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Abstract
After the death of large numbers of cells in liver tissue is triggered by various hepatotoxic factors, intimidating and life-
threatening acute liver failure (ALF) can develop with high mortality and expensive costs. Although liver transplantation
and hepatocyte transplantation have become substitutes for improving liver regeneration, their applications are inhibited
by scarce tissue and cell resources. Therefore, the transplantation of mesenchymal stromal cells (MSCs) and their deriv-
atives including hepatocyte-like cells (HLCs), conditioned medium (CM), and exosomes (Ex) can help alleviate liver
injury in ALF individuals or animal models via engraftment into liver tissue, hepatogenic differentiation, the promotion of
host hepatocyte proliferation, the secretion of anti-inflammatory factors and antioxidants, and the enhancement of liver
regeneration in vivo. In addition, biomaterial scaffolds protect MSCs against a harsh microenvironment in vitro and
in vivo, in addition to providing physical and directional support for liver regeneration. In this review, we aimed to discuss
the underlying mechanisms and therapeutic effects of MSCs and their derivatives on rescuing ALF animal models
according to current studies. Further breakthroughs are required to establish safer, more stable, and more effective stem
cell–based therapy in regenerative medicine for repairing liver injury, thus reducing the morbidity and mortality of ALF in
the near future.
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Abbreviations
ALF Acute liver failure
MSC Mesenchymal stromal cell
iPSCs Induced pluripotent stem cells
ESCs Embryonic stem cells
HLCs Hepatocyte-like cells
CCl4 Carbon tetrachloride
CM Conditioned medium
Ex Exosomes
HE Hepatic encephalopathy
INR International normalized ratio

ACLF Acute-on-chronic liver failure
APAP Acetaminophen
NKT Natural killer T
NK Natural killer
IFN-γ Interferon-gamma
TNF-α Tumor necrosis factor alpha
ConA Concanavalin A
α-GalCer Alpha-galactosylceramide
LPS Lipopolysaccharide
DCs Dendritic cells
Tregs T regulatory cells
TLR4 Toll-like receptor 4
PMNs Polymorphonuclear neutrophils
IDO Indoleamine 2,3-dioxygenase
TGF Transforming growth factor
PGE2 Prostaglandin E2
ATP Adenosine triphosphate
ALT Alanine aminotransferase
AST Aspartate aminotransferase
TBIL Total bilirubin
HO-1 Heme oxygenase-1
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AFP Alpha fetal protein
CK Cytokeratin
VEGF Vascular endothelial growth factor
HMGB1 High mobility group box 1 protein
EpCAM Epithelial cell adhesion molecule
GSH Glutathione
Nrf2 NF-E2-related factor 2
SOD Superoxide dismutase
HGF Hepatocyte growth factor
UCMSCs Umbilical cord–derived MSCs
IL-1Ra IL-1 receptor antagonist
BMMSCs Bone marrow–derived MSCs
ConA Concanavalin A
UCB-
MSCs

Umbilical cord blood–derived MSCs

ADMSCs Adipose-derived MSCs
iPSC-
MSCs

iPSC-derived MSCs

PCNA Proliferating cell nuclear antigen
SDF Stromal-derived factor
CXCR4 Chemokine CXC receptor 4
ZD Zeaxanthin dipalmitate
H2O2 Hydrogen dioxide
miR-210 MicroRNA-210
CAT Catalase
AF-
MSCs

Amniotic fluid–derived MSCs

HPL Hepatic progenitor-like
STAT3 Signal transducer and activator of transcription 3
NKTregs Natural killer T regulatory cells
NKT17 IL-17-producing natural killer T
MSC-
H-CM

CM derived from MSCs cocultured with
hepatocytes

D-GalN D-galactosamine
H-CM CM derived from hepatocytes
NCM Nonconditioned medium
TAA Thioacetamide
ICAM Intercellular cell adhesion molecule
GPX1 Glutathione peroxidase-1
PG Prostaglandin
PLGA Poly (lactic acid-glycolic acid)
RSF Regenerated silk fibroin
LADs Liver assist devices

Introduction

Various hepatotoxic factors including hepatitis viruses,
drugs, immunologic injury, and other factors can induce
the death of a large number of cells in liver tissue, thus
resulting in intimidating and life-threatening acute liver
failure (ALF). The annual prevalence of ALF is approxi-
mately one to six cases per million individuals worldwide,

accompanied by high mortality and expensive costs [1, 2].
Notwithstanding the multiple treatments used to prevent
ALF-related complications and decelerate the rate of pro-
gression in ALF, liver transplantation serves as the most
effective strategy; however, its application is restricted by
scarce liver donors, high costs, and organ transplant rejec-
tion [3]. Thus, hepatocyte transplantation could become a
substitute for improving liver regeneration; however, there
is a lack of high-quality primary hepatocytes in vitro be-
cause they are difficult to expand and it is easy for them to
lose their hepatic characteristics in vitro [4, 5].

To compensate for the shortage of liver transplantation and
hepatocyte transplantation, mesenchymal stromal cell
(MSC)–based therapy has emerged as a new and effective
strategy in patients with ALF. In general, MSCs can be isolat-
ed and purified from various tissues, such as bone marrow,
umbilical cord, adipose, umbilical cord blood, amniotic fluid,
and menstrual blood [6–11]. Currently, other cell resources
such as induced pluripotent stem cells (iPSCs) and embryonic
stem cells (ESCs) have become new sources of MSCs [12,
13].MSCs are self-renewing andmultipotent and can generate
abundant somatic cells including adipocytes, osteocytes,
chondrocytes, and hepatocyte-like cells (HLCs) [14]. After
transplantation in vivo, MSCs can not only protect organisms
from inflammatory injury and apoptosis but also play a critical
role in immunosuppression, angiogenesis, and paracrine-
mediated tissue repair [15].

