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Abstract Replacement of red hematopoietic bone marrow
with yellow adipocyte-rich marrow is a conserved physiolog-
ical process among mammals. The extent of this conversion is
influenced by a wide array of pathological and non-
pathological conditions. Of particular interest is the observa-
tion that some marrow adipocyte-inducing factors seem to
oppose each other, for instance obesity and caloric restriction.
Intriguingly, several important molecular characteristics of
bone marrow adipose tissue (BMAT) are distinct from the
classical depots of white and brown fat tissue. This depot of
fat has recently emerged as an active part of the bone marrow
niche that exerts paracrine and endocrine functions thereby
controlling osteogenesis and hematopoiesis. While some
functions of BMAT may be beneficial for metabolic adapta-
tion and bone homeostasis, respectively, most findings assign
bone fat a detrimental role during regenerative processes, such
as hematopoiesis and osteogenesis. Thus, an improved under-
standing of the biological mechanisms leading to formation of
BMAT, its molecular characteristics, and its physiological role
in the bone marrow niche is warranted. Here we review the
current understanding of BMAT biology and its potential im-
plications for health and the development of pathological
conditions.
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Introduction

At birth, long bone cavities are filled with active hematopoi-
etic, red marrow which is for the most part composed of im-
mune cells at different maturation stages. By the time healthy
humans reach peak bone mass around the age of 25, bone
marrow adipose tissue (BMAT) can, depending on the bone
compartment, occupy up to 70% of marrow space, generally
suggesting a rather non-pathological role for this type of fat
[1]. As a rule, bones of the peripheral skeleton accumulate
more adipocytes than the axial skeleton, and the distal ends
of long bones are infiltrated first [2]. Aging further promotes
the increase of marrow fat in the marrow cavities [3]. For
instance, vertebral marrow fat of men progressively accumu-
lates with age, whereas a sharp increase between 55 and
65 years of age is observed in women, coinciding with the
onset of menopause and leaving them with an approximately
10% higher adipocyte content compared to men [4]. Marrow
adipogenesis in rodents follows a comparable, if somewhat
delayed, developmental pattern, making them a suitable mod-
el for research on BMAT. It should be noted that mice addi-
tionally show strong strain-specific variations in marrow fat
levels and there exists a loose positive correlation of elevated
BMAT presence and increasing mammal size [3].

BMAT localizes to sites of active bone formation and he-
matopoiesis, which suggests an involvement in skeletal re-
modeling and blood/immune cell production. Previously, it
was suggested that marrow adipocytes are inert under physi-
ological conditions, but may exacerbate pathological effects in
states of physiological challenges such as regenerative
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processes [5]. Studies in humans have revealed an inverse
relationship between marrow adiposity and bone volume [1,
6] as well as a negative correlation between marrow adiposity
and hematopoiesis [7]. It is not clear, however, whether
BMAT is a primary cause or compensatory effect of these
processes. For instance, it has also been observed that in-
creased adiposity does not necessarily lead to decreased bone
quality in mice and humans [8–10]. This is further supported
by the observation that, compared to C57BL/6J mice, C3H/
HeJ mice have increases in both BMAT and bone mineral
density [3]. However, since C3H/HeJ mice also experience
increased MATand reduced trabecular numbers during aging,
there may still be a negative correlation between MAT and
bone health that remains to be investigated in more detail [11].

Bone and adipose tissues arise from mesenchymal stem
cells (MSCs) [12], which acquire their respective cell fates
through the activation of specific transcription factors modu-
lating target gene expression [5]. The orchestration of a con-
trolled regulation of cell fate commitment is critical for bone
morphology and the functional microenvironment [12].
Osteogenic cells rely on the expression of transcription factors
Runt-related protein-2 (Runx2) and Osterix-1 (Osx1) [13],
while adipogenic cells require peroxisome proliferator-
activated receptor γ (Pparγ) and CCAAT-enhancer-binding
protein α (Cebpα) [14]. Upstream, transcription factor Zinc
finger protein-521 (Zfp521) controls osteoblast formation,
while blocking adipogenesis [15]. Zfp521 simultaneously re-
presses its downstream target Zfp423 by binding and
inhibiting the transcriptional activity of pro-adipogenic factor
early B cell factor-1 (Ebf1) [16].

