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LEFTY2 inhibits endometrial receptivity by downregulating
Orai1 expression and store-operated Ca2+ entry
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Abstract
Early embryo development and endometrial differentiation
are initially independent processes, and synchronization, im-
posed by a limited window of implantation, is critical for
reproductive success. A putative negative regulator of endo-
metrial receptivity is LEFTY2, a member of the transforming
growth factor (TGF)-β family. LEFTY2 is highly expressed in
decidualizing human endometrial stromal cells (HESCs) dur-
ing the late luteal phase of the menstrual cycle, coinciding
with the closure of the window of implantation. Here, we
show that flushing of the uterine lumen in mice with recom-
binant LEFTY2 inhibits the expression of key receptivity
genes, including Cox2, Bmp2, and Wnt4, and blocks embryo
implantation. In Ishikawa cells, a human endometrial epithe-
lial cell line, LEFTY2 downregulated the expression of calci-
um release-activated calcium channel protein 1, encoded by
ORAI1, and inhibited store-operated Ca2+ entry (SOCE).

Furthermore, LEFTY2 and the Orai1 blockers 2-APB,
MRS-1845, as well as YM-58483, inhibited, whereas the
Ca2+ ionophore, ionomycin, strongly upregulated COX2,
BMP2 and WNT4 expression in decidualizing HESCs. These
findings suggest that LEFTY2 closes the implantation win-
dow, at least in part, by downregulating Orai1, which in turn
limits SOCE and antagonizes expression of Ca2+-sensitive
receptivity genes.

Key messages
• Endometrial receptivity is negatively regulated by

LEFTY2.
• LEFTY2 inhibits the expression of key murine receptivity

genes, including Cox2, Bmp2 and Wnt4, and blocks em-
bryo implantation.

• LEFTY2 downregulates the expression of Orai1 and in-
hibits SOCE.
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• LEFTY2 and the Orai1 blockers 2-APB, MRS-1845, and
YM-58483 inhibit COX2, BMP2, and WNT4 expression
in endometrial cells.

• Targeting LEFTY2 and Orai1 may represent a novel ap-
proach for treating unexplained infertility.

Keywords Implantation . LEFTY2 . ORAI1 . SOCE .

Calcium . Pregnancy .Miscarriage

Introduction

A transient window of uterine receptivity ensures that embry-
os implant in an optimal endometrial environment [1]. Failure
to establish [2] or premature closure [1, 3, 4] of the implanta-
tion window is thought to be a major cause of infertility, which
affects ~ 15% of couples. Conversely, prolonged receptivity
may lead to out-of-phase implantation and miscarriage [3, 4]
or recurrent pregnancy loss [1, 4, 5]. The stromal signals re-
sponsible for terminating the window of implantation are not
well characterized. A putative candidate is Left-Right
Determination Factor 2 (LEFTY2), a cytokine highly
expressed by decidualizing stromal cells during the late secre-
tory phase of the menstrual cycle [6], i.e., following closure of
the window of implantation and prior to menstruation [7].
LEFTY2, initially designated endometrial bleeding associated
factor (EBAF), is a secreted ligand of the transforming growth
factor-beta (β) superfamily of proteins [7, 8]. Following pro-
teolytic processing of the secreted precursor, LEFTY2 acts as
an antagonist of the Nodal signaling pathway by interfering
both with the binding of NODAL to the activin receptor and
the formation of a receptor complex [9]. During the late luteal
phase of the menstrual cycle, strong LEFTY2 immunoreactiv-
ity was found in the stroma and to a lesser extent in the endo-
metrial glands [10]. Furthermore, LEFTY2 has also been de-
tected in the endometrial fluid of fertile women, indicating that
LEFTY2 is secreted into the lumen of the uterus. Interestingly,
induction of the proprotein convertase (PC) 5/6, which pro-
cesses LEFTY2, is triggered in the mouse uterus in response
to artificial decidualization with oil or upon mechanical injury
[11]. Endometrial LEFTY2 is elevated during the receptive
phase in some patients with “unexplained infertility” suggest-
ing that dysregulation of LEFTY2 contributes to infertility
[12, 13]. Further, in vivo gene transfer of Lefty2 in the mouse
uterus leads to implantation failure [14]. However, the mech-
anisms underlying the negative impact of LEFTY2 on endo-
metrial receptivity remain largely unknown.

