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Abstract
Glioblastoma, a grade IV astrocytoma, is considered as the most malignant intracranial tumor, characterized by poor prognosis
and therapy resistance. Tumor heterogeneity that often leads to distinct functional phenotypes contributes to glioblastoma (GB)
indispensable growth and aggressiveness. The complex interaction of neoplastic cells with tumor microenvironment (TME)
along with the presence of cancer stem-like cells (CSCs) largely confers to extrinsic and intrinsic GB heterogeneity. Recent data
indicate that glioma cells secrete a variety of soluble immunoregulatory factors to attract different cell types to TME including
astrocytes, endothelial cells, circulating stem cells, and a range of immune cells. These further induce a local production of
cytokines, chemokines, and growth factors which upon crosstalk with extracellular matrix (ECM) components reprogram
immune cells to inflammatory or anti-inflammatory phenotypes and manipulate host’s immune response in favor of cancer
growth and metastasis. Herein, we provide an overview of the immunobiologic factors that orchestrate the complex network
of glioma cells and TME interactions in an effort to identify potential therapeutic targets for GB malignancy. Current therapeutic
schemes and advances in targeting GB-TME crosstalk are further discussed.

Key messages
• Intrinsic and extrinsic tumor heterogeneity affects GB growth and aggressiveness.

• GB cells secrete growth factors and chemoattractants to recruit immune cells to TME.
• GAMs are a critical cell type in promoting GB growth.
• GAMs change from pro-inflammatory, anti-tumor M1 phenotype to pro-tumorigenic M2.
• Novel therapeutic agents target the crosstalk of neoplastic cells with TME.
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Introduction

Gliomas constitute the most common and malignant primary
neoplasms of the central nervous system (CNS) with a mor-
tality rate approaching 80% in the first year of diagnosis [1].
They derive from neuroepithelial stem cells and are catego-
rized as diffuse astrocytic and oligodendroglial tumors, other
astrocytic, ependymal tumors, and other gliomas [2].

Glioblastoma (GB) refers to grade IV diffuse astrocytoma
and is considered as the most malignant intracranial tumor [2].

GBs are classified either as IDH wild-type tumors
(representing about 90% of cases, mainly in patients over
55 years old), occurring de novo in the absence of a less
malignant precursor, previously referred to as primary [3], or
as IDH-mutant (representing about 10% of cases, mainly in
younger patients) which have developed from a lower-grade
diffuse glioma, characterized by a better prognosis and previ-
ously known as secondary. A third group encompasses glio-
blastoma tumors that IDH cannot be fully evaluated, and they
are not otherwise specified (NOS) [2].

The median age at diagnosis of patients with IDH wild-
type and IDH-mutant GBs is 62 and 44 years, respectively,
whereas the median overall survival time after chemotherapy
is 15 and 31 months, respectively, with men being at a higher
risk [2].
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IDH wild-type GBs are further subdivided into epithelioid,
giant-cell GB, and gliosarcoma [2]. Epithelioid GBs usually
arise in children and younger adults and often contain a v-Raf
murine sarcoma viral oncogene homolog B (BRAF) V600E
mutation and hemizygous deletions of Teneurin transmem-
brane protein 3 (ODZ3) [4] but lack the other molecular fea-
tures of conventional adult IDH wild-type GBs, such as epi-
dermal growth factor receptor (EGFR) amplification. Finally,
other patterns include glioblastoma with primitive neuronal
component, previously referred to as GB with PNET-like
component, which contains primitive cells with neuronal dif-
ferentiation, often with a v-myc avian myelocytomatosis viral
oncogene homolog (MYC) or v-myc avian myelocytomatosis
viral oncogene neuroblastoma-derived homolog (MYCN) am-
plification; small-cell GB/astrocytoma, formerly characterized
as uniform with frequent EGFR amplifications; and granular
cell GB/astrocytoma [2].