MSCs respond differently according to the injured or
healthy state of the liver, as shown by allogenic MSCs
engrafted into injured sites significantly reducing the mor-
tality of carbon tetrachloride (CCl4)–induced ALF mice,
while fewer MSCs engraft into the normal liver [16].
Furthermore, the engrafted MSCs rarely undergo
hepatogenic differentiation in injured liver sites, and these
engrafted MSCs are efficiently cleared from the liver after
injection for 1 month [17]. Moreover, the poor engraftment
of MSCs in the liver is a consequence of the immune re-
jection of transplanted MSCs [18]. Baertschiger et al. [19]
found that intrahepatic injection but not intrasplenic injec-
tion guarantees stable engraftment of MSCs in the liver,
while these engrafted cells are mainly differentiated into
myofibroblasts. Another study indicated that this obstacle
should be overcome by the differentiation of MSCs into
HLCs in vitro before transplantation in vivo [20]. Current
evidence has shown that not only MSCs but also MSC
derivatives such as HLCs and conditioned medium (CM)
or exosomes (Ex) can be applied to regenerative medicine
for repairing liver injuries [9, 11, 21]. In this review, we
aimed to discuss the therapeutic mechanisms of MSCs and
its derivatives in ALF at the molecular cell level; we then
comprehensively analyzed the effects of MSCs and MSC
derivative–based therapy in rescuing ALF according to re-
cent studies.
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Definition and causes of ALF

Wlodzimirow et al. [22] highlighted that there were 41
different definitions of ALF used in 87 separate studies
without a definitive consensus. The definitions varied ac-
cording to the grade of hepatic encephalopathy (HE), the
time interval between the onset of symptoms and HE, the
severity of coagulation disorders, and the type of
preexisting liver disease. It is urgent to define consensus
criteria to facilitate more effective management of ALF.
The majority of investigators have accepted that an inter-
national normalized ratio (INR) > 1.5 and any grade of HE
within 26 weeks of the onset of illness in a patient without
a history of liver disease represents an incident of ALF
[23]. Patients with acute-on-chronic liver failure (ACLF)
include patients with chronic liver diseases that have de-
veloped into ALF. Although patients with ACLF have a
lower incidence of coagulopathy and HE, it is associated
with a high short-term mortality and immense health care
expenditure [24]. Herein, we considered patients with ALF
after the exclusion of ACLF patients with chronic liver
disease but the inclusion of patients with hyperacute liver
failure in which encephalopathy had an onset interval of
7 days or less [25].

The causes of ALF remain unknown, and novel viruses
or toxins may induce ALF. Infections with hepatitis A and
E are responsible for inducing the majority of cases of
ALF in developing countries [26, 27], and hepatitis B
infection is also a common cause in Asian and
Mediterranean countries [28]. Other viruses including
Epstein–Barr virus, cytomegalovirus, herpes simplex vi-
rus, and parvoviruses can trigger the initiation of ALF
[29]. Drug-induced liver injury, particularly acetamino-
phen (APAP)-induced injury, is the most familiar cause
of ALF in the USA [30]. Although APAP-induced hepa-
totoxicity typically occurs in a dose-dependent manner,
some idiosyncratic individuals develop ALF independent
of the dose. In addition, ischemic or hypoxic conditions
induced by severe sepsis in other large organs (heart or
lung) will consequently induce acute liver injury accom-
panied by extremely high levels of serum aminotransfer-
ases [31, 32], and the prognosis depends on both the se-
verity of the primary disease and the subsequent severity
of the liver injury. Other causes, including neoplastic in-
filtration, acute Budd–Chiari syndrome, heatstroke, and
poisonous substance ingestion, can also induce ALF
[33]. Therefore, we believe that the main causes of ALF
can be divided into several categories, including infection,
toxins/drugs, abnormal perfusion, metabolic disorders, au-
toimmune disorders, and neoplastic infiltration. All of
these factors will initiate cell death in the liver tissue
and cause liver injury for the generation of ALF in ani-
mals and humans.

The immunopathogenesis of ALF

Recently, multiple studies found that immune dysfunction ex-
ists in ALF, and the gradually exaggerated inflammatory re-
sponse plays a key role in the pathogenesis and outcome of
ALF. Patients with ALF were found to have low levels of C3
and C5 [34] and impaired neutrophil function by impairing the
phagocytic capacity [35, 36]. Acute liver injury initiated the
activation of Kupffer cells and natural killer T (NKT) lympho-
cytes [37] and then effectively recruited neutrophils, lympho-
cytes, and macrophages into injured sites and caused a reduc-
tion of nitric oxide (NO) production and massive liver necro-
sis [38, 39]. Moreover, ALF patients demonstrated higher
levels of intrahepatic eosinophils, C-reactive protein, and in-
terleukin (IL)-6 accompanied by lower levels of IL-5 in the
liver and peripheral blood than healthy controls [40, 41].
Other studies indicated the number of CD8+ interferon-
gamma (IFN-γ) + T lymphocytes was significantly increased
[42] and a series of cytokines, such as IL-10, tumor necrosis
factor alpha (TNF-α), and IL-12, were significantly upregu-
lated in ALF [43, 44]. As a result of the immune dysregula-
tion, patients with ALF demonstrate increased susceptibility
to infection, which is associated with the development of fur-
ther complications [45].

