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Abstract
Sepsis is a dysregulated response to severe infection characterized by life-threatening organ failure and is the leading cause of
mortality worldwide. Multiple organ failure is the central characteristic of sepsis and is associated with poor outcome of septic
patients. Ultrastructural damage to the mitochondria and mitochondrial dysfunction are reported in sepsis. Mitochondrial dys-
function with subsequent ATP deficiency, excessive reactive oxygen species (ROS) release, and cytochrome c release are all
considered to contribute to organ failure. Consistent mitochondrial dysfunction leads to reduced mitochondrial quality control
capacity, which eliminates dysfunctional and superfluous mitochondria to maintain mitochondrial homeostasis. Mitochondrial
quality is controlled through a series of processes including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and
transport processes. Several studies have indicated that multiple organ failure is ameliorated by restoring mitochondrial quality
control mechanisms and is further amplified by defective quality control mechanisms. This review will focus on advances
concerning potential mechanisms in regulating mitochondrial quality control and impacts of mitochondrial quality control on
the progression of sepsis.

Keywords Sepsis .Mitochondrial dysfunction .Mitochondrial biogenesis .Mitophagy .Mitochondrial dynamics

Introduction

The definition of sepsis has been updated to include infection-
induced multiple organ dysfunction. Sepsis is the leading
cause of intensive care units (ICU) mortality worldwide, and
the mortality varies between 20 and 50% [1, 2]. The incidence
of sepsis has increased recently, and an increasing elderly
population, cancer, immunosuppression, and antimicrobial

resistance contribute to the increased incidence [2–5].
Although there have been advances in sepsis management,
both mortality and morbidity remain high [6]. Most patients
displaying an initial overwhelming hyper-inflammatory re-
sponse die rapidly days or weeks later [7, 8]. Additional in-
vestigations demonstrated that immunosuppression plays a
central role in the late phase of sepsis and contributes to mul-
tiple organ dysfunction [9–11]. Immunosuppression is caused
by dysfunction and apoptosis of immune cells including CD4+

and CD8+ Tcells, B cells, and dendritic cells (DCs). Although
there are strategies targeting immunosuppression, the outcome
of sepsis is still poor [12, 13]. Therefore, it is critical to under-
stand the specific mechanisms of immunosuppression and
subsequent multiple organ failure in sepsis.

Ultrastructural damage to the mitochondria and mitochon-
drial dysfunction has been reported in immune cells,
cardiomyocytes, skeletal muscle, and hepatocytes under septic
exposure [14–18]. Furthermore, ATP depletion, depletion of
intracellular antioxidant systems, and respiratory chain (elec-
tron transport chain) inhibition are all observed in septic pa-
tients and experimental models of sepsis [16, 17]. Persistent
mitochondrial dysfunction contributes to sepsis-related organ
failure and poor outcome of septic patients. Thus, removal of
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dysfunctional mitochondria and generation of healthy mito-
chondria improve recovery of organ function in sepsis.
However, consistent mitochondrial dysfunction shows defec-
tivemitochondrial quality control mechanisms. Recent studies
have demonstrated that organ dysfunction is amplified by de-
fective mitochondrial quality control mechanisms and is ame-
liorated by recovery of mitochondrial quality control mecha-
nisms [19–21].

In this review, we illustrate how mitochondrial quality con-
trol allows the mitochondrial network to segregate or recog-
nize and eliminate damaged mitochondria, and generate new
mitochondria (Fig. 1). Furthermore, we provide an overview
of the role of the mitochondrial quality control mechanisms on
organ dysfunction under septic exposure (Table 1).