On the top of genetic and signaling defects, recent studies
also demonstrate the important role of tumor heterogeneity in
GB indispensable growth and aggressiveness that often leads
to distinct functional phenotypes. The existence of different
clones in the population of GB cells has been previously dem-
onstrated, exhibiting differential therapy responses [5].
Specific cell niches inside the tumor known as cancer stem-
like cells (CSCs) have been suggested to confer to intrinsic
tumor heterogeneity. At the same time, interaction of neoplas-
tic cells with the microenvironment leads to an extrinsic type
of heterogeneity that enhances tumor infiltration and progres-
sion. Darmanis et al. used single-cell RNA sequencing in four
GB patients to investigate neoplastic cells in the tumor core as
well as those away from the primary tumor. They detected that
different tumors shared some hallmark chromosomal abnor-
malities, while cancer cells in the same patient could also be
categorized into subpopulations using their smaller-scale mu-
tations. Infiltrating cells were also shown to have common
characteristics in those patients [6]. Tumor-infiltrating macro-
phages and resident brain microglia were analyzed, showing
that the first preferentially occupy the tumor core and the latter
the peritumoral spaces. The tumor core microglial cells
expressed anti-inflammatory and pro-angiogenic factors while
the macrophages in the tumor periphery express more pro-
inflammatory markers [6]. Another study demonstrated that
the perivascular cluster of tumor cells carries the greatest po-
tential for tumor progression and recurrence by being the most
important niche for glioma stem cells [7].

Altogether, tumor microenvironment (TME) is composed
of several cell types including astrocytes, endothelial cells,
circulating stem cells, and a range of immune cells that are
attracted by soluble factors secreted by glioma cells. Glioma-
associated microglia/macrophages (GAMs), myeloid-derived
suppressor cells (MDSCs), CD4+ and CD8+ T lymphocytes, T
regulatory lymphocytes (Tregs), dendritic cells (DCs), and
natural killer cells (NKs) have all been detected in TME

exhibiting a crucial role in GB proliferation, invasion, and
resistance to treatment (Fig. 1). These cells and most impor-
tantly GAMs induce local production of cytokines and
chemokines which upon crosstalk with extracellular matrix
(ECM) components reprogram immune cells to inflammatory
or anti-inflammatory phenotypes and manipulate host’s im-
mune response in favor of cancer growth and metastasis [1,
8, 9].

In this review, we discuss the important role of immune
cells and soluble mediators in the regulation of TME in GB
malignancy. We further appraise novel therapeutic interven-
tions that may modulate TME in GB and improve treatment
approaches.

Critical role of TME cellular heterogeneity
in GB malignancy

Several types of lymphocytes infiltrate the TME including
mostly CD4+ T helper, CD8+ T cytotoxic, and Tregs. CD4+

cells are more numerous than CD8+ in GB tissues and are
associated with high tumor grade [8]. They express high levels
of inhibitory co-receptors T cell immunoglobulin and mucin-
domain containing-3 (TIM-3) and programmed cell death
protein-1 (PD-1), characteristic of cell exhaustion. T cell ex-
haustion refers to a state of progressive Tcell dysfunction with
poor effector functions, prolonged antigen stimulation and
expression of inhibitory receptors, and a distinct transcription-
al state from that of functional memory or effector T cells.
However, CD4+ cells retain the ability to secrete pro-
inflammatory cytokines such as IFNγwhich further promotes
T cell migration into CNS [10]. In accordance, CD8+ lympho-
cytes observed in GB tissues are mainly inactive (CD25−) and
suffer from cell exhaustion, possibly attributed to constant
exposure to tumor antigens [11]. The immunosuppressive
TME inhibits their activation by inducing them to express
high levels of co-inhibitory receptors [11].

Exhausted T cells also exhibit metabolic changes. They are
often characterized by a switch to a highly glycolytic metab-
olism through upregulation of glucose transporter 1 (GLUT1)
expression, mediated by mammalian target of rapamycin
(mTOR) signaling [12]. This switch may be a cause of ex-
haustion that leads to an antagonistic state between tumor and
T cells over nutrients (such as glucose) which are scarce in
TME. T cells that have gone through this metabolic change
exhibit dysregulation of T cell receptor (TcR) signal transduc-
tion and are unable to combat tumors [12].