Several implantation events, including blastocyst-
endometrium adhesion [15], regulation of growth factor sig-
naling [16], transcription factor activity [17], epithelial tight
junctions [18], protease activity [19], cyclooxygenase 2
(COX2)-dependent prostaglandin production [20, 21], and ep-
ithelial transport [22, 23] are regulated by Ca2+ signaling.

Embryo-derived tryptic serine proteases have emerged as im-
portant implantation signals, capable of inducing COX2-
dependent prostaglandin E2 (PGE2) production in response
to cytosolic Ca2+([Ca2+]i) oscillations [21]. [Ca

2+]i is tightly
regulated by several mechanisms, including Ca2+ release from
intracellular stores and subsequent activation of store-operated
Ca2+ entry (SOCE) [24]. SOCE is initiated by the Ca2+ sensor
proteins, stromal interaction molecule 1 (STIM1) and STIM2,
that are located within the endoplasmic reticulum (ER) [25].
Following store depletion, STIMs cluster and trap the plasma
membrane (PM) proteins ORAI1–3 into ER-PM junctions
[24]. These regions become sites of highly selective Ca2+

entry, predominantly through ORAI assembled channels [26,
27]. Prolonged and disordered Ca2+ oscillations in
decidualizing stromal cells in response to serine proteases se-
creted by low-quality human embryos are thought to trigger
ER- stress, which in turn facilitates early maternal rejection of
a non-viable conceptus [28]. Recently, we reported that Orai1
is expressed in the secretory phase endometrium as well as in
endometrial carcinoma cells [29]. Both Orai1 expression and
function are upregulated by TGFß1, an effect presumably par-
ticipating in the regulation of endometrial regeneration [29].
The role of Orai1 in implantation remains to be determined.

The mechanisms regulating [Ca2+]i levels in endometrial
cells remain incompletely understood but presumably involve
Ca2+ release from intracellular stores with subsequent activa-
tion of SOCE [27, 30–34]. Here, we show that LEFTY2 in-
hibits the expression of Ca2+ responsive receptivity genes by
downregulating Orai1 expression and limiting SOCE. Our
findings provide new insights into the molecular mechanisms
that define a limited window of implantation in the human
endometrium.

Results

Mining of publicly available microarray data (Gene
Expression Omnibus accession number: 24460960) demon-
strated a marked increase (30-fold) in LEFTY2 mRNA levels
in whole endometrial biopsies upon transition from mid-
secretory (MS; receptive) to late secretory (LS; refractory)
phase of the menstrual cycle (Fig. 1a). In culture, decidual
transformation of HESCs increased LEFTY2 expression.
After 8 days of differentiation, LEFTY2 mRNA levels in-
creased approximately 14,000-fold (Fig. 1b).

