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Abstract
Response to stressors in our environment and daily lives is an adaptation conserved through evolution as it is beneficial in
enhancing the survival and continuity of humans. Although stressors have evolved, the drastic physiological response they elicit
still remains unchanged. The chronic secretion and circulation of catecholamines to produce physical responses when they are not
required may result in pathological consequences which affect cardiac function drastically. This review seeks to point out the
probable implication of chronic stress in inducing an inflammation disorder in the heart. We discussed the likely synergy of a G
protein-independent stimuli signaling via β2-adrenergic receptors in both cardiomyocytes and immune cells during chronic
catecholamine stress. To explain this synergy, we hypothesized the possibility of adenylyl cyclases having a regulatory effect
on G protein-coupled receptor kinases. This was based on the negative correlations they exhibit during normal cardiac function
and heart failures. As such, the downregulation of adenylyl cyclases in cardiomyocytes and immune cells during chronic
catecholamine stress enhances the expressions of G protein-coupled receptor kinases. In addition, we explain the maladaptive
roles played by G protein-coupled receptor kinase and extracellular signal-regulated kinase in the synergistic cascade that
pathologically remodels the heart. Finally, we highlighted the therapeutic potentials of an adenylyl cyclases stimulator to
attenuate pathological cardiac hypertrophy (PCH) and improve cardiac function in patients developing cardiac disorders due
to chronic catecholamine stress.
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Introduction

Human’s response to stress is an adaptation mechanism that
has been conserved throughout evolution. Unlike in the mod-
ern day, the stressors encountered in the past were often im-
minent life-threatening dangers, for examples, predators and
natural disasters. These stressors elicited physiological re-
sponses in the cardiovascular and respiratory system to enable
freeze, fight, or flight. These responses enhanced man’s sur-
vival from such dangers and increased their chances for

procreation to ensure continuity [1]. The risk of injury and
subsequent exposure to pathogens during fighting or fleeing
suggests immune responses are as well stimulated by cate-
cholamines for timely defense and healing. Today, the same
stressors are still experienced; however, they are often fore-
seen and have measures put in place to mitigate their effect.

Regardless, the complexity of our modern-day lives, its
demands and problems such as mortgage loans, examinations,
work, and a dysfunctional family, among others, create psy-
chosocial stressors which stimulate the same physiological
responses even when the presumed threat (e.g., an academic
examination) does not require a drastic physical response as
before.

Stress can have a great toll on an individual’s health [2].
Depending on its characteristics and duration, it can be cate-
gorized as acute stress, episodic acute stress, and chronic
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stress [3]. The continuous secretion and circulation of cate-
cholamines to produce physical responses when they are not
required may result in pathological consequences such as psy-
chiatric illness [4], cancer metastasis [5], takotsubo cardiomy-
opathy [6], as well as, compromise the immune system [7, 8].

This review from an immunological and cardiovascular
perspective seeks to point out a probable implication of chron-
ic stress in inducing an inflammation disorder in the heart. We
initially summarized the known signaling of the β-adrenergic
receptors (βARs) in normal state and under chronic catechol-
amine stress. And also, we provided an overview of the di-
verse roles played by adenylyl cyclases (ACs) and G protein-
coupled receptor kinases (GRKs) in cardiac function and hy-
pertrophy, and in the immune system. The aforementioned
discussions were then reconciled to explain the possibility of
an unusual synergy of stimuli signaling between
cardiomyocytes and some immune cells, which is mediated
by the β2-adrenergic receptors (β2ARs) during chronic cate-
cholamine stress. This led to the hypothesis that GRKs are
possibly regulated by ACs in the myocytes and the cellular
components of the immune system. As such, the downregu-
lation of ACs during chronic stress enables the GRKs to en-
gage in the maladaptive activation of extracellular signal-
regulated kinase (ERK) 1/2. ERK1/2 in turn maladaptively
activates transcription factors for cardiac hypertrophy and in-
flammatory response; a synergy that pathologically remodels
the heart. Furthermore, an attempt is made to address the con-
troversies regarding the functions of the ACs 5 and 6 during
stress. Finally, the therapeutic potentials of an ACs stimulator
for attenuating chronic stress-induced pathological remodel-
ing of the heart were highlighted as a prospect drug.

