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Abstract Low-density lipoprotein (LDL) and cholesterol ho-
meostasis in the peripheral blood is maintained by specialized
cells, such as macrophages. Macrophages express a variety of
scavenger receptors (SR) that interact with lipoproteins, in-
cluding SR-A1, CD36, and lectin-like oxLDL receptor-1
(LOX-1). These cells also have several cholesterol trans-
porters, including ATP-binding cassette transporter ABCA1,
ABCG1, and SR-BI, that are involved in reverse cholesterol
transport. Lipids internalized by phagocytosis are transported
to late endosomes/lysosomes, where lysosomal acid lipase
(LAL) digests cholesteryl esters releasing free cholesterol.
Free cholesterol in turn is processed by acetyl-CoA acetyl-
transferase (ACAT1), an enzyme that transforms cholesterol
to cholesteryl esters. The endoplasmic reticulum serves as a
depot for maintaining newly synthesized cholesteryl esters that
can be processed by neutral cholesterol ester hydrolase
(NCEH), which generates free cholesterol that can exit via cho-
lesterol transporters. In atherosclerosis, pro-inflammatory stim-
uli upregulate expression of scavenger receptors, especially
LOX-1, and downregulate expression of cholesterol trans-
porters. ACAT1 is also increased, while NCEH expression is

reduced. This results in deposition of free and esterified choles-
terol in macrophages and generation of foam cells. Moreover,
other cell types, such as endothelial (ECs) and vascular smooth
muscle cells (VSMCs), can also become foam cells. In this
review, we discuss known pathways of foam cell formation in
atherosclerosis.
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Introduction

Foam cells play an important role at all stages of atherosclerotic
lesion development, from initial lesions to advanced plaques.
Macrophages serve as the main source of foam cells after they
penetrate the endothelial barrier and accumulate in the arterial
intima media in response to the pro-inflammatory activation of
endothelial cells (ECs) [1]. A small part of foam cells originates
from ECs and vascular smooth muscle cells (VSMCs). ECs can
also differentiate to smooth muscle-like cells that can be in-
volved in pro-atherogenic vascular remodeling. In addition,
VSMCs can differentiate to macrophages that become foam
cells upon lipid uptake [2]. Transformation of VSMCs to
macrophage-like cells is regulated by Kruppel-like factor 4
(KLF4), a transcription factor, for which over 800 target genes
were found in cholesterol-treated VSMCs [3]. Cholesterol load-
ing of VSMC converts them to a macrophage-appearing state
by downregulating the microRNA (miR)-143/145-myocardin
axis, a key pathway that is essential for SMC-specific differen-
tiation [4]. Salusin-β, a pro-atherogenic agent, induces foam
formation and monocyte adhesion via inducing expression of
acetyl-CoA acetyltransferase (ACAT)1 and vascular cell adhe-
sion molecule 1 (VCAM-1) in VSMCs [5].
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The main cause of foam cells generation is the excessive
influx of modified low-density lipoproteins (LDL) and accu-
mulation of cholesterol esters in intimal macrophages [6]. It
should be noted that native (unmodified) LDL that can be
found in the peripheral blood of healthy individuals, does
not cause accumulation of cholesteryl esters in cultured mac-
rophages, while modified LDL isolated from atherosclerotic
patients induces a significant increase of intracellular
cholesteryl esters (Fig. 1). In normal conditions, macrophages
serve as a major regulator of plasma lipoprotein metabolism
and content [7]. These cells express a variety of scavenger
receptors (SR), such as SR-A1, CD36, and lectin-like
oxLDL receptor-1 (LOX-1) with affinity to oxidized low-
density lipoproteins (oxLDL). Additionally, macrophages
have an advanced enzymatic machinery, such as acyl coen-
zyme A:cholesterol acyltransferase-1 (ACAT1), which is es-
sential for formation of cholesterol esters [8]. Cholesteryl es-
ters are hydrolyzed by two enzymes: neutral cholesteryl ester
hydrolase 1 (NCEH1) and lysosomal acid lipase (LAL), that
generate free fatty acids and cholesterol [9].Macrophages also
express a range of membrane pumps, such as ATP-binding
cassette (ABC) transporters ABCA1 and ABCG1 and scav-
enger receptor SR-BI that are involved in reverse cholesterol
transport [7]. Together, these proteins ensure an effective con-
trol of LDL and cholesterol content in the peripheral blood
under normal conditions.