In order to explore the functional significance of increased
LEFTY2 expression, we examined the effect of LEFTY2 on
embryo implantation in the mouse uterus. Embryo implanta-
tion in mice is a stepwise process that starts with attachment of
the blastocysts to the endometrial luminal epithelial layer be-
tween 3.5 to 4.5 days postcoitus (dpc), triggering
decidualization of the underlying stromal cells [35] and clo-
sure of the uterine lumen [36].To confirm that LEFTY2
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renders the endometrium refractory to implantation [14], mu-
rine uterine flushing experiments were performed in C57BL/6
female mice mated with vasectomized males. The uterine
lumen of pseudopregnant female mice was injected with
recombinant LEFTY2 before transfer of 10 cultured blasto-
cysts equivalent of 3.5 dpc into a single uterine horn.
Phosphate-buffered saline (PBS; vehicle) was flushed through
the uterus prior to embryo transfer in control animals. The
number of implantation sites was determined 72 h later. Out
of 50 embryos transferred in each group, 43 (86%) embryos
failed to implant in uteri treated with recombinant LEFTY2.
By contrast, only 5 (10%) embryos failed to implant follow-
ing flushing of the uterine lumen with PBS (Fig. 2a). Viable
embryos were observed in the implantation sites of control
(Veh) animals (Fig. 2b). The few established implantation
sites following LEFTY2 exposure appeared smaller and the
presence of collapsed blastocysts suggested imminent demise
(Fig. 2b). To exclude a possible effect of LEFTY2 on the
blastocysts, we performed further flushing experiments.
C57BL/6 female mice were mated with fertile males to in-
duce a normal pregnancy. At day 3.0 dpc, the uterus was
flushed once either with PBS or LEFTY2. In this natural
mating model, the blastocysts are still within the oviduct at
day 3.0 dpc and are therefore not exposed to recombinant
LEFTY2. Our results show again a significant decrease of
implantation sites in LEFTY2 flushed mice (Supplementary
Fig. 1), further suggesting that LEFTY2 blocks implantation
by acting directly on the endometrium.

We speculated that failed implantation following LEFTY2
exposure could reflect inhibition of key murine implantation
genes. In agreement, murine levels ofOrai1, Bmp2, Cox2 and
Wnt4 were significantly downregulated in LEFTY2-treated
uteri when compared to control mice (Fig. 2c). Other cardinal
murine implantation genes, including Lif, Ihh, Hoxa10 and
Hbegf were unaffected by LEFTY2 (Supplementary Fig. 2).

To determine the relevance of these observations to the
human endometrium, we decidualized HESCs with 8-Br-
cAMP and MPA (medroxyprogesterone acetate, a progestin)
for 6 days in the presence or absence of LEFTY2. As was the
case in mice, recombinant LEFTY2 also attenuated the ex-
pression of WNT4, BMP2, and COX2 at protein and
mRNA level in decidualizing HESCs (Fig. 3 and
Supplementary Fig. 3). By contrast, endometrial WNT4,
BMP2 and COX2 expression was markedly upregulated in
response to the Ca2+ ionophore, ionomycin (Fig. 3), indicating
that the expression of these implantation factors is responsive
to increase in [Ca2+]i. Interestingly, LEFTY2 abrogated the
induction of COX2 and WNT4 in response to Ionomycin,
although it failed to reverse the induction of BMP2.
Ionomycin treatment had no impact on LIF, IHH, HOXA10,
or HBEGF mRNA levels in decidualizing HESCs
(Supplementary Fig. 4).

In order to determine if the inhibition of Ca2+-responsive
receptivity genes following LEFTY2 treatment was a conse-
quence of SOCE inactivation, primary HESCs were
decidualized with 8-Br-cAMP and MPA for 6 days in the ab-
sence or presence of Orai1 inhibitors 2-aminoethoxydiphenyl
borate (2-APB) [29], YM-58483 [37] or MRS-1845 [38].
Induction of IGFBP1 and PRL transcript levels confirmed
that the cells mounted a decidual response (data not
shown). As shown in Fig. 4, exposure of decidualizing
HESC Orai1 inhibitors 2-APB, YM-58483 and MRS-1845
significantly decreased COX2, BMP2 and WNT4 transcript
levels.