Multiple hepatotoxic factors such as concanavalin A
(ConA), alpha-galactosylceramide (α-GalCer,) and lipopoly-
saccharide (LPS) induce immune dysfunction and result in
ALF; thus, the detailed mechanisms are discussed as follows.
The ConA-induced liver injury model is currently considered a
model of autoimmune hepatitis, viral hepatitis, and related
ALF; however, the immunology of this model is complex and
only partially understood. After treatment with ConA in vivo, it
is able to bind to sinusoidal endothelial cells and recruit CD4+
T lymphocytes, which thus results in the injury of endothelial
cells [46]; ConA subsequently binds to Kupffer cells and pro-
motes the release of TNF-α [47]. In ConA-induced ALF
models, the activated conventional dendritic cells (DCs) are
promoted to increase the expression of IL-12, and the activated
NKT cells are promoted to secrete IFN-γ [48]. In addition,
ConA significantly triggers neutrophil infiltration and the accu-
mulation of macrophages in the liver, which thus lead to liver
cell apoptosis and hepatocellular damage [49]. α-GalCer (a
specific ligand for invariant Valpha14 NKTcells)-induced liver
injury resembled acute autoimmune hepatitis and was mediated
byNKTcells and autoantibody-producing B-1 cells [50]. It was
reported that α-GalCer promoted the secretion of IFN-γ for the
recruitment of IL-10-producing T regulatory cells (Tregs) and
CXCR3+ Tregs in the liver [51]. The administration of α-
GalCer also upregulated the levels of FasL and TRAIL, recep-
tors responsible for NKT cell–mediated apoptosis and cytotox-
icity, leading to liver injury [52]. Although hepatic Kupffer cells
serve as a vital factor for TNF-α secretion in ConA-induced
hepatitis, they are nonessential in α-GalCer-induced liver
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injury. In addition, α-GalCer significantly upregulated the
levels of TNF-α, IFN-γ, IL-2, IL-4, and IL-6 in the liver and
plasma [53]. LPS is an innate immune-activating stimulus that
binds to toll-like receptor 4 (TLR4) to activate macrophages
and promote the secretion of CXC chemokines and inflamma-
tory cells [54, 55]. Evidence showed that LPS stimulated
Kupffer cells to release higher levels of TNF-α, IL-1, and IL-
6 [56], and the liver also responds to LPSwith the production of
reactive oxygen intermediates [57]. Moreover, LPS stimulation
enhanced the release of NLRP3 inflammasome and TLR4 and
thus enhanced the release of caspase-1 in Kupffer cells [58].
LPS-induced hepatic polymorphonuclear neutrophil (PMN) ac-
cumulation and the secretion of cytokine-induced neutrophil
chemoattractant-1 thus preceded the onset of hepatic parenchy-
mal cell injury and subsequent sinusoidal endothelial cell injury
[59]. It is worth noting that other factors also trigger immune
dysfunction in vivo; however, the detailed process should be
further clarified after the collection of sufficient evidence.

Autophagy, apoptosis, and necrosis
in the development of ALF

Programmed cell death including autophagy, apoptosis, and
necrosis can lead to irreversible liver injury. The liver is a large
and special organ in which autophagy often occurs, and sev-
eral selective types of autophagy, including mitophagy and
lipophagy, also occur in both cultured hepatocytes and liver
tissue [60, 61]. Autophagy can serve as a protective pathway
or a devastating pathway for the acceleration of hepatic apo-
ptosis via the modulation of mitochondrial recycling.
Apoptosis can be initiated by oxidative stress–related intrinsic
pathway, including DNA damage or p53 activation, or a
caspase-related extrinsic pathway that begins with the activa-
tion of TNF-α and FasL [62]. Apoptosis is a process that
involves minimal inflammation because cellular shrinkage
and implosion lead to silent cell death in the liver tissue, while
necrosis induces cell swelling and eventual rupture, which
triggers a clear inflammatory response after the depletion of
adenosine triphosphate (ATP) [63]. Consequently, ATP deple-
tion and cellular swelling lead to the formation of membrane
blebs, followed by mitochondrial depolarization, lysosomal
breakdown, and rapid ion changes, thus recycling the compo-
nents in response to pathological changes and resulting in cell
membrane rupture [64]. Membrane rupture subsequently
leads to irreversible cell death and secondary inflammation,
while quiescent hepatocytes can be resurrected after cellular
membrane rupture in liver ischemia/reperfusion injury [62].
These molecular changes have the potential to induce a wave
of systemic inflammation and the accumulation of circulating
harmful cytokines, and the cell death rate becomes substan-
tially higher than the rate of hepatocyte regeneration. In this
setting, damaged liver tissue shows synthetic dysfunction for

the secretion of albumin and urea and glycogen storage and
impaired detoxification abilities, such as cytochrome P450
activity and metabolic disturbances (Fig. 1).

MSC transplantation and the underlying
mechanisms

MSCs from various tissues can effectively improve the out-
come of ALF animal models via paracrine pathways, immune
protective effects, upregulation of hepatocyte proliferation,
and maintenance of hepatic metabolic homeostasis (Table 1).