By contrast, Tregs (CD4+CD25+FoxP3+) are produced at
higher rates in GB patients suppressing the function of
antigen-presenting cells (APCs) and inhibiting the prolifera-
tion of cytokine-secreting T cells, thus contributing to immu-
nosuppression [13, 14]. Forkhead box P3 (FOXP3) is the
main transcription factor which controls the expression of
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cytokine genes, including IL-10 and transforming growth
factor-β (TGF-β), and regulates the immunosuppressive ac-
tivity of Tregs [13]. The majority of T cell populations in
glioma tissues have been identified as Tregs based on
FOXP3+ staining [14] while increased Treg levels have
been correlated with increased tumor grade [15].
However, contradictory data exist regarding the prognos-
tic importance of increased Treg levels in GB patients and
need further investigation [8].

Clinical studies showed an extensive recruitment of mi-
croglia and peripheral macrophages known as GAMs in
TME that increased with glioma progression and tumor grade
[8]. These cells can adapt a “plastic” phenotype based on
environmental cues and switch between the M1 pro-inflam-
matory, anti-tumor state to M2 (Μ2a,b,c) cytoprotective and
immunosuppressive state. In brain tumors, GAMs with the
M2-like phenotype, M2c were activated by the anti-
inflammatory cytokines (IL-10, TGF-β) produced by tumor
cells and were involved in tumor growth [8]. In GB, GAMs
can be polarized by tumor cell-secreted molecules such as
macrophage colony-stimulating factor (M-CSF) and
granulocyte-macrophage colony-stimulating factor (GM-
CSF) into the anti-inflammatory phenotype M2c and enhance
tumor proliferation [16]. GAMs may also develop an M2-like
phenotype-inducing loop by expressing both IL-10 and its

receptor (IL-10R) while they also express a vast array of mol-
ecules such as TGF-β, IL-6, IL-1β, EGF that suppress im-
mune cell response to tumor cells and enhance their prolifer-
ative, invasive, and migratory functions [17].

Another cell population that promotes immunosuppression
in GB is tumor-infiltrating dendritic cells (TIDCs) that inhibit
T cell immunity and participate in glioma progression [18].
Xin Yu et al. demonstrated that anti-T cell immunoreceptor
with Ig and ITIM domains (TIGIT), a membrane protein
expressed on T cells, exerted its effect only in the presence
of dendritic cells and had an inhibitory effect on the activation
of T cells when it was bound to the poliovirus receptor (PVR)
[19]. At the same time, increased PD-1 expression prevents T
cell activation by blocking the co-stimulatory signal of APCs.
Studies on the immunosuppressive properties of DCs have
shown that immature DCs contribute to the immune tolerance
observed in cancer, suggesting a link between immature DCs
and promotion of Treg cell development [8]. Dhodapkar et al.
demonstrated suppression of antigen-specific immune re-
sponse as well as of antigen-specific T cell immunity upon
injection of immature antigen-pulsed DCs in humans [20].
Furthermore, an increase in antigen-specific IL-10 secretion
by the CD8+ T cell population was also observed [20].

In concert, increased MDSCs present in TME exhibit an
overall immunosuppressive effect over NK, CD4+, and CD8+

Fig. 1 Cell types and factors involved in glioma and tumor
microenvironment (TME) crosstalk. Glioma cells secrete various
chemoattractants to recruit different cell populations in TME including
glioma associated microglia/macrophages (GAMs), myeloid-derived
suppressor cells (MDSCs), CD4+ and CD8+ T lymphocytes, T regulatory
lymphocytes (Tregs), dendritic cells (DCs), and natural killer cells (NKs)
which play a crucial role in GB proliferation, invasion, and resistance to
treatment. Furthermore, they produce polarizing factors to stimulate the