Mitochondrial dysfunction

Mitochondria are subcellular organelles that provide energy
termed ATP via oxidative phosphorylation (OXPHOS) that
are responsible for most oxygen consumption. Mitochondria
are also associated with calcium homeostasis, intracellular
ROS generation, and cell signaling functions [22, 23]. In re-
sponse to sepsis, the inflammatory cytokines of the innate
immune response including TNF-α, IL-1β, and IL-6 promote
mitochondrial permeability transition, inhibit oxidative phos-
phorylation, and improve ROS production [24, 25]. In addi-
tion, oxidative stress caused by the imbalance of ROS gener-
ation and antioxidant protective mechanisms leads to

peroxidation of the mitochondrial lipids cardiolipin, mtDNA
damage, and more ROS formation under septic conditions
[26, 27]. Nitric oxide (NO) and ROS also inhibit electron
transport chain (complex IV and complex I). High Ca2+, low
ATP, mtDNA mutations, mitochondrial permeability pore
opening, and oxidative stress are all observed in sepsis.
These changes lead to mitochondrial swelling that damages
the mitochondrial ultrastructure and results in release of cyto-
chrome c and apoptosis-related markers into the cytoplasm
[28]. Mitochondrial dysfunction has been demonstrated to ac-
tivate cell apoptosis and ultimately results in organ failure.
Interestingly, targets for mitochondrial therapy augment mul-
tiple organ function during sepsis [29]. For example, L-carni-
tine, succinate, ATP-MgCl2, cytochrome c, and ubiquinol (co-
enzyme Q) administration can target the electron transport
system (ETS) and all have been reported to increase the sur-
vival rate in septic models by restoring ETS function and
increasing oxygen consumption and phosphorylation
[30–34]. In addition, mitochondrial antioxidants, including
MitoQ/PBN/SkQ, SS peptides, glutathione, and melatonin
all can ameliorate multiple organ failure during sepsis by de-
creasing oxidative stress markers [35–37].

Mitochondrial biogenesis

Mitochondrial biogenesis is regulated by multiple molecular sig-
nals in response to energy demand and contributes to an increase
in mitochondrial mass and recovery of the mitochondrial

Fig. 1 Mitochondrial quality control mechanisms. Mitochondrial
biogenesis generates new mitochondria to recover the mitochondrial
network. PGC-1α is a central regulator of mitochondrial biogenesis.
PGC-1α interacts with various transcription factors including estrogen-
related receptor α (ERR-α), forkhead box class-O (FoxO1), hepatocyte
nuclear factor 4a (HNF4a), nuclear respiratory factor (NRF1), and NRF2
to activate the transcription of nuclear genes encoding mitochondrial
proteins. Tfam is imported into mitochondria and activates mtDNA
transcription and replication. Mitochondria undergo fusion and fission

to modulate mitochondrial morphology, number, and size.
Mitochondrial fission and fusion are regulated by evolutionarily
conserved dynamin-related GTPases that include fission protein
dynamin-related protein 1 (Drp1) and its receptors mitochondrial fission
protein 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial
dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and the
fusion proteins mitofusin (Mfn)1, Mfn2, and optic atrophy 1 (OPA1).
Mitophagy is regulated by Pink1/PARK2 pathway and eliminates
damage mitochondria via fusing with lysosome
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network. These molecular signals include several DNA-binding
transcriptional factors, such as peroxisome proliferator-activated
receptor γ coactivator 1α (PGC-1α), nuclear respiratory factor 1
(NRF1) and NRF2, and mitochondrial transcription factor A
(TFAM) [20, 38]. PGC-1α is a central regulator of mitochondrial
biogenesis. PGC-1α interacts with various transcription factors
including estrogen-related receptor α (ERR-α), forkhead box
class-O (FoxO1), hepatocyte nuclear factor 4a (HNF4a), nuclear
respiratory factor (NRF1), and NRF2 to regulate nuclear gene
expression [39]. In addition, PGC-1α and NRF1 coactive the
expression of TFAM, TFB1M, and TFB2M that mediate
mtDNA transcription and replication [40]. NRF1 and NRF2
are two key regulators of mitochondrial biogenesis and are acti-
vated by PGC-1α. Activated NRF1 and NRF2 reportedly regu-
late the expression of proteins related with mitochondrial respi-
ratory function and mitochondrial translation encoded by nuclear
genes [41]. Following activation by PGC-1α and NRF1, TFAM
and TFB2M are translocated from the cytosol into mitochondria.
In mitochondria, TFAM binds to mitochondrial DNA and regu-
lates mtDNA transcription and replication [42].