Catecholamines and adrenergic receptors

Adrenergic receptors (ARs) currently have two subtypes, al-
pha (α) and beta (β), with various subunits (α1A, α1B, α1D,
α2A, α2B, α2C, β1, β2, and β3) [9–13]. These subunits are
structurally very similar and belong to G protein-coupled re-
ceptors (GPCRs). They are distinctively expressed in various
organs, serving as the binding sites for catecholamines: dopa-
mine, norepinephrine, and epinephrine secreted in the adrenal
medulla to modulate specific physiological responses. In
cardiomyocytes and some components of innate and adaptive
immunity (macrophages, neutrophils, and lymphocytes),
βARs are known to be well expressed. This facilitates their
interaction with circulating catecholamines to fine-tune con-
traction of the myocardium depending on the momentary de-
mands of the body, as well as, the regulation of responses of
the immune cells [14–16]. β1AR expressions in the heart are
like four times more in comparison to the expression of β2AR
in a healthy human heart [17, 18]. A controversy regarding the
expression of β2AR in the heart was stirred up when
Myagmar et al. reported β2AR are rarely present in myocytes

but are abundant in non-myocytes [19]. This is contradictory
to most of the finding in research works from the past decades
to date [6, 20–24]. Nonetheless, this could have been due to
the fact that β2ARs are densely expressed in apical ventricular
cardiomyocytes as compared to basal cardiomyocytes of the
same heart [6, 25], and therefore, if cardiomyocytes are iso-
lated from any other part of the ventricle besides the apex to
assess β2AR expression in the heart, the receptor may be
found rarely expressed as reported. β3AR is primarily
expressed in adipose tissues where it plays vital roles in ener-
gymetabolism [26, 27]. The differential expression ofβAR in
innate and adaptive immunity has been reviewed elsewhere
[28, 29].

With regard to their affinities to catecholamines, the β3AR
has the least compared to β1AR and β2AR. Norepinephrine
has 20-fold higher affinity for the β1AR compared to the
β2AR, likely because of the expression of β1AR outnumbers
β2AR in the heart. Notably, β1AR directs stimuli signals only
via stimulatory G protein (Gαs) upon being stimulated by nor-
epinephrine [30, 31]. In contrast, epinephrine has higher af-
finity for the β2AR than the β1AR, despite β2AR being
outnumbered [6]. And also, the pleiotropic nature of β2AR
enables it to direct stimuli signals to Gαs at normal physio-
logical state just as β1AR does, and to inhibitory G protein
(Gαi) during stress [6, 32, 33]. It is a well-known fact that the
phenomenon of inducing β2AR to traffic stimuli via Gαi is
epinephrine specific. This may explain the differences in epi-
nephrine’s affinities for β1AR and β2AR [30, 31].

Catecholamines—βARs downstream stimuli signaling
cascade

Stressors invoke an influx in circulating catecholamines
which stimulate βARs and triggers diverse intracellular path-
ways [18]. In a normal state, the stimulation of β1AR and
β2AR activates AC by coupling to Gαs. AC in turn converts
adenosine triphosphate (ATP) into cyclic adenosine
monophosphate (cAMP) which facilitates signaling via pro-
tein kinase A (PKA). PKA regulates the L-type Ca2+ channel
(LTCC) through phosphorylation to ensure the rhythmic con-
traction of myocardium [34]. Besides activating PKA, cAMP
is also responsible for activating the exchange protein directly
activated by cAMP (Epac). Epac regulates several pivotal
processes and is implicated in enhancing cardiac contraction
and hypertrophy [35, 36]. Similar to myocytes, the cAMP–
PKA/Epac signaling pathway is classically used in the im-
mune system to help maintain homeostasis in immune re-
sponses in order to avoid exacerbation of disease conditions
and aid timely recovery [37–39]. However, systemic elevation
of epinephrine distorts these signaling cascades by stimulating
the β2AR to switch coupling from Gαs to Gαi upon phosphor-
ylation of the receptor by PKA in negative feedback. This
results in the downregulation of ACs and elevation of GRKs