transition of GAMs to M2-like anti-inflammatory, pro-tumorigenic phe-
notype along with additional immunosuppressive and angiogenic factors
to enhance glioma cell migration and invasion. HGF, hepatocyte growth
factor; TGF-β, transforming growth factor- β; MCP, monocyte chemo-
tactic protein; GDNF, glial-derived neurotrophic factor; IL-10,
interleukin-10; TNF-α, tumor necrosis-α; B7-H1, B7-homolog 1; GM-
CSF, granulocyte-macrophage colony-stimulating factor; VEGF, vascular
endothelial growth factor
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cell functions [21]. The polymononuclear MDSCs (CD15+)
that are predominantly found in GB suppress CD8+ T cells by
producing reactive oxygen species (ROS) and secreting im-
munosuppressive cytokines as well as by increasing the pro-
duction of Tregs [22]. Moreover, the number of CD4+ effector
memory T cells was associated with the number of
polymononuclear MDSCs within the tumor area. These
CD4+ effector memory T cells demonstrated upregulated ex-
pression of PD-1 and showed signs of exhaustion, implicating
MDSCs in their suppression [22].

Finally, NK cells compose a small part of tumor-infiltrating
cells in TME but are rendered inactive due to interactions of
class I human leukocyte antigens (HLAs) present in glioma
cells with killer-cell immunoglobulin-like receptors (KIR) that
block their effective recognition and subsequent killing [8].
Furthermore, increased TGF-β levels produced by glioma
have been shown to downregulate the natural killer group 2
member D (NKG2D) receptor on the surface of NK cells [23]
and escape immune surveillance [24].

Role of soluble immunoregulatory factors
in TME of GB

Several growth factors, cytokines and chemoattractants, have
been detected to stimulate migration and polarization of im-
mune cells in TME to allow generation of distinct cellular
phenotypes that support tumor growth (Fig. 1).

Chemoattracting/recruitment factors

Neoplastic cells secrete multiple chemokines that attract non-
neoplastic cells to the TME. The expression of hepatocyte
growth factor (HGF)/scatter factor (SF) and its binding recep-
tor c-Met has been detected inGAMs and in neoplastic cells of
the GB where it induces their proliferation and invasion [25].
Secretion of HGF/SF by glioma cells has been demonstrated
to promote the migration of both microglial cells and bone
marrow-derived macrophages [25].

Monocyte chemotactic protein (MCP) family has also been
involved in chemotaxis and migration of immune cells from
the periphery [26]. MCP-1 and MCP-3 are capable of
attracting immune cells through binding to CCR2 and CCR1
as well as CCR2 and CCR3 receptors, respectively [27].
MCP-3 has been reported to be a potent stimulant for the
migration of macrophages, monocytes, and NK and T cells
as well as DCs [28]. Furthermore, the glial-derived neuro-
trophic factor (GDNF) which is expressed in neurons and glial
cells and overexpressed in high-grade glioma cell lines [29] is
involved in the chemotaxis of microglia and promotes GB
migration in an autocrine manner [30].

Other known chemokines and receptors that are expressed
by GAMs and are involved in chemoattraction include

CX3CL1/CX3CR1, C-X-C motif chemokine ligand 12
(CXCL12)/C-X-C chemokine receptor type 4 and 7
(CXCR4/CXCR7), CCL2/CCR2, and CCL5/CCR5 [8, 9].

GAM-polarizing factors

GAMs have been observed to undergo a change in their phe-
notype from M1 to pro-tumorigenic M2 type as a result of
several polarizing factors. Among them, TGF-β2 acts in syn-
ergy with prostaglandin E2 to promote the M2 polarization of
GAMs and other immune cells [31] through inhibition of
MHC I and II expression on glioma and microglial surface
[32]. Additionally, TGF-β2 secretion by GAMs causes the
upregulation of its own receptors in tumor cells, thus promot-
ing tumor growth [33].

The downstream effector of TGF-β signaling, periostin, is
an ECM protein also implicated in the attraction and activa-
tion of GAMs in GB [33]. In mice xenografts, knockdown of
periostin was shown to drastically reduce the number of M2-
like GAMs leading to elevation of the M1 polarized GAMs
and inhibition of tumor growth [34]. In addition, TGF-β1 has
been detected to stimulate the synthesis of the chondroitin-
sulfate proteoglycan versican by glioma cells which further
acts on GAMs to promote inflammatory cytokine production
and support glioma invasion [8].