It has been shown that the activation of mitochondri-
al biogenesis transcription factors is earlier in survivors
than non-survivors, which indicates the earliest recovery
of mitochondrial function is crucial in sepsis. A deep
investigation found that mRNA expression of PGC-1α
is only elevated in survivors and the decrease in tran-
scription of respiratory chain subunits is less in survi-
vors than non-survivors [20]. In the liver, key regulators
of mitochondrial biogenesis such as PGC-1α, NRF1,
NRF2, and TFAM are markedly increased in experimen-
tal models following septic exposure [43, 44]. In an
age-dependent model, the results show that young mice
exhibit a time-dependent increase in nuclear levels of
PGC-1α, whereas mature mice exhibit a decrease in
nuclear levels of PGC-1α after sepsis [45]. In the lung,
PGC-1α expression is increased more than sixfold and
TFAM expression is increased fourfold during murine
sepsis [46]. Furthermore, previous studies have shown
that expression levels of PGC-1α, NRF1, NRF2, and
TFAM are all increased in the heart and in astrocytes
under septic conditions [47, 48]. Several pharmacologi-
cal therapies can prevent organ failure partly through
activation of mitochondrial biogenesis in sepsis. Septic
models with inhaled CO show rescue of liver failure
from sepsis through activation of mitochondrial biogen-
esis [49]. Additionally, the lipophilic antioxidant CoQ10

can prevent LPS-induced mitochondrial dysfunction in
multiple organs by improving mitochondrial biogenesis
[50]. Conversely, mice with lipopolysaccharide (LPS)-
induced acute kidney injury (AKI) show a decrease in
PGC-1α mRNA in the renal cortex [51, 52]. The over-
expression of PGC-1α promotes recovery from LPS-
induced acute kidney injury, and both global andTa
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tubule-specific PGC-1α-knockout mice suffer persistent
impaired kidney function [51]. These results indicate
that key factors of mitochondrial biogenesis are mostly
increased in sepsis, and therapies targeting mitochondri-
al biogenesis could partly reverse organ failure under
septic conditions.

In the initial stage of sepsis, inflammatory cytokines in-
cluding TNF-α, IL-1β, and IL-6 are increased and the in-
creased cytokine production ultimately leads to an inflamma-
tory cytokine storm, which is a main cause of death in the
initial stage of sepsis. Global ablation of the PGC-1α gene
in mice increases the expression levels of IL-6 and TNF-α,
and the subsequent chronic elevation of circulating IL-6 [53].
Activation of PGC-1α protects endothelial cells from LPS-
induced loss of mitochondrial function and decreases LPS-
induced high IL-6 concentration [54]. The mechanisms
linking PGC-1α activation to the downregulation of inflam-
mation genes may be related to recovery of mitochondrial
function and reduction of ROS generation by PGC-1α activa-
tion. Recent studies have shown that overexpression of PGC-
1α inhibits intracellular and mitochondrial ROS production
[55]. Mice with muscle-specific PGC-1α-knockout show de-
creased expression of anti-ROS genes, which makes a sub-
stantial contribution to the observed increase of cytokine ex-
pression [56].

Activation of mitochondrial biogenesis by pharmacologi-
cal agents emerges as therapeutic strategies in sepsis. Clinical
data showed that patients with dyslipidemias treatment pre-
sented a better clinical outcome during sepsis [57, 58].
Bezafibrate, an agonist of peroxisome proliferator-activated
receptor (PPAR), is a commonly used drug in dyslipidemias,
which has been reported to increase PGC-1α expression [59].
A recent study demonstrated that bezafibrate treatment pre-
sented anti-inflammatory effects in experimental sepsis [60].
However, whether the protective effects of bezafibrate on sep-
sis is probably through activating mitochondrial biogenesis
has not been evaluated so far. Another pharmacological agent
which has been reported to activate mitochondrial biogenesis
is metformin, a commonly used drug in diabetes [61]. Several
studies have demonstrated that metformin treatment amelio-
rated induced brain and cardiac injury in experimental sepsis
[62, 63]. However, clinical data showed that pretreatment with
metformin in both diabetes and sepsis patients presented no
difference in the outcome of sepsis [64].