MSCs significantly reduced the levels of alanine amino-
transferase (ALT), aspartate aminotransferase (AST), total bil-
irubin (TBIL), ammonia, and inflammatory cytokines in ALF
rats via the upregulation of heme oxygenase-1 (HO-1). The
upregulation of HO-1 consequently reduced PMN infiltration
to further promote liver regeneration [6]. To protect against the
immune response in the pathogenesis of ALF, MSCs effec-
tively inhibited cytotoxic T lymphocytes and NK cells via
various intercellular contact and paracrine factors, including
indoleamine 2,3-dioxygenase (IDO), transforming growth
factor (TGF)-β and prostaglandin E2 (PGE2) [3]. The im-
mune protective effect ofMSCs can be achieved by enhancing
the number of Treg cells and M2-type macrophages and re-
ducing the number of Th1 and Th17 cells in ALFmodels [75].
MSC transplantation can effectively improve the liver func-
tions of ALF rats via reducing the release of inflammatory
cytokines (TNF-α, IFN-γ, IL-1β, IL-6, and IL-10) and
chemokines (CXCL1 and CXCL2) [76, 77]. In addition to
paracrine mechanisms, intravenously injected MSCs can en-
graft into the injured sites and then attenuate lymphocyte pro-
liferation and systemically reduce the number of activated
NKTcells in vivo [78]. Moreover, MSC transplantation is also
able to inhibit the activation and cytotoxicity of DCs and B
cells [79, 80] and reduce the number of peripheral blood and
liver neutrophils [76]. Engrafted MSCs subsequently elimi-
nated hepatocyte necrosis, promoted liver regeneration, and
prolonged the survival time of ALF models via differentiation
into HLCs and the secretion of albumin, alpha fetal protein
(AFP), and cytokeratin (CK)-18 after implanting into liver
tissue [7, 8, 65]. In addition to maintaining normal liver en-
zymes and synthetic function, MSCs also participate in the
promotion of revascularization via vascular endothelial
growth factor (VEGF)– mediated pathways [66]. In addition,
MSC transplantation significantly decreased the serum and
liver levels of high mobility group box 1 protein (HMGB1),
upregulated the level of epithelial cell adhesion molecule
(EpCAM), and activated M2 polarization as demonstrated
by the upregulation of CD163, IL-10, IL-4, and arginase-1
in ALF rats [67, 68]. However, Yuan et al. [69] argued that
MSC transplantation substantially downregulated the serum
and hepatic levels of CD163 and IL-10 during the early stages
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of MSC transplantation and determined the serum levels of
CD163 and IL-10 as the prognosis indicators in the progress
of ALF in animals and humans after MSC administration.
Intriguingly, Shi et al. [70] showed that MSCs rescued ALF
pigs and stabilized ALF within 7 days as demonstrated by the
normalization of liver enzymes and inhibition of life-
threatening cytokine storms in ALF pigs. The profiling anal-
ysis indicated a delta-like ligand 4 activated Notch pathway
after MSC transplantation, and delta-like ligand 4 has been
validated as a vital factor for improving the survival rates of
ALF pigs and ALF rats. Furthermore, the metabolic trajectory,
including conjugated bile acids, phosphatidylcholines,
lysophosphatidylcholines, fatty acids, amino acids, and
sphingomyelin, returned to the original level at week 3 after
MSC transplantation [71]. APAP overdoses rapidly deplete
glutathione (GSH) and cause oxidative stress-induced injury
in humans and animals, and MSC transplantation increases
the survival rate of APAP-induced ALF mice by upregulating
the antioxidant response and weakening cytochrome P450

activity to reduce the nitrotyrosine level and upregulate the
NF-E2-related factor 2 (Nrf2) level in vivo [72]. Moreover,
MSCs prolong the survival rate of APAP-induced ALF mice
via the upregulation of superoxide dismutase (SOD), GSH,
and hepatocyte growth factor (HGF), and downregulation of
the inflammatory factors TNF-α and IL-6 [73].

Yun et al. compared the safety of MSCs at a gradient
concentration in vivo and found that implanted MSCs did
not alter the body weight, food/water consumption, clinical
symptoms, urinalysis, hematology, clinical chemistry, or-
gan weight, or histopathology at any density, and MSCs
in vivo were cleared away in mice at week 13. After long-
term observation for 26 weeks, the MSCs triggered the
downregulation of hepatic necrosis and lobular neutrophil-
ic infiltration in the injured liver but did not exert tumori-
genicity [74]. The long-term investigation indicated that
MSC transplantation at various concentrations is safe for
the acute phase of ALF and long-term survival of ALF
animal models.

Fig. 1 Cell death–induced liver
dysfunction in the development of
ALF
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Choice of MSC source

It was shown that ALF did not alter the stem cell characteris-
tics or cell activities of MSCs, and the levels of liver-specific
genes and hepatogenic potency were increased in ALF-
derived MSCs [81, 82]. Autologous MSCs isolated from
ALF patients may highly reduce the rejection rate, while the
cell preparatory period is too long for ALF patients with poor
liver functions. Furthermore, MSCs have a high immune priv-
ilege and relative safety when used in allogenic hosts [83].
Although allogenic MSCs are more practical for cell trans-
plantation in ALF patients because they can be isolated from
healthy individuals and can be proliferated at any time, they
also carry obstacles for safe transplantation. Allogenic MSCs
are permissive for cytomegalovirus and herpes simplex virus
infections in vitro and carry the risk of viral transmission to the
recipient [84]. Park et al. demonstrated that autologous MSC
transplantation significantly improved the outcomes of five
patients with liver failure via decreasing the serum albumin
levels and liver stiffness and improving the liver volume, sub-
jective healthiness, and quality of life. Thus, they indicated
that autologous MSC transplantation may serve as a bridge
to liver transplantation in patients with liver failure [85].
Moreover, the outstanding therapeutic effects of allogenic
MSCs for treating ALF without a clear rejection incidence
indicate the promising wide application of allogenic MSCs
in further studies.

As MSC transplantation has gradually replaced primary he-
patocyte transplantation because of its abundance and anti-
inflammatory effects, numerous studies have compared the
transplantation efficacy of MSCs and cells from other sources
in vivo in ALF models (Table 2). Although undifferentiated
umbilical cord–derived MSCs (UCMSCs) have weaker liver-
specific functions than primary hepatocytes, UCMSCs clearly
improve the viability and recovery of damaged hepatocytes
more than primary hepatocytes in vitro. Moreover, the trans-
plantation of primary hepatocytes produced higher numbers of
HepPar1−/albumin-positive cells than the transplantation of
UCMSCs into the recipient liver, while the administration of
UCMSCs more effectively rescued ALF mice and stimulated
endogenous liver regeneration via the downregulation of in-
flammatory factors, including IL-1β, TNF-α, IL-6, IL-10, and
the IL-1 receptor antagonist (IL-1Ra), rather than hepatogenic
differentiation to compensate for the lost liver function [86].
Sun et al. [87] demonstrated that only the transplantation of
bone marrow–derived MSCs (BMMSCs) recovered liver dam-
age and rescued ConA-treated ALF mice via inhibiting the
expression of TNF-α, IFN-γ, and FasL but increasing the IL-
10 level compared with adult hepatocytes, fetal liver cells, and
induced hepatic stem cells.