In atherosclerosis, macrophage-dependent cholesterol han-
dling is deregulated. Due to increased generation of oxLDL,
macrophage expression of LOX-1 is significantly upregulated
by stimulation of multiple factors such as pro-inflammatory
cytokines [9], oxLDL itself, lysophosphatidylcholine (a prod-
uct of oxLDL degradation) [10], advanced glycation end-

products (AGEs) [11], vasopressors [12], and others.
Elevated expression of LOX-1 leads to increased lipid uptake
by macrophages. By contrast, expression of ABCA1 and
ABCG1 is decreased in atherosclerosis, further aggravating
intracellular cholesterol accumulation and promoting genera-
tion foam cells formation [13].

LDL transport through the endothelial barrier

Atherosclerosis and pro-atherogenic conditions such as hyper-
tension, smoking, and diabetes are characterized by increased
vascular permeability for LDL [14, 15] and upregulated ex-
pression of LOX-1, which is associated with increased endo-
thelial permeability for oxLDL through activation of protein
kinase C (PKC) and calcium influx into ECs. In parallel, ex-
pression of desmoglein 1 (DSG1) and desmocollin 2 (DSC2)
is reduced [16]. DSG1 is a component of desmosomes, which
is involved in cell-cell junctional contact formation and is
regulated by calcium [17]. Similarly, DSC2, a calcium-
binding cadherin-type protein, is also involved in desmosomal
intercellular contacts [18]. LOX-1-mediated downregulation
of desmosomal cell-cell contacts weakens the endothelial
junctions and increases trans-endothelial transfer of oxLDL.

Upregulation of PKC leads to activation of a RhoA/Rho
kinase-dependent signaling and phosphorylation of occludin,
a key structural component of tight junctions, which weakens
the endothelial barrier [19]. PKC stimulation also results in
activation of protein phosphatase 1 regulatory subunit 14A
(PPP1R14A), an inhibitor of smooth muscle myosin phospha-
tase, which in turn causes cytoskeletal rearrangement, disrup-
tion of cell-cell contacts, and increased permeability [20].
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Fig. 1 Effect of LDL isolated
from the plasma of individuals
without atherosclerosis and
patients with carotid
atherosclerosis on cholesterol
esters in human macrophages.
Human monocyte-derived
macrophages were incubated in
medium 199 containing 10%
lipid-deficient serum and LDL for
24 h at 37 °C. Control cells were
incubated in the medium without
LDL. Data are presented as the
mean of three repetitions ±
standard deviation. The asterisk
indicates significant difference
from the control, p < 0.05
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Increased transfer of cholesterol-rich oxLDL into the intima
media through the endothelial barrier contributes to lipid ac-
cumulation in the intimal macrophages, which is an early
event in atheroma formation.

Current consensus favors the inflammatory hypothesis of
atherosclerosis induction [21], according to which pro-
inflammatory stimuli initiate penetration of monocytes into
the intima media followed by sub-endothelial lipid accumula-
tion in the arterial wall. In the intima media, monocytes differ-
entiate predominantly to pro-inflammatory macrophages (the
M1 phenotype) that actively take up lipids but cannot effective-
ly empty the lipid excess due to the inhibition of efflux pumps
in pro-inflammatory microenvironment [22]. Classical M1
macrophages can be induced by exposure to pro-
inflammatory cytokines such as interferon (IFN)-γ and tumor
necrosis factor (TNF)-α or to pathogenic products such as li-
popolysaccharide (LPS), an endotoxin of Gram-negative bac-
teria, and flagellin, a structural component of bacterial flagel-
lum [23]. In infection or injury, M1 macrophages are mainly
involved in inflammatory responses directed by Th1 cells.
Thesemacrophages release a variety of inflammatory cytokines
and chemokines essential for propagation of inflammation. M1
macrophages also produce high amounts of nitric oxide (NO)
and reactive oxygen species (ROS) to destroy a pathogen [24].

M2 (or alternatively polarized) macrophages can be in-
duced by various stimuli and generally possess anti-
inflammatory properties. A variety of M2 subtypes was char-
acterized, with the most pro-inflammatory M2a that can be
generated under exposure to Th2 cytokines, i.e., interleukin
(IL)-4 and IL-13. Typically, M2 macrophages secrete signifi-
cant amounts of anti-inflammatory IL-10 and transforming
growth factor (TGF)-β, contribute to wound healing, phago-
cytosis of apoptotic cells, tissue remodeling, angiogenesis,
and carcinogenesis [25].