Mitochondrial dynamics

Mitochondria are highly dynamic organelles and frequently
undergo fission and fusion to modulate mitochondrial mor-
phology, number, and size. In physiological conditions, mito-
chondrial fusion and fission is balanced to maintain mitochon-
drial and cellular homeostasis. During sepsis, mitochondrial

dysfunction results in activation of mitochondrial fission and
inactivation of mitochondrial fusion, which promotes dys-
functional mitochondrial fragmentation and ultimately results
in organ failure [65]. Mitochondrial fragmentation contributes
to BAX activation, outer membrane permeabilization
(MOMP), remodeling of mitochondrial cristae, and increased
ROS production and ATP depletion that results in cell death
immediately and ultimately organ failure [66, 67].
Mitochondrial fission and fusion are regulated by evolution-
arily conserved dynamin-related GTPases that include fission
protein dynamin-related protein 1 (Drp1) and its receptors
mitochondrial fission protein 1 (Fis1), mitochondrial fission
factor (Mff), mitochondrial dynamics proteins of 49 and
51 kDa (MiD49 and MiD51), and the fusion proteins
mitofusin (Mfn)1, Mfn2, and optic atrophy 1 (OPA1) [68].
Mfn1 and Mfn2 are located on the mitochondrial outer mem-
brane, whereas OPA1 is located on the mitochondrial inner
membrane. During the process of mitochondrial outer mem-
brane fusion, Mfn1 and Mfn2 form homo-oligomeric and
hetero-oligomeric structures to tether two adjacent mitochon-
dria for fusion [69]. Unlike Mfns, OPA1 does not require the
oligomerization of OPA1 to mediate inner membrane fusion.
The coordinated actions of Mfns and OPA1 starts with outer
membrane fusion and ends with mitochondrial inner mem-
brane fusion [68]. During mitochondrial fission, Drp1 is
transported from the cytosol to the mitochondrial outer mem-
brane and forms oligomeric Drp1 complexes. The Drp1 pro-
tein oligomeric structure wraps around and constricts the mi-
tochondrial tubule, which dissects the parent organelle into
two daughters [70, 71]. The signaling mechanism of Drp1-
recruitment to the mitochondria has been proposed to depend
on several mitochondrial outer membrane proteins such as
Fis1, Mff, MiD49, and MiD51. However, the exact functions
of these proteins in mitochondrial fission remain unclear.

There are studies that monitored mitochondrial morphology
and conserved dynamin-related GTPases in sepsis, but the num-
ber of studies is very limited. It has been suggested that
fragmented mitochondria and Drp1 expression levels are in-
creased in skeletal muscle under septic conditions [72].
Treatment with the de novo sphingolipid biosynthesis inhibitor
myriocin ameliorates dysfunction of skeletal muscle by reverting
mitochondrial morphology and decreasing Drp1 expression
levels induced by sepsis [72]. Gonzalez et al. demonstrate that
Mfn2 is decreased at 4–6 h, and mitochondrial fragmentation is
increased at 6 h in liver after LPS treatment [21]. In contrast,
Mfn2 is decreased at 12–18 h and Drp1 is increased at 4 h in
liver after cecal ligation and puncture (CLP) surgery [21].
Additionally, TNF-α induces the expression levels of mitochon-
drial Drp1, increases phosphorylated Drp1, and enhances mito-
chondrial fragmentation in H9C2 cardiomyocytes [73]. Notably,
Mfn2 is decreased in CD4+Tcells after HMGB1 treatment [74,
75]. The upregulation of Mfn2 protects CD4+T cells from im-
mune dysfunction and apoptosis induced by HMGB1. It still
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unclearwhether the upregulation ofMfn2 to prevent the dysfunc-
tion lymphocyte apoptosis is associated with improved mito-
chondrial dynamics. However, mitochondrial fusion and fission
rates of human PBMC obtained from a control group and sepsis
group showed an insignificant difference [76].