Marrow-resident adipocytes display a unilocular morphol-
ogy, i.e., contain a single large, lipid droplet that is reminiscent
of typical white adipocytes [3]. Interestingly, the presence of
two distinct types of BMAT has been described, distinguish-
able by different lipid profiles and histologically by performic
acid-Schiff staining (PFAS) [17]. PFAS-positive marrow adi-
pocytes are widely dispersed throughout the hematopoietic
tissue and disappear with hematopoietic expansion, while
non-stained adipocytes accumulate regionally and remain un-
affected by changes in hematopoiesis [17]. A recent study
confirmed these findings, describing a regulated BMAT
(rBMAT) and a constitutive BMAT (cBMAT) [11].
Postnatally, cBMAT content increases steadily and is mostly
inert to external stimuli. In contrast, the inducible rBMAT
accrues in skeletal regions with high hematopoiesis, i.e., the
proximal limb skeleton, hips, ribs, and the lumbar/thoracic
vertebrae. Regulated marrow adipocytes are smaller in diam-
eter (31–33 μm) when compared to cBMAT (38–39 μm) and
inguinal white adipocytes (65–69 μm) and seem to undergo a
different transcriptional regulation as suggested by lower ex-
pression of the adipogenic transcription factors Cebpa and
Cebpb. Of note, the saturation degree of fatty acids within
the lipid droplets is higher in rBMAT compared to cBMAT,

but comparable to white adipose tissue (WAT) in the inguinal
depot [11]. Under pathological conditions such as osteoporo-
sis and plasmacytoma, the prevailing lipid species are increas-
ingly saturated, suggesting a switch in marrow fat type [7, 18].
It has been hypothesized that rBMAT forms initially and then
matures into cBMAT [19], yet the full developmental relation-
ship between the two BMAT types remains to be elucidated.
Interestingly, the resilience of cBMAT against dissolution has
led to the suggestion that it might be important for vertebrate
development and functions beyond the skeleton [11, 20]. In
light of the characteristics of different marrow fat types and
the fact that unlike in mice, these two types do not seem to be
spatially separated in bones of humans [11], the quality of
local BMAT stores might be more important than its overall
quantity [21], which could also help explain seemingly oppos-
ing observations in recent studies on the pathophysiological
effects of BMAT.