898 J Mol Med (2019) 97:897–907



expressions. Upon being upregulated, the GRK2 translocates
to the cell membrane to phosphorylate β1AR to initiate ho-
mologous desensitization process by recruiting β-arrestins-1
[40–43]. Phosphorylation by PKA can independently desen-
sitize βARs without recruiting β-arrestin-1 [40, 44–46]; how-
ever, it occurs slowly and it is not as significant as
GRK2–β-arrestin-1 mediated uncoupling [47, 48]. The
β1AR becomes irresponsive to stimuli, and it is downregulat-
ed by lysosomal degradation or recycled back into the cell
membrane through dephosphorylation (Fig. 1) [49–51].
Intriguingly, the GRKs which are modulators of the desensi-
tization of the βARs in cardiomyocytes and immune cells
have also been found to actively facilitate inflammatory and
immune responses in rheumatoid arthritis [37]. Also, there is
evidence of immune response-enhancing rapid desensitization
of βARs, where, IL-1 is found activating Gαi [52], and en-
abling intracellular elevation of GRK2 [53]. The suppression
of the AC7 in macrophages, monocytes, dendritic cells, and B
cells may be the probable underlying factor encouraging
these.

Besides the fact that epinephrine has more affinity for the
β2AR, the β1AR and its mRNA are mostly downregulated
during high catecholamine stress [54]. These may explain
why the β2ARs are mostly found mediating stimuli signaling

during chronic stress-induced pathological conditions of the
heart.

β2AR overstimulation in cardiomyocytes

By mechanotransduction, the hearts of pregnant women and
athletes adjust and adapt to cardiac pressure overload. To be
able to do this, their cardiomyocytes undergo pressure
overload-induced cardiac hypertrophy which is mediated by
Akt/Protein kinase B (PKB) [55]. This is categorized as a
physiological cardiac hypertrophy, as the increase in cardiac
size is accompanied by normal cardiac morphology with a
sustained or an enhanced cardiac function [56]. Depending
on the nature of the stimuli, its intensity, and the duration of
the overloading stimuli, the enlargement in the myocardium
can be sustained, reversible, or detrimental [57]. During hy-
pertensive stress, high concentrations of catecholamine over-
stimulate theβ2AR and induce the receptor to switch coupling
to Gαi. Gαi signals via mitogen-activated protein kinase
(MAPK) to transcription factors in an attempt to prevent car-
diac insult [6, 58]. However, if the stress remains chronic, the
hyperstimulation of the β2AR causes maladaptive myocyte
hypertrophy and consequently, cardiac injury and
dysfunction—creating a pathological condition [59, 60].

Fig. 1 Schematic illustration of βARs desensitization in cardiomyocytes
and immune cells. (a) AC imposing inhibitory effects on GRKs, while
together with PDE4, regulates cAMP concentration in cytosol. During
acute influx of catecholamines, β2AR signaling via Gαi more than Gαs

upon being phosphorylated by PKA. AC is uncoupled from Gαs and
stimuli is trafficked via Gαi–MAPK to temporarily reduce cardiac con-
tractility for protection against cardiac insult. p38, JNK, and ERK1/2 are