There are other comparisons of MSCs from different
sources to guide the selection of the optimal MSC source.
Umbilical cord blood–derivedMSCs (UCB-MSCs) expandedTa
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weakly and thus could not be used for application in trans-
plantation, while both adipose-derived MSCs (ADMSCs) and
BMMSCs expanded in vitro can be applied to repair CCl4-
induced injury of ALF mice via hepatogenic differentiation
in vivo [9]. Zare et al. [88] showed that the liver functions
demonstrated by ALT and AST were more significantly im-
proved in response to ADMSCs than BMMSCs, although
there were no significant differences in the survival rate and
liver histopathology of ALF mice. Moreover, both iPSC-
derived MSCs (iPSC-MSCs) and BMMSCs significantly de-
creased lipid peroxidation and increased the survival rate of
ALF animals via the HGF-mediated pathway; iPSC-MSCs
significantly augmented their proliferative ability and com-
pensated for the viable cell count for transplantation [12]. In
summary, other MSCs overcome the disadvantages of
BMMSCs by having abundant tissue sources, enhanced pro-
liferative capacity, and a reduced operation wound.

Transplantation routes

MSCs can be injected into organisms via an intravenous route,
intrahepatic route, intraperitoneal route, hepatic artery route,
and splenic route; however, the selection of the optimal trans-
plantation route remains unclear (Table 3).

Zheng et al. [89] showed that transplantation of MSCs via
the intrahepatic route and tail vein route had similar effects on
improving hepatic synthesis (secretion of CK8, CK18, and
AFP), decreasing liver enzymes (ALT and AST) and promot-
ing liver repair following ALF in animal models.
Transplantation via the intraperitoneal route exerted no thera-
peutic effect because the MSCs could not migrate into the
injured liver; alternatively, the other three routes (portal vein,
hepatic artery, and vena caudalis) promoted the homing of
MSCs to the damaged liver tissue and decreased liver damage
in ALF rats via increasing the expression of proliferating cell
nuclear antigen (PCNA) and HGF, while decreasing the
caspase-3 level [90]. Sun et al. concluded that the selection
of blood vessels for transplantation does not affect the thera-
peutic outcome [90].

However, the majority of studies recommend intravenous
routes for MSC transplantation in ALF animal models. Some
authors recommend transplantation via the tail vein, while
other authors recommend transplantation via the portal vein.
Feng et al. [91] demonstrated that the administration of MSCs
via the tail vein and directly into the liver lobe showed com-
parable efficacy in repairing liver functions and enhancing
liver regeneration in ALF mice, and they considered that in-
jection via the tail vein is more convenient than the
intrahepatic route since transplantation via the hepatic artery
was not more beneficial for the transdifferentiation of MSCs.
Moreover, transplantation via the tail vein provided an addi-
tional survival benefit to rescue ALF than transplantation viaTa
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an intrasplenic route since all of the implanted MSCs integrat-
ed into the liver parenchyma and underwent hepatogenic dif-
ferentiation into HLCs at the injured site for liver regeneration
[92]. Furthermore, another study highlighted that the tail vein
route showed the most prominent effects on reducing the
levels of biochemical parameters including ALT, AST, and
ammonia in ALF mice compared with the use of the portal
vein and liver parenchymal delivery [93]. In contrast, other
authors report that transplanting MSCs via the portal vein can
result in a large amount of engraftment of MSCs and stronger
anti-inflammatory effects. For example, the transplantation of
MSCs via the portal vein and tail vein both decreased the
serum levels of liver enzymes and inhibited inflammation,
hepatic degeneration, and necrosis in ALF rats; however, the
protein levels of stromal-derived factor (SDF)-1α and VEGF
were significantly higher in the portal vein group than in the
tail vein group [94]. Cao et al. [95] determined that portal vein
MSC transplantation enhanced hepatogenic differentiation,
anti-inflammation, and liver regeneration while inhibiting he-
patocyte denaturation and hepatocyte necrosis in ALF pigs;
however, the transplantation of MSCs via the jugular vein did
not demonstrate benefits. Li et al. [96] reported that the injec-
tion of MSCs via a peripheral vein did not rescue ALF pigs,
while most of the ALF pigs survived for a long time over
6 months after transplantation of MSCs via the portal vein.
Thirty percent of the hepatocytes in hepatic lobules and the
liver parenchyma of the surviving pigs were derived from
humans at week 10. More recently, Sang et al. [97] concluded
that intraportal injection was the best route for repairing liver
injury in swine with ALF compared with hepatic intra-arterial
injection, peripheral intravenous injection, and intrahepatic
injection, as demonstrated by the longest survival time, least
liver injury, lowest histopathological score, and lowest apo-
ptosis rate of hepatocytes via decreasing the expression of
caspase-3 and elevating the expression of survivin, AKT,
phospho-AKT, ERK, and phospho-ERK during the initial
stage of ALF. According to the current evidence, intrahepatic
injection serves as the optimal route to improve the outcome
of ALF for MSC transplantation, although it is not sufficiently
convenient compared with the peripheral vein route.

Modification of MSCs or recipients

To improve the transplantation efficacy, cotreatment and pre-
conditioning of MSCs and/or the recipients have been widely
applied for promoting liver regeneration in ALF models
(Table 4).

Cotreatment and pretreatment/preconditioning

Jin et al. [98] demonstrated that cotreatment with SDF-1 en-
hanced the migrative capacity of MSCs, improved the hepatic

secretion of albumin and decreased the serum aminotransfer-
ase levels in ALF mice. As the vital role of IL-10 is always
highlighted in rescuing ALF animal models, Wang et al. [108]
demonstrated that the administration of IL-10 andMSCs ame-
liorated the upregulation of ALT, AST, TBIL, ammonia, and
inflammatory cytokines, while blockage of IL-10 abolished
the beneficial effects of MSCs.