Developmental origin and cellular identity of bone
marrow adipose tissue

BMAT in all likelihood derives from a mesenchymal origin
[22] and genetic lineage tracing in mice has concomitantly
revealed a non-endothelial, non-hematopoietic, mesenchymal
source for marrow adipocytes [12]. These data support the
hypothesis that osteogenic and adipogenic cells derive from
a common MSC where distinct genetic and epigenetic factors
determine the respective lineage fates [23]. All skeletal
multipotent MSC populations are marked by Osx1 in neonatal
bone [24], whereas analogous cells express Nestin and Leptin
receptor (LepR) in adult bone [25, 26]. The entire marrow
adipocyte compartment can be traced to overlapping popula-
tions of Prx1-, Osx1-, LepR-, and Adiponectin-expressing
cells [12, 26–28]. Several marker combinations have been
used to prospectively isolate skeletal stem cells [29, 30]. For
instance, BMAT progenitors have been described as
CD45−Pref1+RANKL+ stromal cells [27]. Independently
from this observation, we were recently able to identify de-
fined populations of uniformly committed adipogenic progen-
itor cells and pre-adipocytes in murine bones [12].
Interestingly, these cell types express the same marker profile
as adipogenic progenitor cell populations from classical WAT
and brown adipose tissue (BAT) [31–33]. In bone they derive
from a highly homogeneous population of multipotent MSCs
which lack expression of the endothelial and hematopoietic
lineage markers, CD31 and CD45, respectively, but express
stem cell antigen-1 (Sca1), platelet-derived growth factor α
(Pdgfrα), and CD24 [12]. This multipotent population can
give rise to two distinct and unilaterally committed popula-
tions of osteochondrogenic progenitor cells (surface markers:
CD31−CD45−Sca1−Pdgfrα+) or adipogenic progenitor cells
(surface markers: CD31−CD45−Sca1+Pdgfrα+CD24−) under
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in vitro and in vivo conditions. Adipogenic progenitors further
mature to a CD31−CD45−Sca1−Zfp423+ pre-adipocyte stage that
progresses to amature adipocyte stage (Fig. 1). In vivo transplan-
tation studies have also shown that these maturation steps are
irreversible under normal physiological conditions [12].
Whether such cell populations are also present in human bones
remains to be investigated. In humans, bone-derived MSCs may
contribute to at least 10% of cells in adipose tissue depots outside
the bone when administered by intravenous transplantation
routes, but not the other way around [34]. This contribution
appears to be doubled in obesity, implying that bone harbors a
reserve pool ofMSCs for classicalWAT. It remains to be verified
whether this also occurs in a more physiological context, i.e., not
involving application of exogenous MSCs.

Regarding the characteristics of mature marrow adipocytes
in comparison to WAT and BAT, lineage tracing to Osx1 is
unique to BMAT compared to WAT and BAT [35]. Bone mar-
row adipocytes are distinct in size, cytokine and adipokine

expression, immunomodulatory properties, free fatty acid
(FFA) content, and some aspects of stem cell marker expression
[3, 11, 36, 37]. Some lack of clarity remains, as adipocytes of
long bones trace to a typical white fat-like Prx1+Myf5− origin
[12, 22, 38, 39], but are capable of expressing some typical
brown adipocyte genes, albeit at much lower expression levels
than in BAT [40, 41]. Similarly, our own data suggest that
bone-derived progenitors give rise to cells with a very limited
brown-adipogenic potential [12]. On the other hand, BMAT
phenotypes might be dependent on age and skeletal compart-
ment and clearly warrant further investigation.

Congenital generalized lipodystrophy (CGL) is a rare con-
dition defined by an almost complete loss of adipose tissue
[19]. All affected genes (CGL1-4: Loss of Agpat2, Bscl2,
Cav1, or Ptrf) are highly enriched in adipogenic cell popula-
tions of healthy murine bone [12]. However, only mice and
humans with a loss of Agpat2 and Bscl2 (CGL1 and CGL2,
respectively) also lack BMAT. Absence of bone fat does not
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Fig. 1 Proposed model of the
cellular origin of bone marrow
adipocytes. A population of stem
cell-like multipotent stromal cells
gives rise to distinct and
unilaterally committed
osteochondrogenic and
adipogenic lineages. Several
markers have been identified to be
expressed/not expressed on the
individual cellular stages and
adipogenic cells of the bone in
particular. Genetic lineage tracing
by the Cre/loxP system further
defines the developmental lineage
and restricts BMAT to a
mesenchymal, non-hematopoietic
(Vav1), non-endothelial (Cdh5)
origin that differs from traditional
brown adipocytes
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impair patterning of the skeleton, suggesting no role of BMAT
in this process. Nonetheless, the complete lack of adipocyte-
derived endocrine factors impairs bone integrity [19]. In mice,
a CGL4 model specifically reduces rBMAT, but not cBMAT
[11], while CGL3 has no effect on any marrow adipose tissue
type [11]. These findings further emphasize the existence of
variations in genetic determinants of BMAT and WAT/BAT
formation and function.