We hypothesized that LEFTY2 may similarly impair
SOCE in luminal endometrial epithelial cells at implantation.
To test this hypothesis, we first determined the transcript
levels of the ORAI1–3 and STIM1–2 isoforms in endometrial
Ishikawa cells treated with or without LEFTY2. Ishikawa
cells are a commonly used cell line to study human

Fig. 1 Expression of LEFTY2 in human endometrium. a Arithmetic
means ± SEM of LEFTY2 transcripts expressed in arbitrary units (a.u.)
in whole endometrial biopsies throughout the menstrual cycle.
Expression levels were derived from in silico analysis of publicly
available microarray data (GEO profile LEFTY2: ID 24460960). The
phases of the cycle are indicated as follows: P proliferative, ES early-
secretory, MS mid secretory, and LS late secretory. b Induction of

LEFTY2 in decidualizing HESCs. Arithmetic means ± SEM (n = 3)
of transcript levels of LEFTY2 measured in undifferentiated HESCs
and cells decidualized with 8-br-cAMP and MPA for 2, 4 or 8 days.
The data are expressed relative to that in undifferentiated cells (D0).
Different letters above the error bars indicate that those groups are
significantly different from each other at *P < 0.05 using the
Kruskal-Wallis test
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implantation events [28, 39, 40]. As illustrated in Fig. 5a,
LEFTY2 selectively decreased the transcript levels of
ORAI1, the dominant ORAI isoform in these cells. The tran-
script levels forORAI2-3were low in Ishikawa cells, irrespec-
tive of LEFTY2 treatment. Similarly, STIM1-2 expression did
not change in response to LEFTY2 treatment. The decrease of
ORAI1 transcript levels following LEFTY2 treatment was
paralleled by a decrease of ORAI1 at the protein level. Flow
cytometry showed a significant reduction in ORAI1 in re-
sponse to LEFTY2 treatment (Fig. 5b–c).

In order to explore whether LEFTY2 impacts on Ca2+ sig-
naling, Ishikawa cells were treated with thapsigargin, a potent

inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase
(SERCA), in the presence or absence of recombinant
LEFTY2. Treatment with thapsigargin in the absence of ex-
t r ace l lu la r Ca2+e l i c i t ed a t rans ien t inc rease in
[Ca2+]i(Δ[Ca2+]i) (Fig. 6a). Both peak and slope of Δ[Ca2+]i
were significantly blunted in response to LEFTY2 treatment.
Subsequent addition of extracellular Ca2+sharply increased
[Ca2+]i, reflecting SOCE. Peak and slope of Ca2+entry were
significantly decreased by LEFTY2 (Fig. 6b–c). Basal Ca2+

levels were not significantly modified by LEFTY2
(Supplementary Fig. 5). Taken together, the data show that
LEFTY2 blunts intracellular Ca2+release and SOCE.

Discussion

LEFTY2, a member of the TGF-β superfamily, is implicated
in embryo development and stem cell differentiation through
its antagonistic action on the TGF-β/Smad signaling pathway
[41–43]. LEFTY2 is also expressed in the human endometri-
um, most prominently during the late secretory phase of the
menstrual cycle [10, 44, 45]. Previous studies reported that

Fig. 2 Recombinant LEFTY2 blocks embryo implantation. Vas mated
C57BL/6 female mice were subjected to laparotomy and both uterine
horns gently flushed with either vehicle (PBS) or recombinant LEFTY2
(500 ng/ml). Ten embryos (equivalent to stage 3.5 dpc) were then
transferred to the right horn. Each treatment group consisted of five
mice. a The gross morphological appearance of the uteri and
implantation sites at 9.5 dpc (scale bar, 1 cm); the right panel shows
arithmetic means ± SEM (n = 5) of the number of implantation sites
following uterine flushing with PBS (Veh) or recombinant LEFTY2. b
Corresponding histological appearance of implantation sites. The upper
panel (Veh; control) shows a normal blastocyst. The lower panel shows
fetal demise following uterine LEFTY2 exposure prior to embryo transfer
(scale bar, 100 μm). c Arithmetic means ± SEM (n = 5) of the relative
expression of murine Orai1, Cox2 Wnt4 and Bmp2, transcript levels,
normalized to Cyclo (housekeeping) mRNA and expressed in arbitrary
units (a.u.), following uterine flushing with LEFTY2 or vehicle (PBS,
dotted line). **P < 0.01 and ***P < 0.001 indicate statistically
significant difference to absence of LEFTY2 (Student’s t test)

