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Abstract
The therapeutic armamentarium for the treatment of cancer has rapidly evolved with the advent of molecularly targeted and
immuno-oncology agents. Dramatic and prolonged responses observed in patients with advanced cancers have created excite-
ment and promise for expedited development of effective new treatments. However, this has also necessitated a rethinking of our
early phase clinical trial designs and the process of optimally developing a novel agent. In this review, we discuss the current state
and future directions of phase I clinical trials in oncology. Firstly, we cover the statistical methodologies behind rules and model-
based dose escalation designs, and what the future holds for optimal dose selection beyond targeting the maximum tolerated dose.
Next, we discuss the recent adoption of seamless expansion strategies to expedite drug development timelines, highlighted by the
pembrolizumab KEYNOTE-001 trial, and potential pitfalls with this approach. Finally, we delve into the concepts behind
genomic matching trials, including early success stories and the challenges that lie ahead.
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Introduction

The modern landscape of therapeutics in oncology has under-
gone rapid changes with a shift from traditional cytotoxic
chemotherapy to molecularly targeted agents and immuno-
therapy drugs. The milieu of genetically targeted mutations
has expanded from the 2001 landmark discovery of targeting
BCR-ABL in CML [1] to practice changing drugs that target
genetic aberrations, such as EGFR [2], ALK [3], BRAF [4, 5],
HER2 [6], KIT [7], etc. Immunotherapy has also brought pro-
found changes to treatment patterns in an ever broadening
group of tumor types, starting with melanoma [8] and non-
small cell lung cancer (NSCLC) [9], and expanding to recent
approvals in head and neck, bladder, gastric, hepatocellular,
and mismatch repair-deficient tumors. Alongside the develop-
ment of these drugs, rapid uptake of next-generation sequenc-
ing promises to bring tumor profiling to the majority of pa-
tients and allows for an increased pool of genomically

stratified tumors. However, the new era of oncology
drugs brings a new set of challenges for early clinical
trial development. These include how to determine the
optimal dose for a targeted or immunotherapy agent,
how to design and implement genomically defined tri-
als, and how to expedite the approval of effective drugs
to patients. In this review, we will discuss the evolution
of early phase clinical trials in oncology.

Dose-finding strategies

Rule-based designs

In phase 1 clinical trials, the primary goal is to establish
safety and tolerability, and to define the maximum toler-
ated dose (MTD) to use as the dose in a phase 2 trial
(recommended phase II dose, RP2D). Following the de-
termination of experimental dose levels, dose escalation
strategies, principally the rule and model based, utilize
observed toxicity to guide dosing. Rule-based designs
are by far the most common and employ a simple up-
down sequential dose escalation scheme. The standard
up-down design is the 3 + 3 method as described by
Storer in 1989 [10] (Fig. 1a). A review of 1235 cancer
phase 1 trials conducted between 1991 and 2006 showed
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that over 98% used simple up-downmethods while only 1.6%
used adaptive Bayesian designs [11]. The main advantage of
rule-based designs is their simplicity. They do not require
special statistical support and are easy to understand and im-
plement. However, there are considerable drawbacks to this
approach. Firstly, this is a conservative strategy which may
treat many patients at low or sub-therapeutic doses, a signifi-
cant problem in trials treating patients with advanced cancers.
Second, statistical simulations have repeatedly shown that
there is a low probability of actually finding the true MTD,
especially if there are many dose levels [12]. There have been
many modifications to the 3 + 3 design to help ameliorate
some of its shortcomings. Accelerated titration designs
(ATD) attenuate the slow escalation by allowing single patient
cohorts along with rapid escalation in the dose for early dose
levels (Fig. 1b). When moderate toxicity or dose-limiting tox-
icities (DLTs) occur, the design switches to the more conser-
vative 3 + 3. Simulations have shown that ATD significantly
reduces the number of patients who are under-dosed and en-
ables faster completion of phase 1 trials [13].