Mdivi-1 is a pharmacological inhibitor of Drp1 and has been
reported to revert sepsis-induced fragmented mitochondria to
tubular mitochondria. Recent studies have shown that Mdivi-1
reduces the inhibition of mitochondrial ETC complex and hepa-
tocyte apoptosis induced by CLP [21]. Mdivi-1 administration
also ameliorates LPS-induced brain injury. Mechanically, Mdivi-
1 inhibits the Drp1 increase and attenuates the OPA1 decrease in
hippocampus under septic exposure [77]. There are other non-
specific pharmacological therapies that attenuate organ damage
through regulating mitochondrial dynamics in sepsis. For exam-
ple, heme oxygenase (HO)-1/carbon monoxide attenuates acute
lung injury in sepsis partly through balancing mitochondrial fu-
sion and fission [78].

Mitochondrial autophagy

Autophagy is a central process in cell survival under stress and
non-selectively or selectively eliminates damaged proteins and
organelles by formation of a double-membrane autophagosome,
which then fuses with lysosomes [79].Mitophagy is the selective
autophagy of mitochondria and requires receptors to recognize
damaged mitochondria for degradation. Mitophagy is regulated
by several pathways including the PTEN-induced putative pro-
tein kinase 1 (Pink1) and the E3 ubiquitin ligase (Park2/Parkin),
FUN14 domain-containing protein 1 (FUNDC1), NIX/BNIP3,
and BCL2L1.

The Pink1/Park2 pathway is the main regulator of
mitophagy and has become a topic of scientific research due
to its involvement in the pathogenesis of Parkinson’s disease
(PD) [80, 81]. In healthy mitochondria, Pink1 translocates on
the outer mitochondrial membrane (OMM) via the TOM com-
ponents, and then inserts into the inner mitochondrial mem-
brane (IMM) through the TIM23 complex. When the N-
terminal mitochondrial targeting sequence (MTS) of Pink1
that drives the translocation reaches the matrix, a matrix pro-
cessing peptidase (MPP) recognizes and cleaves Pink1 [82].
Subsequently, the IMM protease PARL cleaves Pink1 p64 and
generates the Pink1 p53, which then is released to the cytosol
and is degraded by the proteasome [83]. In sepsis, the dys-
functional mitochondria prevent the import of Pink1 through
TIM23 and this results in accumulation of Pink1 on the outer
mitochondrial membrane. PINK1 recruits Park2 to translocate
to the outer mitochondrial membrane from the cytosol and
activates Parkin by phosphorylation of Ser65 on Park2 [84].
In the cytosol, Park2 remains “closed,” which means the re-
pressor element of Park2 (REP) blocks E2-binding site in
RING1 and RING0 shields catalytic C431 [85, 86]. Under

stress conditions, Pink1 undergoes autophosphorylation at
Ser228 and Ser402 and then phosphorylates basal OMM
ubiquitin, which can attract Park2 to accumulate on the
OMM [87]. When Park2 binds to Ps65-Ub, the constructs of
Park2 are changed and this includes replacement of the inhib-
itory N-terminal ubiquitin-like (UBL) domain and segmenta-
tion of REP, which means that Park2 is “open” [85, 88]. The
activated Park2 is further phosphorylated by Pink1 and in-
duces more Park2 recruitment.

Activated Park2 ubiquitinates several mitochondrial proteins
on the outer membrane without stringent selection, including
mitochondrial fusion proteins Mfn1/2, Miro, and voltage-
dependent anion channel (VDAC) 1/2/3 [89, 90]. Mfn1/2 and
Miro belong to K48-linked chains, and K48 modification by
Park2 induces degradation of proteins by the proteasome. The
degradation of Mfn1/2 prevents mitochondrial fusion that there-
by promotes mitochondrial fragmentation and mitophagy [91,
92]. When the mitochondrial transport protein Miro is degraded,
all mitochondrial mobility is arrested, and this arrest may segre-
gate damaged mitochondria before mitophagy [93, 94]. The
VDAC1/2/3 are K63 ubiquitin chains andK63 is associated with
the recruitment of mitophagy receptors [95]. In addition, Park2
builds ubiquitin chains on the outermitochondrialmembrane that
could be sufficient to recruit autophagic receptors such as
optineurin, nuclear dot protein 52 (NDP52), p62 (SQSTM1),
and Tax1-binding protein 1 (TAX1BP1) [96, 97]. Optineurin
andNDP52 are the primary receptors in this process, and follow-
ing recruitment of optineurin and NDP52, ULK1, DFCP1, and
WIPI1 are independently recruited to focal spots proximal to
initiate autophagosome formation [96]. At late stages of
mitophagy, LC3 bind to the autophagosome membrane to form
a complete autophagosome that fuses with lysosomes for
degradation.