Fig. 3 Differential regulation of Ca2+-dependent receptivity factors in
response to LEFTY2 and Ionomycin. Primary HESC cultures were
treated with 8-Br-cAMP and MPA for 6 days with or without LEFTY2
(25 ng/ml) or Ionomycin (1 μM) or in combination. a Original Western
blots showing COX2, WNT4, BMP2 and GAPDH. b–d The abundance
of COX2, WNT4 and BMP2 was quantified by ImageJ analysis of six
Western blots and normalized to GAPDH. The data shows arithmetic
means ± SEM. *P < 0.05, **P < 0.01 indicate significant difference to
absence of LEFTY2 (Student’s t test)
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overexpression of LEFTY2 is associated with unexplained
infertility [46] and irregular menstrual bleeding [8], and
in vivo gene transfer studies in mice have also shown inhibi-
tion of implantation [14]. Furthermore, auto/paracrine LEFTY
signaling attenuates decidual transformation of HESCs [47,
48], although the underlying mechanisms are incompletely
understood.

In this study, we demonstrate that LEFTY2 renders the
endometrium refractory to implantation, an effect paralleled
by downregulation of ORAI1 expression and of SOCE in
endometrial epithelial cells. By attenuating [Ca2+]i signaling,
LEFTY2 decreases expression of Ca2+-responsive implanta-
tion genes such as COX2, WNT4 and BMP2. Other key im-
plantation genes, including LIF, IHH, HOXA10 and HBEGF
transcripts [12, 49], were not affected by LEFTY2 or by
Ionomycin treatment.

The pathways that couples LEFTY2 to transcriptional
repression of ORAI1 and the mechanisms linking
ORAI1 function and increases of [Ca2+]i to expression
of receptivity genes requires further elucidation. The
present observations uncover a novel function of Orai1

and store-operated Ca2+ entry. SOCE is known to trig-
ger Ca2+ oscillations [27, 50], which stimulate several
cellular functions [51–55] including entering into the S
and the M phase of the cell cycle [56, 57] as well as
cell survival [58, 59]. In contrast, sustained increase of
cytosolic Ca2+ activity leads to apoptosis [53, 55,
60–68]. By mediating SOCE and oscillations of cytosol-
ic Ca2+ activity, Orai1-3 and their regulators STIM 1–2
are decisive for cell survival [69–72]. It is noteworthy
that ORAI1/STIM1 is upregulated by the serum and
glucocorticoid inducible kinase (SGK1) and TGF-β in
endometrial cancer cells [29], but downregulated by the
AMP activated kinase (AMPK) [73]. Although as yet
untested, downregulation of Orai1/STIM1 in response
to AMPK activation potentially plays a role in
preventing implantation of an embryo into an energy-
deficient endometrium.

The present observations point to a new role of
ORAI1-dependent SOCE in the regulation of endometri-
al receptivity genes, and hence the likelihood of suc-
cessful embryo implantation. However, our findings do

Fig. 5 LEFTY2 downregulates endometrial Orai1 expression. a
Endometrial Ishikawa cells were treated with or without LEFTY2
(25 ng/ml) for 6 days, and ORAI1, ORAI2, ORAI3, STIM1 and
STIM2 mRNA levels were measured. The results show arithmetic
means ± SEM (n = 6). Expression levels of the ORAI2 and ORAI3
isoforms are relative to the ORAI1 transcript level in the absence of

recombinant LEFTY2 treatment. b and c Original FACS plot and bar
graph of ORAI1 expression in parallel cultures treated with and without
LEFTY2. **P < 0.01, ***P < 0.001 indicates statistically significant
difference to absence of LEFTY2. ###P < 0.001 indicates statistically
significant difference from Control-Orai1 transcripts (Student’s t test)