Finally, macrophage and granulocyte-macrophage colony-
stimulating factors (M-CSF, GM-CSF) have been shown to
exhibit GAM polarizing effects but their results still remain
contradictory in gliomas [8].

ECM degradation mediators

The crosstalk of GAMs and neoplastic cells further stimulates
cytoskeletal and ECM rearrangements in TME that enhance
their migratory and invasive potential. During M1/M2 polar-
ization of GAMs, lactadherin and osteopontin released from
neoplastic cells promote changes in actin filament contraction
and microtubule rearrangements, further enhancing their mi-
gratory capacity [9]. GAM-derived TGF-β2 has been demon-
strated to increase matrix metalloproteinase-2 (MMP-2) ex-
pression that promotes ECM deposition and facilitates inva-
sion of gliomas.

Additionally, increased expression of IL-8 by GB may be
involved in the regulation of ECM rearrangements. Blocking
of IL-8 binding to its receptor with neutralizing antibodies was
shown to reduce glioma stem cell motility and migratory be-
havior through nuclear factor kappa B (NF-κB) downregula-
tion [35]. Moreover, IL-8-NF-κB signaling was found to pro-
mote F-actin polymerization and mediate epithelial–
mesenchymal transition (EMT) being implicated in regulation
of tumor cell migration and invasion [36–38].
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Angiogenic factors

Cyclooxygenase-2 (COX-2), TGF-β, IL-8, and IL-6 were
demonstrated to contribute to tumor’s neoangiogenesis.
COX-2, being an enzyme that participates in the production
of eicosanoids, plays a major role in GB angiogenesis, by
inducing the synthesis of vascular endothelial growth factor
(VEGF) [39]. VEGF levels have been correlated with GB
patient poor prognosis and recurrence [40].

In addition, glioma cells have been demonstrated to
stimulate increased microglial production of TGF-β [41]
which further induces proliferation of high-grade gliomas
through activation of Ras protein and the mitogen-
activated protein kinase (MAPK) pathway, leading to
upregulation of VEGF and its receptor [42, 43]. At the
same time, TGF-β isoforms cooperate with hypoxia-
inducing factor (HIF) to highly stimulate the formation
of tumoral vasculature.

Furthermore, IL-8 acts as a powerful activator for angio-
genesis by regulating the migration of endothelial cells and
their survival and proliferation [42]. In concert to IL-8 func-
tion, IL-6 activates the STAT3 signaling cascade which leads
to increased VEGF expression levels in GB, contributing to
tumor vascularization [44].

Immunosuppressive factors

The neoplastic cells as well as TME resident cells produce
several immunosuppressive factors, which direct the immune
system to anti-inflammatory responses.

The pro-inflammatory cytokine tumor necrosis factor-α
(TNF-α) is normally produced by activated immune cells
and suppresses tumor proliferation [45]. Studies have shown
that patients with GB secrete lower levels of TNF-α, or ex-
press potential inhibitors of its receptor, which allow tumor
progression. Another family member, TNF-related apoptosis-
inducing ligand (TRAIL), plays a significant role in protecting
normal cells and inducing apoptosis of cancer cells [46].
Glioma cells suppress the extrinsic TRAIL-mediated apopto-
tic pathway by interrupting the extrinsic caspase signaling
cascade to further overcome apoptosis [46].

Additionally, increased levels of the immunosuppressive
cytokine IL-10 have been observed in GB patients [1]. IL-10
is commonly secreted by the tumor cells in response to M2
macrophage stimulation [47] and activates the transcription
factor STAT3 that induces expression of anti-inflammatory
molecules [48]. At the same time, IL-10 inhibits the expres-
sion of pro-inflammatory molecules, activates Tregs, sup-
presses the potency of CD8+-mediated cytotoxicity, as well
as phagocytosis and antigen presentation [49], thus favoring
overall tumor progression.

Finally, GB cells also produce increased levels of B7-
homolog 1 (B7-H1), an immunosuppressive protein not

expressed by normal brain cells [50]. B7-H1 acts as a ligand
to PD-1 and therefore inhibits the T helper cell immune re-
sponse. Moreover, B7-H1 may also act as a receptor which
transmits anti-apoptotic signals, thus inhibiting cancer cell cy-
tolysis by cytotoxic CD8+ T lymphocytes [51].