MacrophageM2 polarization is associated with an increase
of fatty acid oxidation. However, it is unclear whether this
association is a simple correlation only or it directly influences
M2 polarization [26]. By contrast, M1 polarization is associ-
ated with the activation of fatty acid synthesis that primarily
contributes to the inflammatory response and affects choles-
terol homeostasis and neutral fat accumulation [27]. Recently,
Da Silva et al. (2016) performed an interesting experiment to
evaluate how macrophage-derived foam cells respond to M1-
polarizing stimuli [28]. Macrophage-colony stimulating factor
(M-CSF)-induced macrophages were transformed into foam
cells and then exposed to M1-polarizing factors (i.e., LPS +
IFN-γ). While normal M-CSF-induced macrophages started
to express various pro-inflammatory genes, foam cells exhib-
ited weaker pro-inflammatory activation. In response to M2-
polarizing signal (i.e., treatment with IL-4) both normal mac-
rophages and foam cells responded by upregulation of anti-
inflammatory genes with equal magnitude [28]. Indeed, in
M1-polarizing microenvironments of atherosclerotic lesions,

foam cell formation may locally weaken the macrophage-
dependent inflammatory component of atherogenesis.

How macrophages can sense and take up lipids

Lipid internalization by macrophages has been reviewed in
several previously published works [7, 8, 13, 29]. Briefly,
circulating monocytes and resident macrophages can sense
circulating lipids through a number of previously described
receptors, including CD36, SR-A1, and LOX-1 (Fig. 2) [7].

There are three known isoforms of the SR-A1 receptor, of
which two are functionally relevant and can participate in the
transfer of oxLDL. The full-length isoform SR-A1 contains a
large extracellular domain, the cytosolic domain, and the
transmembrane domain (Fig. 3). The extracellular domain
consists of α-helical coiled coils, the collagen-like domain,
and the C-terminal region enriched by cysteine residues
[30]. The second isoform SR-A1.1 is shorter but remains the
capacity to recognize ligands due to the presence of the
collagen-like domain. On the C-terminus, the third isoform
SR-A1.2 contains only four cysteine residues and therefore
dysfunctional for lipid transport because lacks the capability
to bind any extracellular ligand [31]. This isoform serves as an
inhibitor of the first two isoforms thereby downregulating lip-
id uptake by macrophages [32, 33]. In experimental athero-
sclerotic rodent models, such as Apolipoprotein E (ApoE)-
and LDL receptor (LDLR)-deficient mice, knockout of SR-
A1 results in anti-atherogenic effects that primarily inhibit
formation of foam cells [34, 35].

Expression of SR-A1 is regulated by the nuclear transcrip-
tion factor (NF)-κB, which can be stimulated by pro-
inflammatory cytokines [36]. SR-A1 expression can be upreg-
ulated through stimulation of voltage-dependent K+ channel
Kv1.3, which in turn leads to a higher uptake of oxLDL [37].
Furthermore, inhibition of Kv1.3 by a specific antibody leads
to the downregulation of SR-A, LOX-1, and ACAT1, and
increased expression of ABCA1 in cultured THP-1 macro-
phages and human primary macrophage cultures [38], indica-
tive of a possible contribution of potassium influx.

Anti-atherosclerotic and antioxidant messengers, such as
polyphenols and curcumin, downregulate SR-A expression.
In macrophages of mice deficient for ApoE, curcumin induces
ubiquitination and degradation of SR-A1mediated by calpain,
an intracellular protease [39]. Plant polyphenols suppress SR-
A1 expression by inhibiting peroxisome proliferator-activated
receptor γ (PPARγ), a transcriptional regulator that controls
lipid uptake, fatty acid storage, and glucose metabolism [39].
Hydrogen sulfide (H2S) was shown to downregulate SR-A1
levels in macrophages, but its production is reduced in the
vessels of ApoE-deficent mice [40]. In blood vessels, H2S is
synthesized by cystathionine γ-lyase from an aminoacid L-
cysteine, accompanied by production of pyruvate and
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ammonium (NH3). It has been demonstrated that H2S de-
creased atherosclerosis plaque size and suppressed aortic ex-
pression of intracellular adhesion molecule-1 (ICAM-1) on
the endothelial surface [40]. H2S was also shown to downreg-
ulate foam cell formation by reducing SR-A1 activity through
the KATP/Erk ½-dependent signaling mechanism [41].

CD36 belongs to the family B of scavenger receptors. This
glycoprotein contains an extracellular domain flanked by two
transmembrane domains (Fig. 3) [42, 43]. CD36 has a high
affinity to oxLDL mediating its atherogenic role by internali-
zation of the CD36-oxLDL assembly [44]. Higher blood con-
centrations of soluble CD36 (sCD36) were observed in mono-
cytes of subjects affected by cardiovascular diseases [45, 46]
and those who exhibit cardiometabolic risk factors [47–49].
Treatment with statins or suppression of CD36 with low mo-
lecular inhibitors leads to reduced uptake of lipids by
monocytes/ macrophages and decreased accumulation of
oxLDL in the arterial wall [50–53].