Fig. 4 Orai1 inhibitors 2-APB,MRS-1845, and YM-58483 inhibit Ca2+-
responsive implantation genes. Arithmetic means ± SEM (n = 6) of
BMP2, WNT4, and COX2 transcript levels relative to that of L19
(housekeeping) in primary HESC cultures that were treated with 8-Br-

cAMP and MPA for 6 days in the absence (dotted line) or in presence of
the Orai-1 inhibitors 2-APB (50μM),MRS-1845 (10μM), or YM-58483
(10 μM); **P < 0.01 indicates significant difference from the control
using Student’s t test
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not rule out the involvement of additional mechanisms
of Ca2+ release and/or entry during implantation. For
example, evidence has emerged to implicate voltage-
gated Ca2+ channels in Ca2+ entry in endometrial cells
exposed to embryonic proteases [21]. Moreover,
progesterone-dependent induction of phospholipase C
(PLC)-related catalytically inactive protein 1 (PRIP-1)
in decidual cells blocks Ca2+ release from the ER by
inhibiting inositol 1,4,5-trisphosphate (IP3) signaling
[74]. Most importantly, knockout of Orai1 on the spe-
cific Institute of Cancer Research (ICR) genetic back-
ground mice did not abrogate female fertility [75].
Unlike mice lacking Orai1 on a C57/DBA/129 back-
ground, the Orai1-deficient ICR mice did not suffer
from high incidence of perinatal lethality [75] and may
have partially replaced the function of Orai1 by other
mechanisms. Further experiments are required to identi-
fy those mechanisms and explore their LEFTY2
sensitivity.

Our findings provide a novel mechanistic explanation
for the clinical observation that elevated LEFTY2 levels
are associated with implantation failure and infertility
[13]. Taken together, our observations provide further
evidence that coordinated temporal and spatial regula-
tion of Ca2+ signaling in the endometrium across the
window of receptivity is critical for reproductive
success.

Materials and methods

Patient selection and sample collection

The study was approved by the NHS National Research
Ethics–Hammersmith and Queen Charlotte’s & Chelsea
Research Ethics Committee (1997/5065). The biopsies were
timed between 6 and 10 days after the pre-ovulatory luteiniz-
ing hormone (LH) surge. None of the subjects were on hor-
monal treatments for at least 3 months prior to the procedure.
Written informed consent was obtained from all participants in
accordance with the guidelines in The Declaration of Helsinki
2000.

Cell culture

Human endometrial stromal cells (HESCs) were isolated from
endometrial tissues as described previously [76]. Purified
HESCs were expanded in maintenance medium of
DMEM/F-12 (Invitrogen, Schwerte, Germany) containing
10% dextran-coated charcoal-treated fetal bovine serum
(DCC-FBS; Invitrogen, UK) and 1% antibiotic-antimycotic
solution (Invitrogen). Confluent monolayers were
decidualized in DMEM/F-12 containing 2% DCC-FBS with
0.5 mM 8-bromo-cAMP (8-Br-cAMP; Sigma, Munich,
Germany) with or without 10−6 M medroxyprogesterone ace-
tate (MPA; Sigma) to induce a differentiated phenotype.