types of MAPK and are involved in the activation of transcription factor
distinctively. (b) Homologous and heterologous desensitization of βARs
are induced byGRK2–β-arrestin-1 and PKA phosphorylation respective-
ly, due to overstimulation of the receptor. At this point, mostly β1ARs
becomes dysfunctional and irresponsive to stimuli from SNS, and are
either recycled back into membrane or degraded by lysosome
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This is associated with a marked cardiomyocyte necrosis, fi-
brotic remodeling of the myocardium and arrhythmias which
progresses to heart failure [61]. To attenuate this, βAR
blockers (β-blocker) have been employed over the years as
first-line therapy to mitigate overstimulation of the receptors
and help improve cardiac function in failing hearts [62, 63].
Nevertheless, there are still concerns regarding its effective-
ness in reducing mortality in high blood pressure patients as
compared to calcium-channel blockers [64].

β2AR overstimulation in immune cells

In the last decades, researches conducted to elucidate the un-
derlying cause of heart failures have implicated the maladap-
tive involvement of the immune system in the exacerbation of
cardiac dysfunction. The profound expression of β2AR in
macrophage, T, and B lymphocytes facilitates crosstalk with
the sympathetic nervous system [65–67]. Signaling viaβ2AR-
Gαs increases intracellular cAMP and suppresses the immune
response by inhibiting secretion of the proinflammatory cyto-
kines, interleukin (IL)-1β, IL-2, IL-6, tumor necrosis factor
alpha (TNFα), and interferon gamma (IFN-γ) and in contrast,
enhances secretion of anti-inflammatory cytokine IL-10 [68,
69]. Regardless, during chronic hyperstimulation of β2AR,
this phenomenon is reversed as β2AR traffics stimuli via
Gαi which inhibits ACs from synthesizing cAMP [70]. This
abolishes the inhibitory effect cAMP poses on immune re-
sponse and permits the production of proinflammatory cyto-
kine IL-1β and TNFα among others. A sustained upregula-
tion of IL-1β and TNFα together activate nuclear factor NF-
kB pathway, a prototypical inflammatory pathway [71]. As
such, prolonged excitation of β2AR in immune cells results
in a homeostatic breach and exacerbates any inflammation,
obstructing timely reparative and healing activities of the im-
mune components [72–74].

Roles of ACs and cAMP in cardiomyocytes and cellular
components of the immune system

ACs play an irreplaceable role in converting ATP to cAMP, an
essential second messenger that facilitates the progression of
stimuli signaling at the post-receptor level. In mammals, there
are ten isoforms of ACs named sequentially, AC1–AC10.
Beside the AC10 which is soluble, cytosolic, and activated
by bicarbonate and calcium ions [75, 76], the ACs 1–9 iso-
forms are transmembrane and are activated in normal physio-
logical states via βARs–Gαs coupling.

Sadana and Dessauer reviewed ACs 1–9 extensively,
discussing their classification and biochemistry and their dis-
tinctive distributions in mammalian tissues and organs as well
as their respective functions [77]. The myocardium has the
isoforms AC5 and AC6 dominating, mainly to regulate heart
rate and cardiac contractility [78, 79]. AC5 and AC6 are

differentially expressed with respect to aging, cardiac pressure
overload, and subcellular localization [80–82].

AC5 and AC6 play unsettled roles in regulating cardiac
function and are still being researched on; nonetheless, their
commonly known function is to synthesize sufficient cAMP
needed to stimulate chronotropic and inotropic responses in
the myocardium. The distinct roles of the AC5 and the AC6 in
the response to cardiac stress remain controversial. There are
research reports that have suggested that the AC5 knockout
(AC5 KO) mice are resistant to chronic stress [83–85], while
the deletion of AC6 does increase mortality in prolonged cat-
echolamine stress [86]. The major role played by AC6 in
calcium channel modulation [87] may explain why its deletion
has such detrimental effects. However, not all studies support
the beneficial effects of AC5 KO. This was demonstrated by
Esposito et al. when they reported that cardiac function is
improved during exercise upon overexpression of AC5 in
the hearts of transgenic mice [88]. Regardless, the adverse
effect of AC5 overexpression in the heart is observed during
chronic βARs stimulation. In the normal state, hearts which
have the AC5 overexpressed are found to have a key pro-
hypertrophic pathway, i.e. nuclear factor of activated T-cells
(NFATs) highly expressed [89]. This was not observed in the
hearts with overexpression of the AC6 [90]. Thus, hearts with
the overexpression of AC5 seem to be predisposed to cardiac
hypertrophy. Despite the differences in the roles played by the
AC5 and the AC6 in the heart, they both improve cardiac
function in the failing heart when their expressions are re-
stored in myocytes that had their ACs levels downregulated
previously [91].