Multiple factors are able to regulate expression of CD36
in macrophages. Nuclear factor (erythroid-derived 2)-like
2 (NFE2L2) drives circumin-dependent CD36 expression
[54]. In monocytes, palmitate activates expression of
CD36 by newly induction of ceramide production [55],

since ceramides inhibit CD36 expression and reduce oxLDL
accumulation in monocytes. Astaxanthin, a plant antioxidant,
was found to inhibit formation of oxLDL and to increase high-
density lipoprotein (HDL)-cholesterol levels in clinical studies,
thereby demonstrating atheroprotective effects [56].
Lipopolysaccharide (LPS), a toxic agent of Porphyromonas
gingivalis, a main cause of gingivitis, which is associated
with atherosclerosis [57], increases CD36 in macrophages
through the upregulation of the c-Jun/activator protein-1
(AP-1)-mediated transcription mechanism [58].

Some compounds, like plant antioxidants, including squalene,
quercitrin, and kaempferol, inhibit expression of CD36 in mac-
rophages, thus preventing excessive lipid deposits in these cells
[59–61]. All those are dietary components that can be considered
for nutritional modulation of atherosclerotic disease.

Structurally, LOX1 receptor consists of a short N-terminal
domain, transmembrane domain, coiled-coil domain, and C-
type lectin-like domain (Fig. 3) [62]. In the C-type lectin-like
domain of LOX1, the presence of ten C-terminal basic amino
acids is essential for binding oxLDL [63].

The LOX-1 receptor seems to be strictly pro-atherogenic
since its expression is very moderate in normal conditions, but
becomes markedly upregulated in atherosclerosis accounting
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Fig. 2 Mechanisms of lipid handling in macrophages. Endothelial cells
have a high surface expression of lectin-like oxidized low-density
lipoprotein (LDL) receptor-1 (LOX-1) capable to bind and transfer
oxidized LDL (oxLDL) across the cell to the intima media, which is
infiltrated by macrophages in atherosclerosis. Macrophages sense and
bind oxLDL with several scavenger receptors (SR) such as SR-A1,
CD36, and LOX-1. In late endosomes/lysosomes, lysosomal acid lipase
(LAL) degrades cholesteryl esters, which are highly present in LDL
particles, to free cholesterol and free fatty acids. In the endoplasmic
reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1
(ACAT1) contributes to formation of cholesteryl esters from free
cholesterol. Cholesteryl esters accumulate in the ER. Neutral cholesteryl
ester hydrolase (NCEH) processes cholesteryl esters liberating free
cholesterol that is transported outside the cells via ATP-binding cassette

(ABC) transporters ABCA1 and ABCG1, as well as via SR-BI.
Apolipoprotein A-1 (ApoA-1) serves as an acceptor for cholesterol
carried by ABCA1. High-density lipoprotein (HDL) accepts cholesterol
that is transferred by ABCG1 and SR-BI. In normal conditions, this
machinery is tightly regulated ensuring cholesterol homeostasis. In
atherosclerosis, the control is deregulated. Expression of scavenger
receptors is increased, which leads to elevated uptake of oxLDL. By
contrast, expression of cholesterol transporters ABCA1 and ABCG1 is
suppressed, which diminishes cholesterol efflux and promotes cholesterol
deposition in macrophages. ACAT1 is upregulated while NCEH is
downregulated. This leads to accumulation of cholesteryl esters in the
cell. Together, these mechanisms lead to excessive lipid deposits and
transformation of macrophages to foam cells
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for up to 40% of oxLDL uptake by pro-inflammatory macro-
phages [64]. Furthermore, this receptor is not expressed in
monocytes, but can be upregulated in differentiated macro-
phages, a fact that indirectly suggests for its pro-atherosclerotic
role [65]. LOX-1 is a main receptor for binding oxLDL in ECs
[66] and may also be induced in VSMCs, which indicates the
possibility for conversion of VSMCs to foam cells in atherogen-
esis [9]. This receptor can sense moderately modified and not
fully oxidized LDL, indicative of a potential contribution of
LOX-1 to early atherogenic steps [67].

Inflammatory modulators, such as pro-inflammatory cyto-
kines [9], oxLDL [10], LPS [68], AGEs [58], mitochondrial
ROS [69], and others may serve as potent inductors of upreg-
ulation of LOX-1 expression in macrophages. In addition,
vasopressors such as endothelin-1 and angiotensin II could
also activate macrophage LOX-1 expression [12].

A pro-atherogenic role of LOX-1 is supported by the data
obtained in atherosclerotic animal models. Genetic deletion or
knockdown of LOX-1 in rodent atherosclerotic models led to
diminished disease, less plaque progression, and decreased
inflammation [67]. By contrast, hyperexpression of LOX-1
in hypercholestemic mice and rabbits caused enhanced dis-
ease, increased apoptosis of vascular cells, plaque instability,
and atherothrombosis [68–71].