Fig. 6 LEFTY2 reduces SOCE. a Original tracing of Fura-2
fluorescence-ratio in fluorescence spectrometry during and after Ca2+

depletion (1 μM thapsigargin) in LEFTY2 treated (black circles) and
vehicle treated (PBS; white circles) Ishikawa cells. b–c Arithmetic

means ± SEM (n = 6, each experiment 15–30 cells) of the peaks (left
panels) and slopes (right panels) of b Ca2+ release and c Ca2+ entry,
respectively **P < 0.01, ***P < 0.001 indicates significant difference
from absence of LEFTY2 (Student’s t test)
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Where indicated, the cells were treated with recombinant
LEFTY2 (25 ng/ml; R&D Systems, Germany) as described
previously [77]. Ionomycin was used at 1 μM (Sigma) and the
Ora i inh ib i to r s : 2 -APB, YM-58483, and MRS-
1845(TOCRIS, Germany). Ishikawa cells, an endometrial
epithelial-like cell line (ECACC 99040201) [28, 29], were
maintained in DMEM/F12 (Invitrogen) supplemented with
10% fetal bovine serum (Invitrogen), 2 mM L-glutamine,
and 100 U/ml penicillin/streptomycin (Invitrogen). All cells
were incubated at 37 °C in a humid atmosphere maintained at
5% (vol/vol) CO2, and routinely tested for mycoplasma
infection.

Animal experiments

C57BL/6 mice were purchased from Charles River Ltd.
(Margate, UK). All experiments were carried out in accor-
dance with the UK Home Office regulations (PPL70/6867).
Mice had free access to food and water ad libitum, and were
kept under constant humidity (55 ± 10%), temperature
(22 ± 2 °C), and 12 h light-dark cycle conditions. To assess
implantation, C57BL/6 female mice were mated by vasecto-
mized males and the day of the appearance of the vaginal plug
designated as day 1.0 dpc. Laparotomy was performed at
3.0 dpc. Both uterine horns were injected with 100 μL PBS
or LEFTY2 dissolved in PBS (500 ng/ml). After 10 min, 10
cultured blastocysts (equivalent of 3.5 dpc) were transferred to
a single treated uterine horn. The uteri were harvested 72 h
following surgery, implantation sites counted, and tissues
fixed in formalin or snap frozen for further analysis.

Natural mating model

We conducted timed matings by placing wild-type C57BL/6
female mice with fertile wild-type males to induce pregnancy.
The day when a vaginal plug was apparent was designated as
1.0 dpc, and mice were anesthetized at 3.0 dpc and subjected
to laparotomy to expose the uterus [12]. We used two groups
of mice: a control group flushed with PBS (Veh) and a study
group flushed with LEFTY2 (as described above). The inci-
sion was then closed to allow the mice to recover. The uteri
were then harvested at 9.5 dpc and the implantation sites
counted.

Western blot analysis

Whole cell protein extracts were prepared by lysing cells in
RIPA buffer. Protein yield was quantified using the Bio-Rad
DC protein assay kit (Bio-Rad). Equal amounts of protein
were separated by 10% SDS-polyacrylamide gel electropho-
resis (SDS-PAGE) before wet-transfer onto a PVDF mem-
brane (Amersham Biosciences, UK). Nonspecific binding
sites were blocked by overnight incubation with 5% nonfat

dry milk in Tris-buffered saline with 1% Tween (TBS-T;
130 mmol/L NaCl, 20 mmol/L Tris, pH 7.6, and 1% Tween)
as previously described [76]. The following primary antibod-
ies were used: ant i-BMP2 (♯sc6895, Santa Cruz
Biotechnology Inc., Texas, USA), anti-WNT4 (♯ sc376279,
Santa Cruz Biotechnology Inc), anti-Cox2 (♯15191; Abcam,
Cambridge, UK), and anti-GAPDH (♯21185; Cell Signaling,
Leiden, The Netherlands). All primary antibodies were diluted
1:1000. Protein complexes were visualized with a chemilumi-
nescent detection kit (WesternBright™ ECL, Advansta, CA,
USA).

