The maximum and minimum values were represented as whiskers. e
Protein-level detection against BDNF, spinophilin, P-PYK2(Thr402)/
PYK2, DBN1, synaptophysin, ARC, neurexin 2, and neuroligin 3.
Results are presented as scatter plots representing individual values.
Mean ± SD. Statistical analysis: two-way ANOVA and Tukey’s
(*p < 0.05, **p < 0.01, and ***p < 0.001)

1730 J Mol Med (2019) 97:1723–1733



most significantly, it was clear that Jnk1−/− animals presented
qualitatively lower reactivity even against the control group.
This result is in accordance with the relevance that JNK1 has
in the activation of these cellular types [43-49].

In the end, the metabolic alterations caused by the HFD
lead to the appearance of cognitive impairments [44]. Our
results have shown clear affectations in the capacity of

animals to generate long-term memory as assessed by the
NORT. Furthermore, the analysis of proteins like
synaptophysin and neurexin related to the establishment of
synaptic connections supported these assumptions, together
with the reduction in the number and size of dendritic spines.
Similar tendencies towards a reduction in the levels of other
molecules like BDNF or Drebrin were observed, but statistical
analyses deem them non-significant. Nonetheless, reported
bibliography has already described the negative effects of dys-
regulation of metabolism in cognitive function [3].
Importantly, Jnk1−/− experimental animals showed evidence
of the protective and beneficial effects of the modulation of the
activity of this kinase. These experimental groups had normal
cognitive capacity in the NORT and, in some cases, showed
higher levels for proteins related to the maintenance of synap-
ses and dendritic spine density. Especially relevant results
were observed in the high upregulation of BDNF, the mainte-
nance of neurexin and neuroligin proteins, and the increased
activation of PAK1 and LIMK1 proteins, responsible of the
inhibition of Cofilin, a known destabilizing element of cyto-
skeletal microfilaments of the structure of dendritic spines
[45].

In conclusion, metabolic dysregulations and posterior cog-
nitive impairments are prevented when negatively modulating
the activity of JNK1. Therefore, it is of interest to consider this
target for the design of future strategies to treat these patholo-
gies, taking into account that the use of a partial, pharmaco-
logical approach will most likely avoid the reported skin ox-
idative damage in the whole-body knockout animals.
Additionally, the use of a molecule derived from natural prod-
ucts like licochalcone A (JNK1 inhibitor), a compound al-
ready tested by our research group in a model of temporal lobe
epilepsy [46], will prove to cause less secondary side effects

Fig. 7 aDetermination of the levels for the PAK1 and LIMK protein axis.
b Representative images and quantification of the number of dendritic
spines for each of the experimental groups. Scale bar 5 μm. Results are

presented as scatter plots representing individual values. Mean ± SD. n =
4. Statistical analysis: two-way ANOVA ($$p < 0.01) and Tukey’s
(*p < 0.05 and ***p < 0.001)

Fig. 6 Distribution of neurexin 2 (red, presynaptic protein) and
neuroligin 3 (green, postsynaptic protein) in the cornu ammonis 3 area
of the hippocampus. Cellular nuclei are stained with Hoechst (blue). Scale
bar 200 μm. so, stratum oriens; sp, pyramidal layer; slu, stratum lucidum
and stratum radiatum
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than those typically caused by the chronic use of synthetic
drugs.
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