Pathophysiological regulation of bone marrow
adipose tissue

Adipocyte development in the bone marrow compartment is
regulated by different physiological and pathological processes.
With advancing age, depots of BMAT increase in size and
number in healthy individuals [42]. Obesity can be a potent
driver of bone marrow adipocyte formation in particular in
correlation with visceral WAT expansion [43]. Studies in mice
show that feeding of a high-fat diet (HFD) rapidly initiates the
expansion of BMAT by the activation of adipogenic progenitor
cell proliferation [12]. Interestingly, caloric restriction (CR) and
conditions such as anorexia nervosa also favor accumulation of
marrow adipocytes [19]. Although CR generally counters ag-
ing and disease, it is not fully elucidated whether this also
applies to bone tissue. For instance, in the growth phase of
juvenile mice, CR leads to highmarrow adiposity and low bone
mass [44]. In patients recovered from anorexia nervosa, mar-
row adipocytes are depleted suggesting that marrow adipogen-
esis under these conditions is reversible [45]. While acute star-
vation does not affect BMAT [46], severe starvation beyond
normal CR leads to a loss of bone marrow lipid content [47],
altogether indicating that it might be able to serve as energy
reservoir in specific situations. Cold exposure selectively re-
duces rBMAT in mice [11], but effects on bone mass depend
on the level of brown adipose tissue (BAT) activation [48]. In
contrast, housing at temperatures close to thermoneutrality
(32 °C), which inactivates brown adipocytes, seems to be less
detrimental to bonemass than room temperature (22 °C), which
is a mild cold stimulus in mice [49]. Other physiological chang-
es also regulate BMAT: ovariectomy- and menopause-induced
estrogen deficiency favors adipocyte differentiation in the bone
and is correlated with osteoporosis and increased fracture risk
[3, 50]. Similarly, reduced mechanical stimulation due to ex-
tended bed rest induces a persistent bone loss and increased
BMAT levels, which are retained even during subsequent exer-
cise programs [51]. In line with the reversible nature of marrow
adipogenesis, animal studies have shown that exercise reverses
ovariectomy-, HFD-, and rosiglitazone-mediated BMAT accu-
mulation [52–55]. Rosiglitazone and other thiazolidinediones
(TZDs) are Pparγ-agonists with potent insulin-sensitizing ef-
fects, thereby improving systemic glucose homeostasis. As a
common side effect, TZDs induce BMATaccumulation, which

is paralleled by a decrease in BMD [56–58]. In mice, the effects
of such Pparγ-agonists depend on dosage, age, and genetic
background [59, 60]. For instance, the C3H/HeJ strain is highly
responsive to rosiglitazone-induced bone loss, while C57BL/6J
(B6) mice increase bone marrow adiposity without changes in
trabecular bone parameters under TZDs [59]. In summary, the
list of BMAT-regulating factors is constantly growing (see also
Table 1). Other drivers of red-to-yellow marrow conversion
include cancer, chemotherapy, radiation therapy, and hemato-
poietic malignancies as discussed further below [2, 67, 85, 86].

Endocrine and paracrine regulation of bone marrow
adipose tissue

Many hormones involved in metabolic control also regulate
marrow adipogenesis (Fig. 2). High systemic levels of growth
hormone favor bone over marrow adipocyte formation [71].
Similarly, obese women show an inverse association between
vertebral BMAT and circulating insulin-like growth factor-1
(Igf1) levels, which is in congruence with the essential role of
Igf1-receptor signaling for bone development [43].
Glucocorticoids, for instance excessive cortisol levels in
Cushing’s disease patients, induce marrow adiposity [71,
72]. In the same line, a recent article demonstrated that para-
thyroid hormone (Pth) stimulates an osteogenic fate. The au-
thors showed that a loss of Pth-receptor activation in mice and
humans increases BMAT, inducing the release of
osteoclastogenesis-promoting RANKL and thereby promot-
ing bone loss [37]. Increasing BMAT is also observed in re-
sponse to elevated fibroblast growth factor 21 (Fgf21) levels
which can be positively correlated with low bone mass in
older men [76, 77]. An increment of osteocyte-derived
Sclerostin secretion positively correlates with vertebral
BMAT amounts in men [82]. In support of this observation,
genetic ablation and pharmacological blockage of Sclerostin
prevent BMAT and ameliorate osteoporotic conditions [83,
84]. Moreover, female rats treated with testosterone have less
bone marrow fat and high bone mass [49, 75].