Preconditioning with serum from donor ALF rats clearly
improved the migrative ability of MSCs into the portal area
and liver parenchyma via increasing the chemokine CXC re-
ceptor 4 (CXCR4) level in ALF rats [99]. Preconditioning
with zeaxanthin dipalmitate (ZD) clearly upregulated the cell
survival rate and hepatocyte differentiation and abolished
ROS-induced injury in MSCs treated with LPS and hydrogen
dioxide (H2O2) in vitro via the activation of the PKC/Raf-1/
MAPK/NF-κB pathway and upregulation of microRNA-210
(miR-210). In addition, ZD-pretreated MSCs demonstrated
the best effects on improving hepatocyte proliferation and
ameliorating liver injury via the acceleration of the host regen-
erative progress [100]. In addition, pretreatment with
edaravone upregulated the ROS production, the GSH/
oxidized glutathione (GSSG) ratio, and the expression of cat-
alase (CAT) and SOD-1 in MSCs via the regulation of the
MAPK-PKC-Nrf2 pathway. Transplantation of edaravone-
pretreated MSCs effectively rescued the death of ALF mice
via improving their homing ability, enhancing their prolifera-
tive capacity, decreasing apoptosis, and upregulating the se-
cretion of HGF in MSCs [101].

In addition to the pretreatment of MSCs, the pretreatment
of recipients will consequently activate or inhibit specific
pathways for enhancing the repair capacity of MSCs in vivo.
Preconditioning of recipients with anti-PMN effectively im-
proved liver function and the survival rate of ALF rats after
MSC transplantation by diminishing the number of neutro-
phils and decreasing the release of TNF-α, IL-1β, CXCL1,
and CXCL2 while increasing the IL-10 level [76].
Preconditioning of recipients with IL-1β siRNA before CCl4
injection significantly improved the liver regeneration and
survival rates of ALF mice compared with monotherapy by
MSC transplantation via the downregulation of inflammatory
factors, including CXCL1, IL-1β, and IL-6, and the upregu-
lation of anti-inflammatory factors, including IL-10, VEGF,
and HGF [102]. The optimal dose and safety of cotreatment
and preconditioning should be further investigated to improve
the MSC efficacy in vivo.

Gene modification of MSCs

In addition to external cotreatment and pretreatments with
serum or pharmacokinetics, recent studies have investigated
gene targeting strategies of MSCs to increase liver regenera-
tion. Implantation of MSCs that overexpressed IL-1Ra signif-
icantly alleviated the progression of liver failure and decreased
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the mortality of rats with ALF more than the control MSC
group as the IL-1Ra-MSCs demonstrated enhanced prolifera-
tive ability and engraftment in injured tissues [103]. The over-
expression of c-Met improved the migrative capacity ofMSCs
in a HGF-dependent manner in vitro, and these modified
MSCs showed better engraftment in the injured site accompa-
nied by improved liver functions and higher survival rates of
ALF rats [104]. Similarly, the overexpression of CXCR4 sig-
nificantly increased the release of HGF and VEGF in MSCs,
which thus improved the migrative capacity and colonization
of MSCs, leading to a longer lifetime of ALF mice [105].
HGF-MSCs maintained redox homeostasis, reduced liver in-
jury, and prolonged the survival of ALF mice via increments
in serum GSH, γ-glutamylcysteine synthetase, SOD, and
CAT. Moreover, they also inhibited hepatocyte apoptosis via
the upregulation of Bcl2 and downregulation of Bax and
TNF-α [106].

In addition to gene modification by the overexpression of
anti-inflammatory factors, chemotactic factors and growth
factors, Amiri et al. showed that the inhibition of autophagy
improved the regenerative capacity of MSCs as demonstrated
by reduced liver enzymes and necrosis scores in ALF rats
compared with the scores in control MSC rats. Intriguingly,
ALF mice that received autophagy inhibited MSCs demon-
strated normal histology without necrosis, while ALF mice
that received unmodified MSCs demonstrated mild necrosis
[107]. Accordingly, the knockdown of inflammatory factors
or apoptosis-related genes may become a hot topic to improve
the therapeutic effects of MSCs in ALF animal models.

Hepatogenic differentiation and HLC
transplantation

After incubation with specific combinations of growth factors
in vitro, MSCs can be differentiated into HLCs with hepato-
cyte functions. MSCs changed the morphology and expres-
sion of hepatocyte-specific genes and acquired liver-specific
functions in response to hepatogenic differentiation medium.
However, HLCs typically exhibit liver-specific functions, in-
cluding secretion of albumin and urea, uptake of low-density
lipoprotein and indocyanine green, glycogen storage, and cy-
tochrome P450 activity for 2–3 weeks in vitro [9, 109] but lose
these beneficial functions after a prolonged culture time [110].
Multiple studies have further investigated the therapeutic ef-
fects of hepatogenic MSCs with liver-specific functions for
repairing liver injury in ALF models (Table 5).

Transplantation of HLCs significantly improved the liver
function of CCl4-treated mice via the secretion of TGF-β1,
IL-6, and IL-10 [111]. Transplantation of HLCs before liver
resection decreased the extensive lipid accumulation in hepa-
tocytes and maintained the balance of amino acids,
acylcarnitines, sphingolipids, and glycerophospholipids, thus

promoting hepatocyte survival and inhibiting hepatocyte apo-
ptosis in partial hepatectomy-induced ALF animal models
[112]. Culturing on Matrigel that contained HGF and fibro-
blast growth factor-4 efficiently promoted the hepatogenic
differentiation of MSCs, and intrasplenic injection of these
HLCs prevented liver injury in 90% of hepatectomized rats
[113].