Model-based designs

In contrast to rule-based designs, model-based (or Bayesian)
designs allow for rapid dose escalation and the contribution of
all patient data to determine the MTD. One of the most widely
used Bayesian designs in practice is the continual reassess-
ment method (CRM) described by O’Quigley in 1990 [14]
(Fig. 1c). In this method, a pre-specified dose-toxicity curve
has a slope that is continuously updated as patient toxicity (or
non-toxicity) data comes in. Once the total allotted patients
have been accrued, the final shape of the dose-toxicity curve is
used to determine the MTD. The advantages to this method
are that it is more efficient than the 3 + 3 design with more
patients being treated at, or near, the MTD level. In addition,
toxicity data from all patients treated on study is used to guide
dose escalation decisions, as opposed to the 3 + 3 design,
where only the most recent patient cohort counts. Although
there are many advantages to the model-based designs, rule-
based methods still dominate the landscape of phase 1 oncol-
ogy clinical trials. This has been attributed to the difficulty in
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obtaining adequate statistical and computational support for
Bayesian methods as well as general inertia in the medical
community [15].

Beyond using toxicity as dose determination

Traditional phase 1 designs utilize toxicity-based dosing with
the underlying assumption that the mechanism resulting in
toxicity is similar to the mechanism resulting in antitumor
efficacy, a valid approach with conventional cytotoxic chemo-
therapy. However, in the current era of targeted and immuno-
therapies, this assumption has been brought into question and
concepts, such as establishing the Boptimal biologic dose^,
have been proposed. A retrospective study of 683 patients
(97.7% of who received targeted agents) enrolled in phase 1
trials at MD Anderson showed no different in efficacy out-
comes when comparing patients who were assigned to low
dose (≤ 25% MTD), medium dose (25–75% MTD), or high
dose (≥ 75% MTD) therapy [16]. Furthermore, in the
pembrolizumab phase 1 dose escalation study, the maximum
specified dose of 10 mg/kg was reached without difficulty, no
DLTs were observed, and responses were seen in all doses
beyond 1 mg/kg [17]. However, multiple translational models
analyzing ex vivo patient PBMCs, target receptor occupancy,
and pharmacokinetic/pharmacodynamic (PK/PKD) data, con-
verged on 2 mg/kg as the lowest dose with the highest likeli-
hood of clinical efficacy [18, 19]. Therefore, despite 10 mg/kg
being the maximum administered dose (MAD) in the toxicity
framework, 2 mg/kg every 3 weeks became the dose that was
explored further in expansion studies and eventually became
the Food and Drug Administration (FDA)-approved dose for
melanoma in 2014 [20].

Using pharmacodynamic endpoints for first-in-human tri-
als formed the basis for Bphase 0^ trials conducted under the
US Food and Drug Administration’s Exploratory
Investigational New Drug guidance [21–23]. In the phase 0
trial of veliparib (ABT-888), an inhibitor of poly ADP-ribose
polymerase (PARP), 13 patients received a single dose of
veliparib ranging from 10, 25, or 50 mg and subsequently
underwent blood sampling and tumor biopsies to evaluate
on-target inhibition of PARP activity. Adequate drug expo-
sures were achieved and statistically significant reductions in
PAR (poly ADP-ribose) levels were observed at 3–6 h post-
drug administration at 25 and 50 mg. These results were ob-
tained within 5 months of study activation, establishing proof
of principle for obtaining human pharmacokinetic (PK) and
pharmacodynamic (PD) earlier in the drug development pro-
cess in order to guide dosing and scheduling for subsequent
trials. Establishing the optimal biological dosing (OBD) in
early phase trials requires the development of validated assays
and standardizing sample handling and processing procedures
prior to the initiation of first-in-human trials [24].

Another potential issue with novel agents is how to consid-
er the time frame for the cataloging of adverse events.
Traditionally, toxicities encountered during the first cycle have
formed the basis for dose escalation decisions in phase 1 trials.
However, the observation of delayed, cumulative, and certain
toxicities, such as immune-related adverse events, may be
slow to resolve, and this could lead to unexpected de-
escalations later on in the trial [25]. In addition, for immuno-
therapy agents, there may not be a linear relationship between
dose and development of immune-related adverse events [26].
Other non-dosing-related factors such as a history of autoim-
mune disease, HLA type, or other genetic risk factors may
play an important role [27]. The challenge for future dose-
finding trial designs is to take into consideration these factors
and safely and efficiently select an optimal dose for patient
care.