Adiponectin may act in an anti-osteogenic manner by ham-
pering osteoblast proliferation in short-term conditions, while
long-term effects include enhanced bone mass and inhibition
of BMAT formation by decreasing sympathetic tone, i.e., pro-
adipogenic β3-adrenergic signaling, through central signaling
mechanisms of the brain [81]. Intriguingly, BMATsignificant-
ly contributes to circulating Adiponectin levels during CR,
which may mediate some of the beneficial effects of this die-
tary intervention [20]. TZD treatment similarly leads to ele-
vated Adiponectin in serum, but it is not clear whether this is
due to a general expansion of WAT mass [60]. It also remains
to be investigated whether other drivers of BMAT-formation
also lead to increased bone-derived Adiponectin secretion or
whether these factors induce different types of BMAT.
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Additionally, BMAT could also be a source of significant
amounts of Leptin, an adipokine that regulates fertility, appe-
tite, and energymetabolism [94, 95]. Hypothalamic activity of
Leptin increases sympathetic tone and favors marrow adipo-
genesis over osteogenesis. Locally, however, it may drive os-
teogenic fates by binding to LepR on osteoblasts [78], where-
as other findings imply that activation of LepR signaling in
MSCs promotes adipogenesis and impairs fracture healing
[79]. In mice lacking Leptin (ob/ob), increased BMAT is ob-
served and this correlates negatively with BMD of the axial

skeleton [80]. Further indications of a potential metabolic in-
volvement of bone come from the observation that the pan-
creatic hormone insulin binds to osteoblasts and thereby con-
tributes to whole-body glucose homeostasis [96]. Specifically,
insulin suppresses the expression of Osteoprotegerin (Opg) in
osteogenic cells, an inhibitor of the differentiation of bone-
resorbing osteoclasts. This stimulates bone degradation lead-
ing to a lower site-restricted pH, which in turn leads to decar-
boxylation of osteoblast-derived Osteocalcin (Ocn). The
undercarboxylated form of Ocn promotes insulin secretion

Table 1 List of parameters with general associations of BMAT and bone mass in human and rodents

Condition Factor Reference Effect on BMAT Effect on bone mass

Physiological/Environmental Aging [2, 3, 7, 12] Increased Decreased

Exercise/disuse [53–55] Decreased/increased Increased/increased

Caloric restriction/excessive CR [20, 44]/[47, 61] Increased/decreased Decreased/decreased