An issue regarding the efficacy of HLCs compared with
MSCs is that HLCs rapidly lose their liver functions and are
sentenced to apoptosis after confronting a harsh environment.
Transplantation of HLCs differentiated from amniotic fluid–
derived MSCs (AF-MSCs) did not exert a recovery effect on
ALFmice because they failed to enter the injured liver section,
while transplantation of hepatic progenitor–like (HPL) cells,
which are derived from AF-MSCs, underwent hepatogenesis
for 1 week and showed a better effect in reducing liver injury
[10]. Wang et al. [114] showed that HLCs expressed lower
levels of HGF and had impaired immunosuppression com-
pared with undifferentiated MSCs; thus, HLCs showed infe-
rior potency to repair the injury in an ALF mouse model.
However, other authors reject these points of views. Li et al.
demonstrated that undifferentiated MSCs and HLCs exert
similar effects on liver regeneration in ALF rats, and both
groups decreased the levels of transaminases and TBIL 7 days
after transplantation compared with the control group [115].
Undifferentiated MSCs and HLCs also exhibited similar abil-
ities in homing into the injured liver tissue and rescued nearly
all ALF mice after tail vein injection; while they rarely differ-
entiated into human hepatocytes in the mouse liver, they stim-
ulated the proliferation of mouse hepatocytes [109]. In addi-
tion, ADMSCs and BMMSCs displayed similar effects on
repairing injuries compared with HLCs from both types of
MSCs, although the gene expression profile of HLCs from
ADMSCs was more close to a normal hepatogenic differenti-
ation profile [9]. In our opinion, HLCs are more sensitive to
harsh environments in vitro and in vivo; thus, MSCs without
differentiation can benefit ALF animal models more than
HLCs.

MSC-derived CM and Ex

MSC-CM and MSC-Ex, which contain many soluble factors,
have been reported to exert therapeutic effects on ALF by
inhibiting hepatocyte apoptosis, reducing panlobular leuko-
cytic infiltrates and improving liver regeneration in recent
years (Table 6).

MSC-CM

MSC-CM and MSC treatment comparably increased the liver
function, reduced the serum levels of IFN-γ, IL-1β, and IL-6,
and upregulated the serum IL-10 levels in ALF models.
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Moreover, IL-10 has been suggested to be the most important
anti-inflammatory cytokine for the activation of signal trans-
ducer and activator of transcription 3 (STAT3) [21]. Injection
of MSC-CM and MSCs clearly increased the natural killer T
regulatory cell (NKTreg)/IL-17-producing natural killer T
(NKT17) cell ratio in liver tissue and decreased the hepato-
toxicity of NKT cells in a paracrine, indoleamine 2,3-
dioxygenase-dependent manner, consequently attenuating
hepatitis in vivo [116]. In addition, both MSC-CM and MSC
lysates restored liver function and improved the survival rate
of ALF rats via the secretion of HGF and VEGF [117].

Intriguingly, MSCs did not exhibit an additional benefit for
ALF rats because of their poor engraftment and immune re-
jection, while MSC-CM substantially reduced hepatocellular
death and bile duct duplication by promoting immune cell
migration away from liver tissue and releasing chemokines
[118]. Zagoura et al. [10] debated with the opinion that trans-
plantation of CM derived from HPL cells showed a more
efficient effect than AFMSC-CM via the secretion of more
anti-inflammatory factors, including IL-10, IL-1Ra, IL-13,
and IL-27. CM derived from MSCs cocultured with hepato-
cytes (MSC-H-CM) was the most effective medium for im-
proving cell viability and total protein synthesis, decreasing
the levels of lactate dehydrogenase and AST, and inhibiting
the apoptosis of D-galactosamine (D-GalN)-treated LO2 cells
in vitro than MSC-CM, CM derived from hepatocytes (H-
CM), combinations of MSC-CM and H-CM, and noncondi-
tioned medium (NCM). Moreover, MSC-H-CM most effi-
ciently reduced liver injury biomarkers and enhanced the re-
covery of liver tissue and consequently improved the survival
rate of ALF rats [119].

Although MSC and CM significantly improved the gross
histopathological appearance of thioacetamide (TAA)-stimu-
lated livers, CM did not remarkably or significantly improve

the survival rate since it only enhances liver regeneration at
later stages of self-recovery [75]. ESC-MSC is also an impor-
tant MSC source, which has similar stemness characteristics
compared with BMMSCs, but they grow faster than
BMMSCs in vitro. An in vitro study showed that ESC-
MSC-CM significantly improved the primary hepatocyte via-
bility and upregulated the IL-10 levels in LPS-induced human
blood mononuclear cells. However, BMMSC-CM and ESC-
MSC-CM did not provide a survival benefit after 1 week of
transplantation in ALF animals, although they increased the
liver function after 48 h of transplantation [13]. This finding
raises concerns as to whether MSC-CM always contributes to
the improved outcomes of ALF.

MSC-Ex

Ex are small biological membrane vesicles from CM and con-
tain many active substances (mRNAs and adhesion mole-
cules) for the regulation of cellular and tissue physiology
in vitro and in vivo. MSC-Ex express high levels of cytokines,
such as angiopoietin-2, Axl, angiogenin, osteoprotegerin, IL-
6, IL-8, insulin-like growth factor binding protein-6, and in-
tercellular cell adhesion molecule (ICAM)-1. In vitro, MSC-
Ex can be taken up by AML12 cells (a mouse hepatocyte cell
line) and migrate to inhibit the apoptosis of D-GalN/LPS-in-
duced AML12 cells [11]. Moreover, MSC-Ex in vitro
inhibited APAP- and H2O2-induced hepatocyte apoptosis via
the upregulation of Bcl-XL and promotion of hepatocyte pro-
liferation but not via alleviation of oxidative stress [120].