In sepsis, mitochondrial dysfunction induces a loss of mi-
tochondrial membrane potential that triggers mitophagy. In
the heart, mitophagy is induced during sepsis and this is evi-
denced by the presence of several double-membrane
autophagosomes, increased LC3B-II and p62 expression,
and mitochondrial recruitment of Park2, BNIP3L, and
BNIP3 [98, 99]. Park2-deficient mice exhibit impaired recov-
ery of cardiac function and constant cardiac mitochondrial
dysfunction in the heart during sepsis [98]. Cardiac-specific
overexpression of Beclin-1 promotes PINK1/Park2-
dependent mitophagy, improves cardiac function, and reduces
cardiac inflammation in response to LPS [99]. LC3B-II ex-
pression in the lung is increased and LC3 colocalizes with
citrate synthase in the mitochondria, which indicates
mitophagy occurs during sepsis [46]. MKK3-deficient mice
increase PINK1/Park2-dependent mitophagy, and this reduces
lethality of mice and lowers the levels of lung and mitochon-
drial injury in sepsis [100]. The data also show that heterozy-
gous PINK1 null mice are more susceptible to death and het-
erozygous PINK1,MKK3 null mice have higher survival than
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heterozygous PINK1 null mice in sepsis. The findings dem-
onstrate the inhibition of mitophagy increases mortality of
mice in sepsis. Compared with non-septic patients, both
higher MMK3 and PINK1 activation are detected in PBMCs
from septic patients [100]. Hepatocyte exposure to LPS in-
duces translocation of PINK1 and Park2 to the mitochondria
and colocalization of LC3 to mitochondria [101]. In the kid-
ney, increased autophagosomes co-localize with damage and
citrate in mitochondria during sepsis [102]. Collectively, these
studies support that mitophagy is induced in several organs
during sepsis.

Autophagy

Although several studies have demonstrated that mitophagy is
induced in major organs in sepsis, the effect of mitophagy in
sepsis remains unclear. Studies examining the role of
mitophagy in sepsis are very limited, and therefore, we discuss
the role of autophagy in sepsis. Several studies have shown
that impaired autophagy contributes to amplifying organ fail-
ure in sepsis.

In the CLP model, the whole autophagic process (autoph-
agic flux) is characterized by increased levels of LC3B-II,
ATG5, ATG7, Beclin1, and p62; the presence of
autophagosomes; and further increased levels of LC3B-II
and p62 after chloroquine treatment early in liver. These
changes are followed by incomplete autophagic flux and even
suppression of autophagy at the late stage of sepsis [103–105].
Liver failure and apoptosis occur as soon as autophagic flux is
suppressed, which indicates that suppression of autophagy is
associated with liver failure after CLP. A previous study re-
ported autophagy deficiency by downregulation of ATG7, an
essential gene for autophagosome formation, aggravates he-
patic mitochondrial dysfunction and liver damage and apopto-
sis after CLP [106]. Additionally, liver injury and apoptosis
are accelerated in liver-specific ATG5-deficient mice under
sepsis [19]. Chloroquine is a pharmacologic inhibitor of au-
tophagic flux and contributes to amplifying liver failure and
increases mortality during sepsis [104]. One pharmacologic
therapy is the autophagic flux enhancer carbamazepine, which
improves survival rates of septic mice and attenuates liver
injury, inflammation, and apoptosis in the CLP septic model
[105]. In the LPS-treated model, complete autophagic re-
sponse is induced in hepatocytes [107, 108]. The suppression
of autophagy by chloroquine and knockout out of ATG7 sen-
sitizes mice to LPS-induced liver injury [107, 108]. In the
heart, studies have shown that autophagic flux is induced in
two prototype sepsis models: endotoxemia and cecal ligation
and puncture (CLP) [99, 109]. Increasing Beclin-1-dependent
autophagy improves cardiac function and decreases cytokine
levels and protects myocardium from fibrosis following LPS
challenge [99]. Moreover, rapamycin is the best-known

pharmacologic agent to induce autophagy and CLPmice treat-
ed with rapamycin increase ATP generation and decrease cy-
tokine levels [109]. Similarly, the protective effect of autoph-
agy in sepsis can also be found in lung, kidney, skeletal mus-
cle, and immune cells [110–115]. Collectively, these studies
demonstrated that the induction of autophagy ameliorates or-
gan failure and suppression of autophagy amplifies organ fail-
ure in sepsis.