Acute starvation [46] Unchanged Decreased

Cold exposure [11, 49] Decreased Varying

Menopause [10, 21, 50] Increased Decreased

Disease Osteoporosis [18, 62, 63] Increased Decreased

Obesity [6, 8, 9, 12] Increased Varying

Diabetes, type I [3, 64, 65] Increased, unchanged Decreased

Diabetes, type II [3, 64–66] Increased, unchanged Varying

CGL, type I [11, 19] Decreased Decreased

CGL, type II [11, 19] Decreased Decreased

CGL, type III [11, 19] Unchanged Decreased

CGL, type IV [11, 19] Unchanged, decreased Decreased

Anorexia nervosa [3, 20] Increased Decreased

Aplastic/chronic anemia [2, 7] Increased/decreased Decreased, unchanged

Myeloma [2, 67–69] Increased Decreased

Leukemia [2, 69] Increased (in young: decreased) Decreased

Prostate cancer [67, 70] Increased Decreased

Hormones Growth hormone/Igf1 [43, 71] Decreased Increased

Glucocorticoid [3, 72, 73] Increased, unchanged Decreased

Estrogen [50, 63, 74] Decreased Increased

Testosterone [50, 75] Decreased Increased

Fgf21 [76, 77] Increased Decreased

Leptin [78–80] increased decreased

Adiponectin [20, 60, 72, 81] Varying Varying

Parathyroid hormone [37] Decreased Increased

Sclerostin [82–84] Increased Decreased

Treatments Chemotherapy [20, 27, 85] Increased Decreased

Radiation therapy [12, 27, 85–87] Increased Decreased

BADGE (Pparγ-agonist) [87–89] Decreased Unchanged, increased

Exendin-4 (Glp1-receptor agonist) [90, 91] Decreased Increased

Romosozumab
(anti-Sclerostin antibody)

[82–84] Decreased Increased

Bisphosphonate [92] Decreased Increased

Dpp4 inhibition [12, 93] Decreased Increased

TZDs (glitazones) [56, 58, 59] Increased Decreased

J Mol Med (2017) 95:1291–1301 1295



and enhances insulin sensitivity in liver, muscle, and WAT
[96, 97]. In line with the important metabolic functions of
Ocn, known pathologies of reduced bone quality and elevated
marrow adiposity correlate with diminishing levels of this
skeleton-derived hormone [98, 99]. A recent report shows that
osteogenic cell-derived Lipocalin-2 (Lcn2) also controls ener-
gy metabolism by stimulating insulin secretion and decreases
food intake through binding to melanocortin-4 receptor of
neurons in the hypothalamus [100]. This finding is in contrast
to two earlier studies that found no effect on appetite in mice
lacking Lcn2 systemically [101, 102]. Adipose tissue is a
known source of Lcn2, but conditional, adipocyte-specific
ablation of Lcn2 driven by the Adipoq gene promoter did
not show any effects. Whether BMAT-derived Lcn2 contrib-
utes to systemic metabolic effects remains to be determined,
since only young mice on a C57BL/6J genetic background
known to have negligible amounts of marrow adipocytes were
investigated [100]. Lastly, BMAT has been described as a
source of Dipeptidyl peptidase-4 (Dpp4), which as a locally
secreted negative regulator inhibits the regenerative processes
of bone healing and hematopoiesis [12, 103] (Fig. 2).

Implications for bone health and pathology

The potential functions of BMAT include production of
adipokines, including several (pro-inflammatory) cytokines,
and paracrine effects by direct contact to adjacent cells
supporting a pro-adipogenic, bone-resorbing environment
which is potentially mediated by lipotoxicity [104]. This is
underpinned by the change of bone marrow cytokine profiles
with aging [105]. In vitro data show that fatty acids impair

osteoblast differentiation [106, 107] and that saturated
palmitic acid reduces mineralization by impairing pro-
osteogenic Wnt-signaling and related pathways [108]. In ac-
cordance with this observation, the fracture risk in postmeno-
pausal women is increased with higher levels of saturated fatty
acids in bone marrow fat [21]. Osteoporosis is characterized
by an imbalance of bone formation and bone resorption,
which is initiated by increased osteoclast activity and a re-
duced function of osteoblasts due to a clonal switch of
MSCs from osteogenesis to adipogenesis during aging [3,
62, 63, 109]. Osteoporosis is particularly prevalent in women
after menopause when increased osteoclastogenesis, BMAT
accumulation, and fracture risk are evident [109, 110]. In
obese, postmenopausal women, a low BMD is associated with
high serum levels of Dpp4, a protease that can also be released
form adipogenic cells as an adipokine [111]. Importantly, clin-
ically approved Dpp4-inhibitors attenuate bone loss in male
diabetic rats [93], decrease fracture risk in diabetic humans
[112], and are a promising strategy to improve fracture healing
outcomes in healthy, non-diabetic mice [12]. Among the
Dpp4-substrates, the incretin hormones glucagon-like pep-
tide-1 (Glp1) and gastric inhibitory polypeptide (Gip) are rap-
idly inactivated by Dpp4 and play a central role in metabolism
[90]. Activation of the Glp1 receptor promotes osteogenesis,
which can also be achieved with the synthetic agonist
exendin-4, making it a therapeutic target for osteoporosis
treatment [91].