In immune cells, the isoform AC7 is responsible for
synthesizing and regulating cAMP concentration. From
an immunological perspective, researchers have reported
the contradictory roles of cAMP in the immune system,
such as, it being immunosuppressive in almost all cel-
lular components of the immune system; as it specifi-
cally inhibits proliferation of T cell, the activation of B
and T cells, the chemotaxis of neutrophils and the pro-
duction of proinflammatory cytokines by macrophages
and T cells [92–95]. Yet though, others have proven
the essential role of cAMP in optimizing of the immune
response [96–99]. Duan et al. demonstrated the regula-
tory roles of AC7 and cAMP in both the innate and
adaptive immune system, where they proved that AC7
KO mice had hyperactive and detrimental inflammatory
responses [100]. The paradoxical functions of cAMP in
the immune system may have to do with its concentra-
tion and duration; most likely, an acute influx and sig-
naling of cAMP being beneficial, while detrimental
when it prolongs.

Phosphodiesterases (PDEs) which are activated by PKA in
a negative feedback [101], complements the efforts of ACs in
regulating cAMP by degrading excess cAMP. There are 11
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isoforms of PDEs and they have been extensively reviewed
elsewhere [102].

Regulatory role of GRKs in the cardiac and immune
system

GRK isoforms (GRK1–GRK7) regulate signal mediating
activities of GPCRs strictly through phosphorylating the
receptor when activated. Changes in their expression
and activity have been observed to play pivotal roles
in cardiac hypertrophy, heart failure and immune cells
specifically involved in disease conditions [103].
Phosphorylation of βARs by a specific GRK isoform
is dependent on the concentration of the agonist and
the duration of receptor sensitization. GRK2 phosphory-
lates βARs when they are overstimulated during cate-
cholamine stress to desensitize the receptor [40]. In pa-
tients with hypertension and chronic heart failure, ab-
normal increases in GRK2 expression in cardiomyocytes
have been reported. This is characterized by a decrease
in activities of AC [41], and thus, a decrease in cardiac
inotropy and function. However, an improved cardiac
function is restored consequently upon a decrease in
intracellular GRK2 expression. This is the main aim of
β-blockers—to improve cardiac function by reducing
the levels of GRK2 [104]. Interestingly, during chronic
heart failure, there is a simultaneous upregulation of
GRK2 expression in CD4+ T cells and B cells which
are well known to be involved in disease pathogenesis
[104, 105]. In this regard, alteration in cardiac proteins
can be assessed by the use of peripheral lymphocytes,
thus, bypassing the challenge of myocardium biopsy
[106].

Besides GRK2, the isoforms GRK5/6 are implicated in
cardiac function during chronic catecholamine stress.
Although their functions are still being uncovered, they have
been reported to be mostly playing maladaptive roles rather
than being cardioprotective [107]. Unlike GRK2, GRK5/6
phosphorylation of βARs permits binding of β-arrestin-2 at
the C-terminus. This uncouples Gαi and Gαs from the receptor
and enables signal progression in a G protein-independent
manner. By this non-canonical signaling pathway, GRK5/6
is able to activate ERK1/2 in a maladaptive manner [108], to
regulate the transcription factors, cardiac hypertrophy, NF-kB,
and NFATs [107, 109, 110].