Real-time quantitative (qRT)-PCR

Total RNAwas extracted from cell cultures or from snap fro-
zen whole uteri using Trizol (Invitrogen) based on a phenol-
chloroform extraction protocol [78]. Equal amounts of total
RNA (2 μg) were reverse transcribed using the Superscript III
First-Strand synthesis system for RT-PCR (Invitrogen) with
oligo dT priming. The resulting first-strand cDNAwas diluted
and used as a template in qRT-PCR analysis. L19 and
Cyclophilin A (Cyclo), representing non-regulated human
and murine housekeeping genes, respectively, were used to
normalize for variances in input cDNA. Detection of gene
expression was performed with KappaFast-SYBR Green
(Peqlab, Erlangen, Germany), and qRT-PCR was performed
on a BioRad iCycler iQ™ Real-Time PCR Detection System
(Bio-Rad Laboratories, Munich, Germany). The non-template
control (NTC) reactions (cDNAwas substituted with DNase/
RNase free water) and reverse transcriptase (RT) controls
were included in each PCR reaction. The PCR products were
not detected in NTC or RT control reactions (data not shown).
Transcript levels were determined by the ΔΔCt method [79]
and expressed in arbitrary units. All measurements were per-
formed in triplicate. Melting curve analysis and agarose gel
electrophoresis confirmed amplification specificity. Primer se-
quences are provided on request.

Flow cytometry

Orai1 expression was analyzed by flow cytometry. Cultured
cells were detached, washed three times with phosphate-
buffered saline (PBS), and fixed with 4% paraformaldehyde
for 15 min on ice. The cells were then incubated for 60 min
(37 °C) with anti-Orai1 monoclonal primary antibody (1:200,
Abcam) washed once in PBS, and stained in 1:250 diluted
CF™ 488A-labeled anti-rabbit secondary antibody (Sigma)
for 30 min (37 °C). Samples were immediately analyzed on
a FACSCalibur flow cytometer (BD Biosciences, Heidelberg,
Germany). Data were analyzed using the FlowJo software
(FlowJo LLC, Ashland, Oregon, USA).
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Calcium measurements

Fura-2 fluorescence was utilized to determine [Ca2+]i [80].
Cells were loaded with Fura-2/AM (2 μM; Invitrogen) for
20 min at 37 °C. Cells were excited alternatively at 340 and
380 nm through an objective (Fluor ×40/1.30 oil) built in an
inverted phase-contrast microscope (Axiovert 100, Zeiss,
Oberkochen, Germany). Emitted fluorescence intensity was
recorded at 505 nm. Data were acquired using specialized
computer software (Metafluor, Universal Imaging,
Downingtown, USA). Cytosolic Ca2+ activity was estimated
from the 340 nm/380 nm ratio. SOCE was determined by
ex t r ace l lu l a r Ca2+ remova l in the p re sence o f
sarcoendoplasmatic Ca2+ ATPase inhibitor thapsigargin
(1 μM, Invitrogen) and subsequent Ca2+ re-addition [81]. For
quantification of Ca2+ entry, the slope (delta ratio) and peak
(delta ratio) were calculated following re-addition of Ca2+ [80,
82]. Experiments were performed with Ringer solution con-
taining (in mM) 125 NaCl, 5 KCl, 1.2 MgSO4, 2 CaCl2, 2
Na2HPO4, 32 HEPES, 5 glucose, and pH 7.4. To reach nom-
inally Ca2+-free conditions, experiments were performed using
Ca2+-free Ringer solution containing (in mM) 125 NaCl, 5
KCl, 1.2 MgSO4, 2 Na2HPO4, 32 HEPES, 0.5 EGTA, 5 glu-
cose, and pH 7.4. For calibration purposes, ionomycin (10 μM,
Sigma) was applied at the end of each experiment.

Histology

For histological assessment, uterine horns were formalin-fixed
and embedded in paraffin, cut in 5-μm sections, and stained
with H&E as previously described [12].

Statistical analysis

Data were analyzed with the statistical package GraphPad
Prism (GraphPad software Inc., CA, USA). Student’s t test
or Kruskal-Wallis test was used when appropriate. Statistical
significance was assumed when P < 0.05.
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