Diabetes mellitus increases the risk of osteoporosis and
bone fragility in humans [64]. Individuals with diabetes
mellitus type 2 present a higher prevalence of fractures and
fatty acid saturation in BMAT [21, 66] and experimental data
show that type 2 diabetic mice suffer from bone loss and
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Fig. 2 The red, predominantly hematopoietic bone marrow is converted
into yellow, adipocyte-rich marrow as a normal physiological process,
also in response to environmental and pathological cues. BMAT exerts
endocrine and paracrine functions, which have been mainly associated

with negative effects for local and systemic processes. During caloric
restriction, BMAT contributes to significant amounts of circulating
Adiponectin, thereby potentially improving metabolic conditions
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increased bone marrow adiposity [113]. Interestingly, preven-
tion of BMATaccumulation during diabetes mellitus type 1 or
after ovariectomy does not prevent bone loss, suggesting ad-
ditional non-adipocyte-related mechanisms for impairment of
bone integrity in diabetics [88, 114]. Under certain circum-
stances and depending on the BMAT type, bone marrow ad-
ipocytes might be supportive, as evidenced by the observation
that BMAT-deficiency increases bone loss during unloading
[115].

The hematopoietic niche within bones comprises diverse
cell types of which osteo-lineage, endothelial, and mesenchy-
mal stromal cells have been assigned hematopoiesis-
supportive functions (reviewed in [116]). Obesity, which
may induce BMAT, has been shown to negatively affect im-
mune cells [117], but it also promotes white blood cell pro-
duction through increased circulating Leptin levels [118, 119].
A recent study showed that a 2-week HFD reduces long-term
hematopoietic stem cell (HSC) numbers and shifts lymphoid
to myeloid differentiation, which leads to a changed bone
structure with fewer osteoblasts and more adipocytes [120].
Moreover, blocking BMAT formation by treatment with the
Pparγ-agonist bisphenol A diglycidyl ether (BADGE) rescues
this phenotype and is potentially mediated by a change in gut
microbiota composition [120]. This is in line with the finding
that CR impairs lymphoid differentiation after irradiation fol-
lowing hematopoietic reconstitution [121], two mediators of
strong BMAT induction. TZD treatment has no effect on the
composition of the hematopoietic compartment, leading to the
hypothesis that BMAT plays only a minor role during hema-
topoiesis [122]. In vitro co-culture experiments of bone-
derived adipogenic cells and HSCs have yielded supportive
as well as inhibitory effects for HSC maintenance [122, 123].
The first in vivo study investigating the role of BMAT for
hematopoiesis concluded that marrow adipocytes failed to
support hematopoiesis, since HSC number and quiescence
were negatively related to adipocyte amount in the bone mar-
row [87]. Strikingly, genetic ablation of adipocyte develop-
ment, or application of BADGE, leading to decreased
BMAT and also classical adipose depots, rescues impaired
hematopoietic recovery after radiation and chemotherapy
[27, 85, 87, 89]. Consistent with these observations, our own
analyses show that lineage-committed adipogenic progenitor
cells co-injected into tibia bones with HSCs following lethal
irradiation significantly inhibited the local engraftment of
HSCs in competitive reconstitution assays. Conversely,
multipotent MSCs isolated simultaneously enhanced hemato-
poietic reconstitution [12]. Interestingly, a recent study pro-
posed BMATas an important source of stem cell factor (Scf), a
critical HSC niche factor [116], at least during hematopoietic
reconstitution [27]. The authors show a reduced hematopoiet-
ic recovery in conditional, Adipoq-Cre driven Scf-knockout
mice. According to the study, Adiponectin is expressed in all
marrow adipocytes and a small subset (ca. 5%) of LepR+ cells,