The maladaptive activation of these transcription factors
results in increased cardiomyocyte necrosis and elicits a hy-
peractive immune response which exacerbates the disease
condition, leading to pathological remodeling of the heart.
Indeed, GRK5 KO has been proven to be cardioprotective
against pathological cardiac hypertrophy (PCH) and heart fail-
ure [111]. Other researchers have intensively reviewed the

roles played by GRKs in cardiac hypertrophy elsewhere
[112, 113].

Aftermath of β1AR desensitization & down-regulation

Intracellular elevation GRK2 due to the suppression of AC
affects the expression of the β1AR right from gene level
[114], by either tampering with their mRNA transcription rate,
translational efficiency, or destabilizing their mRNA while
desensitizing the receptors expressed in the membrane, there-
by, downregulating and decreasing the total amount of βARs
present in the membrane. These result in the irresponsiveness
of βARs, mostly β1AR, to further stimuli from SNS. An
increase in the activities of GRK2 by three- to fourfolds have
been reported in catecholamine-induced impairment of βARs
at the end-point of cardiovascular diseases in humans and
animal models [115–117]. Contrarily, downregulation of
GRK2 in failing and dysfunctional myocardium does improve
cardiac function [118, 119]. Proinflammatory immune re-
sponses involving the secretion of TNFα, IL-1, and IL-6 are
heightened and hyperactive at this point and subsequently,
activates NF-kB pathway.

Conclusion and perspectives

Cardiac hypertrophy ismeant to be a physiological adaptation,
adjusting the heart’s function to suit pressure overload mostly
experienced by athletes and pregnant women. However,
chronic stress which is associated with the excessive firing
of catecholamines by SNS leads to the overstimulation of
βARs in the heart, causing them to become dysfunctional
and scaffolds a signaling cascade that turns a physiologically
adaptive hypertrophied heart into a pathologically remodeled
maladaptive heart.

During cardiac pressure overload, GRK2–β-arrestin-1 me-
diates internalization and desensitization of dysfunctional
βARs to halt the progression of signaling. Meanwhile, this
does not seem to be the case during chronic catecholamine
stress, because stimuli signaling progresses and the heart be-
comes maladaptively remodeled.

To elucidate the probable mechanism permitting the pro-
gression of signaling βARs, we hypothesize that ACs may
have a regulatory effect on the GRKs, thereby, inhibiting their
expressions and activities in cardiac and immune cells when
the ACs is actively expressed. As such, downregulation of
ACs eliminates this inhibitory effect and encourages βARs
to be phosphorylated by GRKs. This is based on the facts that,
despite the discrepancies in the cardioprotective roles ACs 5
and 6 [85, 86], they are both found to be downregulated in
myocardial hypertrophy, hypertension, and heart failure
[120–123]. Also, in immune cells, the deficiency of AC7 re-
sults in hyperactive immune response [100]. At these
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instances when ACs are downregulated, GRK2 is found up-
regulated and impeding proper cardiac function. Hence, to
rescue cardiac function in these instances, β-blockers are ad-
ministered to hypertensive patients to reduce GRK2 [104],
and consequently increase AC to improve cardiac function.

Furthermore, prolonged inhibition of AC during chronic
catecholamine stress might be enabling GRK5/6–β-arrestin-
2 phosphorylation of β2AR to facilitate G protein-
independent signaling progression, [124, 125] rather than halt-
ing stimuli signals as GRK2 does. In this manner, GRK5/6 is
able to activate ERK1/2, [108] not in the classical way that
ensures it plays adaptive roles in the immune system and
cardioprotection [126, 127]. Instead, it maladaptively invokes
and persistently sustains activation of cardiac hypertrophic
transcription factors, NFATs, myocyte enhancer factor 2
(MEF2), GATA4, Csx/Nkx2–5, and NF-kB pathway [128,
129]. The maladaptive activation of GATA4, MEF2, and
Csx/Nkx2–5 by ERK1/2 may induce excessive myocyte hy-
pertrophy and cause myocyte necrosis. This stimulates proin-
flammatory responses, IL-1β, IL-6, and TNFα. The proin-
flammatory cytokines IL-1β and TNFα proceed to activate
NF-kB inflammatory pathway, which also gets sustained by
activities of ERK1/2 [129].