Therapeutic approaches targeting TME
interactions

Taken all together, the sophisticated crosstalk of neoplastic
cells with TME renders GB a complex and heterogeneous
tumor with remarkable resistance to therapy. Until now, stan-
dard therapy for a newly diagnosed GB includes surgical re-
section and complementary treatment with the alkylating
agent temozolamide (TMZ), in combination with radiation
and six cycles of TMZ for maintenance. However, surgical
removal of the entire tumor is often impossible, since the
initial neoplasm usually invades other healthy brain areas
leading to recurrence [52].

Novel compounds that target the cellular components of
TME along with neoplastic cells or block their interaction
constitute promising new therapeutic approaches for GB
(Table 1).

Monoclonal antibodies targeting immune
checkpoints

The use of monoclonal antibodies that block upregulated mol-
ecules which contribute to an immunosuppressive tumor en-
vironment is under extensive investigation in GB preclinical
and clinical studies. Cytotoxic T lymphocyte antigen-4
(CTLA-4) and PD-1 are two immunosuppressive molecules
whose production is increased in favor of tumor progression
[53]. They are both expressed on the surface of T cells and
bind to the B71 or B72 (CD80 and CD86) molecules of the
APCs. This blocks the co-stimulatory signal from the APC,
which is necessary for T cell activation and leads to downreg-
ulation of Tcells [53]. PD-1 and CTLA-4 blocking antibodies,
ipilimumab and tremelimumab, originally investigated in mel-
anoma, have entered clinical phase II/III with promising re-
sults in GB cases [54].

The combination of nivolumab (anti-PD-1 antibody) and
AXL inhibitor (BGB324) was shown to reduce microglia in-
filtration and increase survival in mice [55].

Another upregulated immune checkpoint molecule, the
carcinoembryonic antigen-related cell adhesion molecule I
(CEACAMI), is involved in hemophilic interactions between
CEACAMI+ tumor cells and tumor-infiltrating lymphocytes.
This interaction inhibits T cell-mediated cytotoxicity and
shields the tumor from immune attacks [56]. CEACAMI
monoclonal antibody is currently under extensive investiga-
tion in four ongoing clinical trials with promising results.
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The anti-CSF-1R antibody, pexidartinib (PLX3397), which
blocks the recruitment and polarization of GAMs was shown
to exhibit significant reduction of GAMs infiltration in tumor-
bearing mice, decrease tumor volume, and improve their sur-
vival. A phase II clinical trial in GB patients showed that
pexidartinib was well-tolerated but with reduced efficacy
[57]. Another anti-CSF-1R antibody emactuzumab
(RG7155) was found to alter GAM polarization and block
glioma progression. However, glioma cell-derived IL-4 was
reported to rescue GAM viability and counteracts CSF-1 treat-
ment, suggesting that CSF-1R-targeting agents will not bene-
fit patients with elevated IL-4 expression [58]. However,
RG7155 has recently entered a phase I study in combination
with immune checkpoint inhibitor against the ligand of PD-1,
PD-L1.

Monoclonal antibodies targeting the T cell co-stimulatory
molecular pathways to induce immune response in the GB
tumor microenvironment have also been investigated. The
CD226/TIGIT co-stimulatory axis has been found to regulate
T cell function since both CD226 and TIGIT bind to PVR in

order to exert their opposite actions, being immune-inducing
and immunosuppressing, respectively [70]. Lozano et al. dem-
onstrated that blocking of TIGIT resulted in elevated IFN-γ
and T-box transcription factor TBX21 (T-bet) expression and
increased CD226 binding to PVR, leading to CD4+ T cell
activation [71]. The opposite effect was observed upon
CD226 blockade that leads to enhanced TIGIT activity.