Finally, macrophage receptor with collagenous structure
(MARCO) can also be involved in lipid uptake. Like SR-A,
MARCO has internal collagen-like domains. It is expressed in
macrophages and ECs and is able to interact with oxLDL [72].
It was demonstrated that MARCO is involved in lipid uptake
by cultured macrophages induced by treatment with
Dalcetrapib, a chemical that targets cholesteryl ester transfer
protein [73]. These observations indicate a likely involvement
of MARCO in handling influx of lipids by macrophages.

However, further studies are needed to evaluate whether
MARCO could significantly contribute to the generation of
foam cells during atherogenesis.

Cholesterol-handling machinery in macrophages

The formation of cholesteryl esters is crucially involved in
transformation of macrophages to foam cells (Fig. 2). Free
cholesterol is a substrate for acetyl-CoA acetyltransferase
(ACAT1), an enzyme that transforms cholesterol to
cholesteryl esters. The newly formed cholesteryl esters reside
in the endoplasmic reticulum, and their excessive intracellular
accumulation drives foam cell formation. Another enzyme,
neutral cholesterol ester hydrolase (NCEH) hydrolyzes
cholesteryl esters liberating free cholesterol [74], which is
transported outside through the system of membrane choles-
terol transporters. The balance between etherification/
detherification of cholesterol may therefore define whether
macrophages will be converted to foam cells or not.

In ApoE-deficient mice, ACAT1 inhibition by a small in-
hibitory molecule F-1394 was shown to result a less advanced
atherogenesis [75]. However, depletion of ACAT1 specifical-
ly inmacrophages of LDL receptor-deficient mice has the pro-
atherogenic role [76]. F-1394 is a non-specific inhibitor of
both of the isoforms ACAT (ACAT1 and ACAT2), the second
of which in predominantly expressed by parenchymal liver
and intestinal cells [77]. In macrophages, excessive cholester-
ol uptake can cause formation of highly cytotoxic, pro-inflam-
matory, and pro-atherosclerotic cholesterol crystals [78].

Ghrelin, a hormone secreted by specialized intestinal cells,
suppresses ACAT1 through interaction with growth hormone
secretagogue receptor (GHSR) and suppressing PPARγ [79].

C

N  N N

SR-A1

N C

LOX1

Collagen-like domain

α-helical coiled-coil domain

Transmembrane domain

Extracellular  domain

α-helical coiled-coil 

domain

C-type-lectin domain

CD36

SR-B1

Fig. 3 Schematic representation
of a structure of scavenger
receptors that are involved in
modified LDL uptake in
macrophages. SR-A1 is
expressed on the surface as a
homotrimer

J Mol Med (2017) 95:1153–1165 1157



Protein kinase A (PKA) mediates ACAT1 suppression by
incretin hormones, such as glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) [80].
Dipeptidylpeptidase 4 (DPP4) is involved in proteolysis of
GLP-1 [81]. In diabetic and non-ApoE-deficient mice,
vildagliptin and other DPP4 inhibitors possess anti-
atherogenic properties by restoring production of both incretin
hormones and repairing insulin secretion [82].

In macrophages, insulin upregulates production of ACAT1
through stimulation of CCAAT/enhancer-binding protein α
(C/EBPα), a transcriptional stimulator, mediated by the extra-
cellular signal-regulated kinase (Erk)/p38MAP kinase/Jnk
mechanism [83]. Leptin, a fat tissue hormone, stimulates
ACAT1 expression via Janus-activated kinase 2 (Jak2)/
phosphatidylinositide 3-kinase (PI3K)-mediated signaling
pathway [84].

As mentioned above, NCEH is a hormone-dependent li-
pase that is responsible for removal of ester group from
cholesteryl and formation of free cholesterol, which is then
effluxed from the cell. This enzyme exists as two isoforms,
the shortest of which was found in several cell types including
macrophages [85]. The longest is present in the testis and
other tissues involved in the steroidal biosynthesis where
NCEH activity is necessary for generation of free cholesterol
followed steroid hormone synthesis [86, 87].

Suppression of NCEH causes advanced atherosclerosis [88].
Overproduction of NCEH increases degradation of cholesterol
esters in lipid-overloadedmacrophages [89]. However, overpro-
duction of NCEH alone without concomitant downregulation of
ACAT1 and activation of reverse cholesterol cannot protect
macrophages from transformation to foam cells [88]. Mice
overproducing both NCEH and ApoA4 (lipoprotein acceptor
of cholesterol) develop diminished disease [90]. In LDL
receptor-deficient mice, overproduction of NCEH led to re-
duced lesion necrotic core, thereby indicating a key role of
macrophage-specific expression NCEH in manipulations with
cholesterol in atherosclerotic plaque [91].