which expands after irradiation [27]. A potential explanation
for apparent discrepancies might be that the stromal cells
targeted by Adipoq-Cre could be involved in some of the
observed effects, as LepR+ cells are highly heterogeneous
and contain unilaterally committed osteochondrogenic and
adipogenic cells, and also hematopoiesis-supporting
multipotent MSCs [12]. Taken together, these data imply a
highly context-specific role for bone marrow adipocytes in
hematopoiesis and warrant further investigation with stronger
emphasis on the definition of potentially distinct BMAT types,
closely defined subpopulations of mesenchymal cells, and
their distinct micro-anatomical localizations.

Cancer coincides with aging, obesity, and BMAT accumu-
lation [124]. Marrow adipocytes are believed to be involved
with the progression of myeloma and support bone metastases
of prostate cancer, potentially linking marrow adiposity to an
inflammation-induced pathophysiology [68–70]. Possible
mechanisms include lipid exchange between cells, support
of osteoclastogenesis, and contribution to osteolysis through
the production of chemokine (C-X-C motif) ligand-1
(CXCL1) and CXCL2 [67, 70, 125]. Interestingly, certain
tumor types depend on the local bone marrow status as blood
cancers develop in red marrow spaces due to decreased vas-
cularization in BMAT [2]. During stress-related disorders like
anemia of chronic disease and childhood leukemia, the hema-
topoietic marrow becomes hyperplastic, leading to reduced or
delayed local adipocyte emergence [2]. Leptin and
Adiponectin have potentially opposing roles in cancer pro-
gression and thus provide an additional perspective to the
endocrine function of BMAT [124]. Together with the obser-
vation that CR reduces the incidence of some cancers [126],
and despite driving increased marrow adiposity, this under-
lines the need for a more accurate distinction of a beneficial
or detrimental involvement of the prevailing BMAT type in
bone-related pathologies.

Future perspectives

Depending on the molecular context, BMAT has pleiotrophic
functions and can affect bone and marrow health by exerting
beneficial as well as pathological effects (Fig. 2). This clearly
emphasizes the need for a more detailed characterization of
distinct types of BMAT and the stem/progenitor cells that can
give rise to marrow-resident adipocytes. Recent findings high-
light its involvement in human health and disease through
paracrine and endocrine properties that are worth further ex-
amination. Marrow adipocytes that accumulate under physio-
logical or homeostatic conditions may serve as a way to mod-
ulate energy-costly hematopoiesis and bone remodeling pro-
cesses [127]. In contrast, improving osteogenesis by reducing
BMAT during pathogenic conditions may not only increase
skeletal health, but also other metabolic processes on the
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systemic level. Supportive clinical evidence along these lines
comes from the use of estrogen replacements [74], bisphos-
phonate [92], and Sclerostin antibodies [84]. Novel candidates
are synthetic Glp1-receptor agonists [91] and Dpp4-inhibitors
[12] that require further investigation. One major drawback in
the field is the lack of BMAT-specific in vivo models.
Genetically engineered mice and adipocyte-ablating agents
in most cases affect other adipose depots alongside
BMAT, making it difficult to deduce the direct contribu-
tion of marrow-resident adipocytes. To this end, a detailed
analysis of murine BMAT stem/progenitor cells may con-
tribute to novel discoveries. The translation of such find-
ings to the human context will be critical, as is the im-
provement of non-invasive BMAT analysis and quantifica-
tion tools for clinical studies. In summary, the research of
BMAT holds a significant clinical potential and will con-
tribute to a better understanding of physiological and path-
ological processes of the musculoskeletal system.
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