CD28 is another co-stimulator of TCR that may be targeted
by monoclonal antibodies. CD28 being a co-receptor that
binds CD80 and CD86 leads to activation of NF-κB, a tran-
scription factor necessary for the induction of inflammatory
responses [72]. Until recently, CD28 was considered to be
activated in conjunction with the TCR, in order to induce
NF-κB activity. However, it is now clear that both CD28
and TCR lead to increased NF-κB activity individually, while
simultaneous activation of both receptors leads to a higher
induction of NF-κB activity in a cooperative manner [72].
CD28 downregulation is the hallmark of senescent CD8+ cells
[73], whereas T cell energy is the result of deficient CD28 co-
stimulation [74]. Therefore, targeting of CD226 or CD28 by

Table 1 Therapeutic approaches in GB targeting TME

Type of therapy Target Function Study phase References

Ipilimumab PD-1 inhibitor Prevents T lymphocyte suppression Phase II/III [53, 54]

Tremelimumab CTLA-4 inhibitor Prevents T lymphocyte suppression Phase II/III [53, 54]

Nivolumab and BGB324 PD-1 and AXL inhibitor Reduce microglia infiltration Preclinical [55]

CEACAMI antibody CEACAMI inhibitor Prevents CD8+ lymphocyte suppression Phase I [56]

Pexidartinib (PLX3397) CSF-1R inhibitor Reduces GAM infiltration Phase II [57]

Emactuzumab (RG7155) CSF-1R inhibitor Alters microglia polarization Preclinical,
Phase I

[58]

Maraviroc (MRV) CCR5 inhibitor Alters microglia polarization Preclinical [59]

Plerixafor (AMD3100) CXCR4 antagonist Promotes GAM M1-like polarization.
Inhibits the invasion and angiogenic
potential of
CXCR4/CXCR7-expressing glioblas-
toma stem-like cells

Preclinical [60, 61]

WP1066 STAT3 inhibitor Promotes GAM M1-like polarization.
Enhances the radiosensitivity of GSCs
under coculture with astrocytes and
when grown as orthotopic xenografts

Phase I [62, 63]

GM-CSF-producing vaccine GM-CSF Increases tumor antigen presentation and
T lymphocyte coordination

Preclinical [64]

IL-2 vaccine IL-2 CD8+ lymphocyte and NK cell activation Preclinical [65]

IL-4 vaccine IL-4 Increases tumor infiltration by CD8+

lymphocytes
Preclinical [66]

IL-12 vaccine IL-12 Prevents tumor growth Preclinical [65]

STDENVANT (DC-based vaccine) Upregulates PD-1 and PD-L1
on effector T cells

Increases tumor antigen presentation.
Decreases Tregs when
co-administered with an anti-PD-L1
antibody

Preclinical [67]

ICT-07 vaccine GSC tumor antigens (gp100, IL13Rα2,
AIM-2, HER-2, TRP-2, MAGE1)

Decreases GSC number, improves
progression-free survival

Phase I [68]

SOX2 vaccine GSC SOX2 transcription factor Enhances systemic and local immune
response, prolongs overall survival

Preclinical [69]
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monoclonal antibodies may prove particularly effective in
stimulating patient’s immune response against the tumor’s im-
munosuppressive mechanisms.

Chemokine inhibitors

Glioma cells secrete a variety of cytokines whereas at the
same time, microglia express chemokines and their receptors
being involved in tumor progression. Therefore, targeting che-
mokine receptors to modulate microglia and tumor interaction
is a promising approach with new inhibitors being currently
under investigation.

In a preclinical study, the CCR5 inhibitor Maraviroc
(MRV) was shown to reduce the M2-like markers IL-10 and
ARG-1 and induce the expression of M1-like markers IL-1β
and NO in microglia [59].

Furthermore, targeting of CXCL12 (SDF-1) that is in-
volved in GAMs recruitment by SDF-1 receptor (CXCR4)
antagonist, plerixafor (AMD3100), has been demonstrated to
promote GAM polarization to M1 phenotype while it also
impaired glioma proliferation in preclinical studies [60]. In
addition, plerixafor was shown to inhibit the invasion and
angiogenic potential of CXCR4/CXCR7-expressing glioblas-
toma stem-like cells [61]. In accordance, another CXCR4 an-
tagonist, peptide R, exhibited similar beneficial results in gli-
oma xenografts.