Another isoform of NCEH, NCEH1, is involved in choles-
terol ester catabolism on the membrane of endoplasmic retic-
ulum in macrophages. In ApoE-deficient mice, NCEH1 accel-
erates disease progression, indicative of an anti-atherosclerotic
role of the enzyme [92]. Both NCEH isoforms prevent trans-
formation of macrophages to foam cells [93, 94].

Cholesterol reverse transport is an essential stage in
macrophage-mediated plasma lipoprotein metabolism.
Cholesterol efflux could be performed by an intensive work
of cholesterol transporters, such as ABCA1, ABCG2, and
scavenger receptor SRB1 and by passive membrane diffusion
(Fig. 2). Mice with deletion of ABCA1 and SR-BI had severe
hypocholesterolemia mainly due to HDL atherosclerosis was
absent due to the lack of the pro-atherosclerotic lipids [95].
ApoA-1, a main HDL-associated protein, accepts free choles-
terol secreted by ABCA1 [96]. However, in LDL receptor-

deficient mice, liver overproduction of ABCA1 caused lipid
deposits and enhanced disease because of accelerated trans-
port of HDL cholesterol and slowed degradation of LDL rich
of cholesterol [95].

In macrophages, ABCA1 seems to play a central role in
cholesterol efflux and therefore is regulated by various bioac-
tive molecules. A transcription factor liver X receptor α
(LXRα) primes ABCA1 expression [97]. Quercetin
upregulates ABCA1 expression through activation of the
PPARγ/LXRα axis [98]. Proteasome inhibitors and ApoA-1
increase cholesterol transport from foam cells by suppressing
ABCA1 degradation and increasing stability [99, 100].

A number of negative regulators of ABCA1 have been de-
scribed. Unsaturated free fatty acids (UFA) induce epigenetic
silencing of LXR genes, ABCA1 downregulation through
PKCδ-dependent phosphorylation, which in turn leads to the
degradation of the transporter [101, 102]. IL-12 and IL-18
downregulate expression of ABCA1 via activation of
ZNF202, a zinc finger protein and transcriptional repressor
[103]. On the other hand, C-X-C motif chemokine 5
(CXCL5) positively regulates ABCA1 production and therefore
limits foam cell formation [104]. Among other activators of
ABCA1 expression, cAMP, sterols, PPARγ agonists, and other
stimulators can be mentioned [105]. In LDL receptor-deficient
mice, deletion of ABCG1 had an anti-atherogenic effect [106]
or leads tomoderate increase in atherosclerotic lesion size [107].
The observed discrepancy in the results may be explained by a
secondary role of ABCG1 in cholesterol efflux in macrophages.

Various dietary components are involved in the regulation of
ABCG1. Cineole (a eucalyptus monoterpenoid) and extra-
virgin olive oil increase ABCG1 expression [108, 109]. Gut
microbiota transforms cyanidin-3-O-β-glucoside (Cy-3-G), a
berry anthocyanin, to protocatechuic acid (PCA). PCA can in
turn stimulate ABCA1/ABCG1 production by downregulating
miR-10b, which targets both cholesterol transporters [110].

SR-BI transports cholesterol to HDL. In ApoE-deficient
mice, SR-BI overproduction had atheroprotective effect while
depletion of SR-BI in macrophages resulted in significant
plaque growth thereby indicating the anti-atherogenic role of
this scavenger receptor [111]. The described properties of SR-
BI could be explained by its capacity to transfer cholesterol in
both directions [112]. In initial atherogenic steps, SR-BI acts
like SR-A1 supporting lipid and cholesterol uptake in macro-
phages. In parallel, SR-BI suppresses activity of ABCA1
thereby suggesting competing role of both transporters in reg-
ulating cholesterol transfer in macrophages [113].

Multiple dietary substances were shown to influence SR-
BI expression. Caffeic and ferulic acids, two main phenolic
acids found in coffee, enhance cholesterol efflux in macro-
phages by activating ABCG1 and SR-BI, i.e., transporters that
transfer cholesterol to HDL but not to ApoA-1 [114].
Resveratrol (a polyphenolic compound) and 13-hydroxy
linoleic acid increase LXRα and SR-BI by stimulating
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PPARγ [115, 116] also stimulate the reverse cholesterol trans-
port from macrophages.

In contrast, pappalysin-1 (PAPPA), a metalloproteinase,
which hydrolyzes insulin-like growth factor-binding proteins
(IGFBPs) could downregulate all three cholesterol pumps via
suppression of the IGF/PI3-K/Akt-dependent stimulation of
LXRα [117].