In summary, the synergistic cascade due to the inhibition of
ACs in cardiomyocytes and immune cells when their β2ARs
are overstimulated during chronic catecholamine stress begins

with; the upregulation of the GRKs which initiates a GPCR-
independent activation of ERK1/2 in a maladaptive manner.
ERK1/2 then activates cardiac hypertrophy transcription fac-
tors and causes an abnormally marked myocyte hypertrophy
which results in arrhythmias and hypoxia. Hypoxia and the
excessive enlargement of the cardiomyocytes cause necrosis.
Necrosis of the cardiomyocytes elicits immune responses in
an attempt to repress the cell deaths. However, due to the
downregulation of the AC7 which modulates immune re-
sponses, hyperactive immune responses are invoked without
modulations. This results in the prolonged bias secretion of
proinflammatory cytokines (IL-1β, IL-6, and TNFα) and fi-
nally the activation of the inflammatory pathway NF-kB
which exacerbates the myocyte necrosis and pathologically
remodels the heart. This is evidenced by a marked fibrosis
(Fig. 2).

In conclusion, there is a negative correlation between the
ACs and the GRKs in cardiomyocytes and immune cells dur-
ing normal cardiac function and heart failures. ACs 5 and 6 are
upregulated while GRKs are downregulated in healthy hearts,
and the reverse is observed during heart failures. However,
upon inhibiting GRKs with β-blockers, the upregulation of
the ACs improves cardiac function. The fact that a restoration
in the expression of ACs after they have been previously de-
pleted restores cardiac function suggests ACs could be the
target of a stimulator that can specifically stimulate and

Fig. 2 Hypothetical schematic illustration of signaling cascade resulting
in pathological cardiac hypertrophy. (a) GPCRs being completely
uncoupled from β2AR and a momentarily termination of signaling due
to chronic catecholamine stress. AC expression in cytosol is downregu-
lated, abolishing its inhibitory effect on GRKs. (b) GRKs upregulate and

translocate to cell membrane. GRK5–β-arrestin-2 phosphorylate β2ARs
to facilitate a G-protein-independent signal progression in cardiac and
immune cell and maladaptively activates ERK1/2 which induces tran-
scription factors in the respective cells for the pathological remodeling
of the heart
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activate ACs independent of βARs- Gαs coupling. This acti-
vator of ACs could help attenuate hypertrophic cardiomyop-
athy and improve cardiac function during heart failure.
However, controversies on the roles of the ACs 5 and 6 on
pressure overload hypertrophy might have hindered the novel
discoveries and recommendations made on the therapeutic
potentials of drugs that target ACs, from being translated into
the pharmaceuticals and clinical care [54, 86, 130].
Nevertheless, it is important to note that reports on the adverse
effects of ACs 5 and 6 on the heart were observed when these
two isoforms were overexpressed in the heart of transgenic
mice [89, 90]. In addition, with the exception of AC5 KO
mice which exhibited improved cardiac function [82–84],
AC6 KO mice had poor cardiac function [[86], as did AC7
KO mice which also experienced hyperactive and detrimental
inflammatory responses [100]. Beside these findings, most
research reports have suggested the restoration and normali-
zation of the expressions of ACs after they have been previ-
ously depleted, have positive effects on chronotropic and ino-
tropic of the heart, and the modulation of immune responses
[91, 100, 131, 132]. Therefore, if ACs stimulators are devel-
oped and are administered in appropriate dosages as required
to avoid their overexpression in myocytes and immune cells,
they are likely to improve cardiac functions in individuals
experiencing chronic stress while preventing the occurrence
of a pathological cardiac hypertrophy.
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