The cytokine downstream signaling transcription factor,
STAT3, has also been investigated in gliomas. Its inhibitor
WP1066 has been reported to block glioma growth and acti-
vate the M1-like phenotype of GAMs in vivo [62].
Furthermore, it was found to enhance the radiosensitivity of
GSCs under coculture with astrocytes and when grown as
orthotopic xenografts [63]. It is currently investigated in phase
I clinical trial of recurrent glioma patients [62].

Cytokine-based vaccines

The use of cytokine releasing vaccines is being investigated in
the hopes of activating the patient’s immune system, as well as
suppressing the TME. Experimental studies have demonstrat-
ed the positive effects of vaccines with irradiated tumor cells
engineered to secrete GM-CSF. GM-CSF was demonstrated
to boost tumor antigen presentation by DCs and macrophages,
as well as the coordination of CD4+ and CD8+ T cell func-
tions, leading to an increase inmedian survival inmicemodels
[64]. Additionally, vaccination with IL-2-producing cells
showed enhanced activation of CD8+ cytotoxic and NK cells
in mice with GB, whereas injection of IL-2 secreting fibro-
blasts in healthy brain areas prevented brain tumor develop-
ment [65]. The use of IL-4 secreting vaccines in clinical stud-
ies resulted in increased tumor infiltration by CD8+ cells and
prolonged mice survival [66]. Finally, injections of IL-12-

expressing cells in rats led to reduced tumor growth and im-
proved survival [65].

Dendritic cell-based vaccines

DC vaccines have also been proposed as a potential therapy
for GB due to their safety and high tumor-specific toxicity
even in the immunologically privileged brain [75]. Several
tumor antigens can be coupled to DCs including synthetic or
glioma peptides and autologous glioma lysates. Direct fusion
of DCs with tumor cells can be achieved or, alternately, trans-
fection with tumor cDNA or RNA to elicit systemic toxicity
and intracranial T cell infiltration. Several tumor lysate-loaded
DC-based vaccines (DCvax) have been investigated in newly
diagnosed [76] and recurrent GB patients with encouraging
survival outcome [77].

A new glioma vaccine (STDENVANT) has been assessed
in the orthotopic mouse model GL261-C57BL/6 consisting of
DCs, GSC lysate, and Toll-like receptor (TLR) 9 agonist CpG
motif-containing oligodeoxynucleotides (CpG ODNs) [67]. It
was found to upregulate PD-1 and its ligand PD-L1 on Tcells,
DCs, and gliomas and induce the accumulation of Tregs in the
brain. However, co-administration with an anti-PD-L1 anti-
body decreased Treg population and improved survival, sug-
gesting that blockade of PD-L1may enhance tumor regression
via STDENVANT and increase its efficacy in glioma mouse
model [67].

In one clinical trial, ICT-07 vaccine that targets a variety
of tumor antigens associated with GSCs tumorigenesis (in-
cluding gp-100, IL13Rα2, AIM-2, HER-2, MAGE1) was
found to improve progression-free survival and reduce
GSC number in patients requiring double surgery, indicat-
ing its efficacy in targeting this population [68]. Finally,
vaccines with SOX2 peptides, the main transcription factor
of GSC population, have shown enhancement of immune
response in animal models and improved overall survival,
indicating a new active immunotherapy approach to treat
GSCs [69].

Conclusions

Taken all together, the dynamic interaction of glioma cells
with their TME plays a pivotal role in tumor growth and
progression while it presents a major challenge for treatment.
Among the various cell types, GAMs seem to play the most
critical role in glioma growth since they can interact with both
malignant tumor cells as well as immune cells to enhance
immunosuppression. Therefore, elucidation of immunoregu-
latory soluble factors that confer to GAM plasticity including
both morphological and functional changes presents a major
research field for future studies. In accordance, novel therapies
that modulate the phenotype of microglial and astrocyte cells
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to a pro-inflammatory state show promising results for GB
management. Furthermore, immunotherapy-based treatment
options employing the use of cytokine or DC vaccines in
combination with immune checkpoint inhibitors may prove
effective in the battle against GB.
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