After transplantation in vivo, MSC-Ex significantly re-
versed CCl4-induced ALF in mice by promoting hepatocyte
proliferation and upregulation of NF-κB and STAT3 [120].
MSC-Ex significantly reduced the serum levels of ALT,
AST, and inflammatory factor secretion by prohibiting the
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activation of macrophages, and miR-17 is an indispensable
factor that targets thioredoxin-interacting protein for the sup-
pression of NLRP3-mediated inflammation in ALF [121]. It
also engrafted in the liver to serve as an antioxidant and inhibit
oxidative stress–induced apoptosis via the delivery of gluta-
thione peroxidase-1 (GPX1), upregulation of ERK1/2 and
Bcl-2, and downregulation of the IKKB/NFkB/casp-9/3 path-
way [122]. MSC-secreted prostaglandin (PG) E2 activated
Yes-associated protein via upregulating the level of PGE4

and enhancing the phosphorylation of cAMP, and Yes-
associated protein activated the mammalian target of
rapamycin via suppressing phosphatase and tensin homolog
for enhancing the cell proliferation of hepatocytes and pro-
moting the recovery of ALF [123]. Moreover, pretreatment
with MSC-Ex before the induction of ALF inhibited macro-
phage proliferation and the expression of active caspase-3 in
injured livers, consequently improving liver function and en-
hancing survival rates in ALFmice [11]. Thus, we believe that
MSC-Ex represent a highly attractive therapeutic approach
compared with MSCs without the risk of iatrogenic tumor
formation or pulmonary embolisms in ALF.

Biomaterials for improving MSC
transplantation efficacy

Biomaterials with perfect biocompatibility, an applicable mi-
crostructure, and a proper degradation rate have gradually
attracted attention for improving MSC attachment, prolifera-
tion, and secretion of beneficial cytokines via supplementing
them with oxygen, nutrition, and growth factors. A nanopar-
ticle that carries MSC-derived regenerative factors and is coat-
ed with red blood cell membranes has lower macrophagic
internalization and significantly improves the proliferation of
liver cells in vitro, and these coated nanoparticles can be well
maintained in the injured liver of ALF mice and mitigate the
liver injury after transplantation [124]. The IL-1Ra chitosan
nanoparticles that have a targeting ability and controlled-
release features can also improve the efficacy of MSC trans-
plantation. Cotreatment with IL-1Ra chitosan nanoparticles
andMSC transplantation significantly improved liver function
and promoted hepatocyte proliferation by improving the
levels of HGF and VEGF and suppressing inflammation in
ALF swine [125].

The coculture of MSCs and hepatocytes in poly (lactic
acid-glycolic acid) (PLGA) scaffolds at 1:5 showed a higher
proliferation rate and higher hepatic synthesis function than
coculture in ratios of 1:2.5 or 1:10, and this treatment could
significantly decrease the levels of ALT, AST, and TBIL in
mouse serum stimulated by D-GalN compared with MSC-
PLGA or hepatocyte-PLGA scaffold treatments. (MSC + he-
patocyte)-PLGA scaffold treatment significantly improved
liver function and increased the survival rate of ALF mice

via the downregulation of IL-6 and IL-1β compared with
MSC-PLGA or hepatocyte-PLGA scaffold treatments. In ad-
dition, the (MSC + hepatocyte)-PLGA scaffold-treated ALF
mice showed a weaker immunogenic response than the other
two groups [126]. Alginate scaffold-MSCs promoted liver
recovery by enhancing the secretion of albumin and glycogen,
thus improving the survival rate and liver function in rats with
hepatectomy-induced ALF more than alginate scaffolds after
placing them onto the surface of the liver wound [127].
Furthermore, Xu et al. [128] determined that MSC-seeded
regenerated silk fibroin (RSF) scaffolds that were placed onto
the liver surface of ALF mice substantially improved the an-
giogenesis and hepatogenic differentiation of MSCs and
downregulated the infiltration of inflammatory cells in vivo
more than neat RSF scaffolds, attributed to their increased
biocompatibility and enhancement of hepatogenic differentia-
tion. Yagi et al. [129] highlighted the therapeutic effects of
liver assist devices (LADs) that contain cocultures of MSCs
and hepatocytes via decreasing inflammation and improving
the survival benefit in ALF animal models compared with
other coculture systems and monocellular control LADs.
These effects may be attributed to the coculture system in-
creasing the rate of engraftment and reducing the immune
response of the MSCs and hepatocytes.

Therefore, biomaterial scaffolds protect MSCs against
harsh microenvironments in vitro and in vivo, in addition to
providing physical and directional support for liver
regeneration.

Conclusion

MSC transplantation benefits liver injury in ALF models via
engraftment into liver tissue, hepatogenic differentiation, im-
munoregulation, promotion of host hepatocyte proliferation,
secretion of anti-inflammatory factors and antioxidants, and
the enhancement of liver regeneration in vivo; moreover, the
burgeoning application of MSC-CM and MSC-Ex mainly
protect ALF animals from progressive injury via immunoreg-
ulation and paracrine effects (Fig. 2). We have previously
demonstrated the optimized procedures of MSC application
in vitro and in vivo in the main text; thus, we highlight several
key points as follows. As gene modifications directly alter the
gene phenotype ofMSCs, treatment with physical or chemical
factors on MSCs possesses an absolute advantage. MSCs ac-
quire chromosomal aberrations and spontaneous malignant
transformation in vitro and in vivo [130]; thus, we suggest
analyzing the chromosomal integrity of MSCs before trans-
plantation in vivo to improve the safety of the procedure. It is
worth noting that rare human studies of MSC transplantation
were executed to rescue ALF, and it is obligatory for us to
carry out multicenter-clinical trials for MSC-based therapy in
treating ALF patients. Importantly, we highlight that

J Mol Med (2019) 97:1065–1084 1079



autologous or allogenic MSC transplantation should not be
considered if the donor is bearing a genetic disease associated
with a tumorigenic risk [84]. In summary, further break-
throughs are required to establish safer, more stable, and more
effective stem cell–based therapy by MSCs and their deriva-
tives in rescuing liver injury in ALF. We are looking forward
to reversing acute injury before it progresses into ALF and
decreasing the mortality of ALF patients worldwide via
MSC-based therapy.
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