Seamless expansion strategy

Conventional phases of clinical drug development are divided
into: safety/tolerability and dose finding (Phase I), preliminary
efficacy in a specific disease type (Phase II), and eventually,
the randomized comparison to an existing standard of care
(Phase III) (Fig. 2a). Only once a drug reaches its primary
endpoint in a phase III trial is it FDA approved, with the
clinical development timeline taking 7–10 years. In 2014,
the FDA approval of pembrolizumab for melanoma marked
a significant departure from this traditional sequential ap-
proach. Not only did it usher in the era of checkpoint inhibi-
tion and immunotherapy across tumor types, but also it exem-
plified the process for expedited drug development. It took
3 years from the time the first in-human phase 1 started in
2011 until accelerated FDA approval in 2014. The
KEYNOTE-001 phase 1 study initially enrolled ten patients
with advanced solid tumors using the traditional 3 + 3 design.
When objective responses were observed in the melanoma
(PR/CR in four of seven) and NSCLC (stable disease in four
of seven) cohorts, expansion cohorts were rapidly added for
these disease types [17]. In the melanoma arm, multiple var-
iables were tested including dose levels, varying cycle lengths,
various prior therapy cohorts (ipilimumab-naïve, treated, and
refractory patients), and randomization cohorts. In all, a total
of 655 melanoma patients were enrolled and treated, with 173
serving as the basis for initial accelerated approval of
pembrolizumab in ipilimumab-refractory melanoma. In the
NSCLC arm, an additional companion diagnostic for PD-L1
expression was trained and validated throughout the multiple
cohorts, with a final determination of a tumor proportion score
(TPS) of ≥ 50% necessary for optimal efficacy. Data from the
NSCLC cohorts eventually led to the 2015 accelerated ap-
proval by the FDA of pembrolizumab in PD-L1-positive
NSCLC that have progressed on other treatments. In total,
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one trial/protocol enrolled and treated over 1200 patients,
established efficacy in two different tumor types, and validat-
ed a biomarker assay in the span of under 4 years. This seam-
less expansion strategy is illustrated in Fig. 2b.

Despite the quick turnaround from bench to bedside, there
are inherent issues with this design which do not make it
generalizable to all new drugs. First, there was a high degree
of protocol complexity with multiple protocol amendments
(nine in total) and multiple expansion cohorts testing different
hypotheses in various tumor types and drug doses simulta-
neously. These intrinsic complexities can increase the poten-
tial for protocol violations at different trial sites and create
adherence issues for patients. Second, incorporating an entire
drug development program into a single, continuously
updating trial lends itself to missing critical milestones that
are normally built into a sequential design. For instance, safety

concerns and efficacy data that arise from a phase 1 trial are
subsequently incorporated into the informed consent for the
phase 2 trial, allowing for adequate patient education on the
risks and benefits of the experimental drug. Also, key guid-
ance meetings/detailed review by the regulatory agency that
occurs at standard timepoints may be missed. Third, clear
rationale and explicit statistical plans are not defined for the
multiple expansion cohorts, making it possible for patients to
continue to enroll in subgroups that are not showing signifi-
cant efficacy. Most drugs evaluated in phase I trials are not
shown to be eventually efficacious and safeguards must be in
place to inform and protect patients. An in-depth review of 60
phase 1 trials at Dana-Farber Cancer Center submitted in 2011
showed that only 13.3% had formal power calculations justi-
fying the sample size, while 60% had no statistical justifica-
tion of sample size or endpoint assessment [28]. In 2016,
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members of the FDA published an editorial on their concerns
about the rapid uptake of the seamless expansion design (over
40 active investigational new drug applications) in phase I
oncology trials [29]. They proposed to limit the seamless ex-
pansion strategy to only drugs that have been designated as
Bbreakthrough therapies^. This would allow the rapid devel-
opment of clinically promising drugs while still ensuring a
high degree of regulatory collaboration and oversight.