An interesting finding showed that critically ill patients
receiving over or standard feeding presented worse outcome
than those subjecting to underfeeding [116]. Starvation is a
main inducer of autophagy, and reduction of sepsis mortality
in critically ill patients with underfeeding may be probably
related to sustained induction of autophagy. Therefore, phar-
macological induction of autophagy is a potential therapeutic
strategy in sepsis. Rapamycin, a commonly used pharmaco-
logical agent for autophagy induction, has been reported to
protect against sepsis-induced organ injury and improve the
survival rate of septic mice [110, 117]. However, rapamycin
treatment also affects many other metabolic pathways, and
therefore clinical use of it for sepsis has little progress. There
are other pharmacological agents for autophagy induction
without affecting many signaling pathways, including carba-
mazepine, sodium valproate, and lithium, but fewer studies
have demonstrated the effect of these agents on sepsis.

Conclusion

Both septic patients and animal septic models suggest
that mitochondrial quality control mechanisms including
mitochondrial biogenesis, dynamics, and mitophagy are
induced in the early stage of sepsis (Fig. 2). In sepsis,

�Fig. 2 Changes in mitochondrial quality control mechanisms under
sepsis. a In the initial stage of sepsis, the upregulation of PGC-1α and
transcription factors promotes mitochondrial biogenesis. And a decrease
in Mfn1/2 and OPA1 expression and an increase in DRP1 expression
induce that the balance of mitochondrial fusion and fission shifts to
mitochondrial fission. Furthermore, the accumulation of PINK1 on
mitochondria induces PARK translocation from cytoplasm into
mitochondrial outer membrane, which triggers mitophagy. b The
mitochondrial functions are recovered in the survival of sepsis. Changes
in mitochondrial quality control mechanisms are presented as following.
Sustained high levels of PGC-1α and transcription factors continuously
activate mitochondrial biogenesis to provide new and healthy
mitochondria. The balance of mitochondrial fusion and fission is
recovered. Additionally, sustained induction of mitophagy can also be
found in the survival of sepsis. c In the progression of sepsis, injured
mitochondria cannot be restored and turn into mitochondrial
dysfunction. Changes in mitochondrial quality control mechanisms are
presented as follows. The decreased levels of PGC-1α and transcription
factors prevent mitochondrial biogenesis. And persistent decreased
Mfn1/2 and OPA1 expression levels and increased DRP1 expression
levels results in more mitochondrial fragmentation generation.
Additionally, expression levels of PINK1, PARK2, p62, and LC3 are all
decreased, which indicates mitophagy deficiency
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mitochondrial dysfunction is amplified as soon as LPS/
CLP-induced mitochondrial biogenesis and autophagy
return to baseline level. Deficient mitochondrial biogen-
esis and autophagy result in healthy mitochondria deple-
tion and increased mitochondrial fragmentation caused
by mitochondrial fission. Moreover, persistent mitochon-
drial dysfunction leads to multiple organ failure during
sepsis.

Several studies have shown that impaired mitochon-
drial quality control mechanisms contribute to and am-
plify organ failure in sepsis. Using pharmacologic ther-
apeutic agents to activate mitochondrial biogenesis or
mitochondrial autophagy or decrease mitochondrial fis-
sion in septic model can ameliorate organ mitochondrial
dysfunction and organ failure. However, further investi-
gations are required to monitor the changes of mito-
chondrial quality control mechanisms in septic patients
and translate these animal therapies into clinical thera-
pies. Furthermore, the role of other potential mitochon-
drial quality control mechanisms in sepsis requires
investigation.
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