Role of miRNAs in foam cell formation

A pivotal role of aberrant expression of microRNAs (miRNAs),
a class of small non-coding regulatory RNAs, in various aspects
of atherogenesis including formation of foam cells is
established [118, 119]. MiRNAs are involved in post-tran-
scriptional silencing of mRNA targets (through RNA sequestra-
tion, cleavage, and decay) and inhibition of translation of
mRNA targets. In macrophages, the molecular machinery re-
sponsible for cholesterol intake, storage, and efflux is targeted
bymultiplemiRNAs since a proper regulation of this machinery
is vital to maintain blood lipid homeostasis. Deregulation of this
mechanism may lead to various cardiometabolic abnormalities
including atherosclerosis. As formation of foam cells is

pro-atherosclerotic, miRNAs whose activity leads to the
generation of foam cells could be considered as pro-athero-
genic. By contrast, miRNAs, which inhibit foam cell for-
mation, are atheroprotective.

In macrophages, expression of ABCA1 and ACAT1 is reg-
ulated by multiple miRNAs, an indicator of a key role of these
proteins in cholesterol and phospholipid homeostasis
(Table 1). ABCA1 is a major pump involved in the reverse
cholesterol transport, and inhibition of this transporter pro-
motes foam cell formation. ACAT1 catalyzes cholesterol es-
terification, and downregulation of this enzyme attenuates
generation of foam cells.

In addition to the direct targeting of lipid-handling machin-
ery components, miRNAs can indirectly influence on this
mechanism through the control of pathways or expression of
genes involved in the regulation of cholesterol homeostasis.
For example, miR-21 [122], miR-133a [126], and miR-223
[132] downregulate LPS-induced lipid accumulation and in-
flammation by targeting toll-like receptor 4 (TLR4)/nuclear
factor (NF)-kB signaling. In human macrophages, miR-
216a, which directly targets the 3′ untranslated region of cys-
tathionine γ-lyase (CSE) mRNA, negatively influences
ABCA1 expression by suppressing the CSE/H2S system

Table 1 Effects of miRNAs on
foam cell formation miRNA Target(s) Role in foam cell formation Reference

miR-9 ACAT1 Inhibition Xu et al. (2013) [120]

miR-19b ABCA1 Support Lv et al. (2014) [121]

miR-21 TLR4 signaling Inhibition Feng et al. (2014) [122]

miR-26 LXRα Support Sun et al. (2012) [83]

miR-33 ABCA1 Support Zhao et al. (2014) [123]

miR-27a/b ABCA1, LPL, ACAT1 Support Zhang et al. (2014) [124]

miR-101 ABCA1 Support Zhang et al. (2015) [125]

miR-133a TLR4 Inhibition Peng et al. (2016) [126]

miR-134 ANGPTL4 Support Lan et al. (2016) [127]

miR-144 ABCA1 Support Hu et al. (2014) [128]

miR-150 AdipoR2 Inhibition Li and Zhang (2016) [129]

miR-155 HBP1 Support Tian et al. (2014) [130]

miR-216a CSE Support Gong et al. (2016) [131]

miR-223 TLR4 signaling Inhibition Wang et al. (2015) [132]

miR-302a ABCA1 Support Meiler et al. (2015) [133]

miR-378 ABCG1 Support Wang et al. (2014) [134]

miR-382-5p NFIA Support Hu et al. (2015) [135]

miR-467b ACAT1 Inhibition Wang et al. (2017) [136]

miR-486 HAT1 Support Liu et al. (2016) [137]

miR-590 LPL Inhibition He et al. (2014) [138]

ABCA1 ATP-binding cassette transporter A1; ABCG1 ATP-binding cassette transporter G1; ACAT1 acetyl-CoA
acetyltransferase, mitochondrial; AdipoR2 adiponectin receptor 2; ANGPTL4 angiopoietin-like 4; CSE cystathi-
onine γ-lyase; HAT1 histone acetyltransferase 1, HBP1 HMG-box transcription factor 1; LPL lipoprotein lipase;
LXRα liver X receptor α; TLR4 toll-like receptor 4; NFIA nuclear factor 1 A-type
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[131]. miR-134 was shown to promote cholesterol deposition
by suppressing angiopoietin-like 4 (Angptl4), a secreted irre-
versible inhibitor of lipoprotein lipase (LPL) activity [127].
Overactivation of LPL that is involved in the transformation
of very light density lipoprotein (VLDL) to LDLmay contrib-
ute to atherogenesis [139].