Next-generation genomic trial designs

The advent of next generation sequencing has brought an
unprecedented wealth of information and promising treatment
options for patients. The holy grail of precision oncology is to
sequence a patient, find the corresponding driver mutations,
and treat them with a specific inhibitor of that gene, leading to
clinical benefit. With success thus far in various tumor type
specific gene-drug combinations (BCR-ABL, EGFR, ALK,
etc), the thought is that broader and deeper sequencing will
reveal a mutational landscape that allows targeted treatment
irrespective of tumor type. The two main trial designs that
have evolved out of this approach are the basket and the um-
brella trials.

Basket trials

In the basket design, a single drug is used to target a specific
genetic alteration in a variety of different tumor types
(Fig. 3a). One of the first publications of a basket trial was
the vemurafenib trial in BRAF V600-mutated non-melanoma
patients [4].Results showed marked heterogeneity in response
that depended upon histology, with good responses seen in
NSCLC (ORR 42%), Erdheim-Chester Disease (43%), but
minimal responses in colorectal cancer (CRC 0%) and chol-
angiocarcinoma (12%). Thus, the conclusion of the study was

that histologic context still needs to be considered for certain
prevalent mutations. BRAF inhibition in NSCLC was ex-
plored further in a subsequent study testing dual
BRAF/MEK inhibition in metastatic BRAF V600E-mutated
NSCLC, and found an impressive ORR of 63.2%withmedian
progression-free survival of 9.7 months [5]. This data led to
the FDA approval of this combination in BRAF V600E-
mutated NSCLC in June 2017 [30].

There have been emerging success stories in targeting his-
tology agnostic genetic alterations. Recently, clinical benefit
has been reported with larotrectinib in patients with a variety
of solid tumors carrying neurotrophic receptor tyrosine kinase
(NTRK) fusion. In a phase I/II study of 55 adult and pediatric
patients across 17 unique tumor types, larotrectinib produced
an impressive ORR of 76% with median PFS not yet reached
after 7.7 months median follow-up [31]. For immunother-
apies, high tumor mutational burden has been shown to cor-
relate with clinical response [32]. Given the extraordinarily
high mutational burden seen in mismatch repair-deficient
(MMR-D) tumors, multiple studies were undertaken to inves-
tigate the potential effectiveness of checkpoint blockade, both
in CRC aswell as other tumors withMMR-D. One study of 41
patients (11 MMR-D CRC, 21 MMR-proficient CRC, 9
MMR-D non-CRC) found marked responses in the MMR-D
cohort with an ORR Of 40% in MMR-D CRC and 71% in
MMR-D non-CRC, compared with 0% in MMR-proficient
CRC [33]. In addition to the high objective response rate,
observed responses were durable, with a 20-week immune-
related PFS of 67–78% in the MMR-D patients. This and four
other single-arm clinical trials led to the May 2017 FDA ap-
proval of pembrolizumab in mismatch repair-deficient can-
cers, the first tissue/site-agnostic approval [34].

As more effective drugs targeting specific genetic alter-
ations are developed, patients will need to have comprehen-
sive sequencing in order to find potentially rare variants that
are actionable. The potential issues include resources,

Basket Trial Umbrella Triala b

Fig. 3 Basket versus umbrella trial design. a In a basket trial, a targeted
therapy (purple pill) is tested on patients with a specific genetic mutation
(purple diamond) across a variety of tumor types. b In an umbrella trial,
different tumor types (organ icon linked with patient color) are tested for

specific genetic mutations (purple diamond, brown triangle, yellow star).
These mutations are then sorted into independent groups and treated with
a matched inhibitor (purple, brown, yellow pill)
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ensuring that sequencing panels incorporate all known action-
able genes, and that providers are aware that therapies exist for
these genetic alterations. Fusions can be particularly problem-
atic as breakpoints are frequently in intronic regions and all
potential breakpoint regions must have adequate sequencing
coverage in order to capture the actual alteration. Another
potential issue is that rare variants are, by nature, difficult to
find in patients and assembling a reasonable sample size for a
clinical trial can be challenging. A solution is to aggregate
different mutation-drug combinations into larger pathway-
defined arms which have been used in umbrella trials.

Umbrella trials

The umbrella design takes patients from a single or variety of
tumor types, pairs them with a pre-specified drug for their
actionable genetic alteration, and directs these drug-gene com-
binations as independent, parallel cohorts within one large
trial (Fig. 3b). Prominent ongoing examples of umbrella trials
are the NCI-MATCH, with over 30 gene-drug pairs enrolling
in over 1000 study locations, and the ASCO TAPUR, with 16
gene-drug pairs enrolling in 101 study locations. One large,
multi-histology umbrella trial has been published thus far,
with negative results [35]. The SHIVA trial was a randomized
phase II trial run at eight French academic centers in which
patients were genomically matched to ten regimens aggregat-
ed into three molecular pathways (hormone receptor,
PI3K/AKT/mTOR, and RAF/MEK) and randomized to
matched therapy versus standard of care. Seven hundred and
forty-one patients were screened with 293 (40%) having at
least one molecular alteration in the pre-specified target group.
There was no difference in mPFS between the matched and
control groups (2.3 vs 2.0 months). When broken down by
individual pathway, there were still no differences between
matched and control group, although small sample sizes po-
tentially masked significant effects.

This trial has brought up considerable debate as to the
future of precision umbrella trials as well as concerns over
the SHIVA trial’s particular design. First is the issue of the
balance of genomic alterations that are represented and
obtaining adequate enrollment of matched patients. In the
SHIVA trial, 716 patients underwent tumor sampling, 496
(70%) had satisfactory tissue for genomic profiling, 293
(59%) of these patients had a targetable alteration, and 195
(39%) were able to be randomized. However, when analyzing
the distribution of targeted mutations, it becomes clear that
there is a significant skew with 42% of the alterations occur-
ring in the hormone receptor pathway (AR/ER/PR), 19% with
PIK3CA activating mutations, and 24% with PTEN inactiva-
tions. All other mutations occurred in less than 5% of patients.
These uneven distributions can potentially lead to significant
problems in identifying less common, effective drug-gene
matches by diluting out pairs with small sample sizes. The

NCI-MATCH interim analysis reported issues with efficient
patient matching despite the rapid accrual of patients [36].
Although 739 patients were enrolled and tested in just
7 months, only 56 (9%) were able to be matched to therapy,
and only 16 actually started treatment (2.5%). This was well
below the target estimated mutation matching rate of 30%.
The investigators responded by expanding to 24 arms in late
May 2016, and then up to 30 arms.

Second, is the question of the effectiveness of single-agent
targeted therapy in heavily pre-treated patients. Tumors under-
go selective pressure through multiple therapies to evolve and
acquire new mutations and sub-clonal populations [37]. In
addition, there can be marked genetic differences between a
primary tumor and its corresponding metastases [38], making
a single biopsy of one site inadequate for determining cancer
driver mutations [38]. With patients enrolling in umbrella tri-
als after progressing through multiple prior lines of therapy,
the clonal heterogeneity of tumors may be too complex to be
treated with single-agent targeted therapy alone. On the other
hand, bringing matched therapy trials to earlier line settings
may be unethical if there are still standard of care options with
proven benefit. Further research is needed to elucidate the
genomic state of a tumor and how best to exploit its alterations
for clinical benefit.

Conclusion

In the era of genomic sequencing and immunotherapy, the
field of oncology has endless optimism towards finding effec-
tive treatments for patients at a faster rate than any time in
previous history. The crucial concepts that will need to be
addressed by the next generation of early phase trials are the
adequacy of determining dose by toxicity, the appropriate in-
corporation of seamless expansion designs, and the advances
in genomic and other biomarker-driven strategies. Also im-
portant will be ensuring that a solid regulatory framework
exists to maintain high standards of patient safety while en-
suring expedited development of promising anticancer agents.
The new frontier of early phase oncology trials represents an
important and exciting time for researchers, providers, and
patients alike.
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