In oxLDL-treated THP-1macrophages, miR-150-dependent
inhibition of adiponectin receptor 2 (AdipoR) was observed to
lead to the activation of genes responsible for cholesterol efflux
and hence to the suppression of foam cell formation [129].
Increased levels of miR-155 were shown to promote conver-
sion of macrophages to foam cells by targeting HMG-box tran-
scription factor 1 (HBP1) [130]. In human acute monocytic
leukemia macrophage-derived foam cells, Hu et al. (2015)
found that the long non-coding RNA RP5-833A20.1 and
miR-382-5p cooperate in the downregulation of nuclear factor
1 A-type (NFIA), a regulatory protein whose overexpression
prevents intracellular lipid deposition and has anti-
inflammatory and anti-atherogenic effects [135]. Finally, miR-
486 controls ABCA1 expression epigenetically by targeting
histone acetyltransferase 1, an epigenetic regulator that pro-
motes ABCA1 production by acetylation of the lysines 5 and
12 of histone H4 at the promoter of the ABCA1 gene [137].

In summary, miRNAs play a significant role in the regula-
tion of cholesterol homeostasis by promoting or inhibiting
intracellular lipid deposition and formation of foam cells
[140]. Thus, miRNAs may represent a promising therapeutic
target to improve reverse cholesterol transport and prevent
generation of foam cells in atherosclerosis.

Conclusions

Atherosclerosis is associated with profound disturbances of
cholesterol metabolism. In particular, cellular cholesterol up-
take is increased in atherosclerosis, while cholesterol efflux is
downregulated. Increased cholesterol uptake can be explained
by upregulation of oxLDL-bearing scavenger receptors ex-
pression, especially LOX-1. Moreover, the expression of cho-
lesterol pumps that are involved in cholesterol efflux is
inhibited. This may result in cholesterol deposition in macro-
phages and formation of foam cells. Another main imbalance
observed in atherosclerosis is upregulation of ACAT1 (i.e.,
cholesterol esterification) and downregulation of NCEH (i.e.,
formation of free cholesterol), which results in the accumula-
tion of cholesterol esters within the cell and further transfor-
mation of macrophages to foam cells.

Until recently, monocyte-derived macrophages were con-
sidered as a major source of plaque foam cells. However,
Dubland and Francis (2016) found that VSMCs could sub-
stantially (up to 50% in humans and at least 1/3 in mice)
contribute to a population foam cells [141]. Intracellular cho-
lesterol accumulation leads to inhibition of SMC gene

expression and induction of pro-inflammatory and macro-
phage markers. Foam cells originated from VSMCs have a
selective loss of ABCA1. This interesting topic must be fur-
ther explored to improve the understanding of new roles of
VSMCs in atherosclerosis.

A standard therapy that is widely used to treat cardiovas-
cular diseases is reducing plasma LDL cholesterol levels with
lipid-lowering agents. However, over 50% of treated patients
did not achieve the beneficial effects of this therapy. To pre-
vent intracellular lipid accumulation by enhancing cholesterol
efflux and targeting lipid-metabolizing enzyme is a promising
approach that can significantly improve the efficiency of anti-
atherosclerotic therapy. One of these strategies involves HDL-
targeted therapy by optimization HDL cholesterol levels and
function in the blood to promote the removal of circulating
cholesterol and to prevent or mitigate atherosclerotic inflam-
mation [142]. HDL-targeted therapy assumes implication of
HDL-mimetics such as reconstituted HDL, apolipoprotein
(Apo) A-IMilano, ApoA-I mimetic peptides, or full-length
ApoA-I, which provide an option to enhance cholesterol ef-
flux through the ABCA1 transporter and to act as an anti-
atherosclerotic agent by enhancing the biological functions of
HDL without elevating HDL cholesterol levels. HDL-mimetics
were highly effective in animal models [143]. CER-001, a re-
combinant human ApoA-1-based HDL mimetic, developed
by company Cerenis Therapeutic Holding SA (Labège,
France) is evaluated in three clinical trials (NCT01515241,
NCT01201837, and NCT01412034) to treat homozygous fa-
milial hypecholesteroemia, hypo-alphalipoproteinaemia, and
acute coronary syndrome.

Earlier on, CER-001 showed profound anti-atherogenic ef-
fects in LDLR-deficient [144] and apoE-deficient [145] mice by
promoting cholesterol efflux and inducing atherosclerosis re-
gression. In hypercholesteroemic patients, this preparation led
to the significant increase of reverse cholesterol transport and
decrease in carotid mean vessel wall area and carotid artery wall
thickness [146–148]. In atherosclerotic patients, implementation
of CER-001 was well tolerated, targeted plaque regions, and
caused enhancement of cholesterol efflux and increase of serum
apoA-I levels [149–151]. Thus, preclinical and clinical testing
of CER-001 showed beneficial effects of HDL-therapy on the
carotid wall thickness, prevention of coronary plaque burden,
and plaque size and morphology. Indeed, targeting of cholester-
ol efflux with apoA-I mimetics may serve as a good example of
efficient anti-atherosclerotic therapy.
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