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Abstract 3D culture has allowed the initiation and expansion
of organ-like structures, called organoids, from either tissue-
resident adult stem cells or pluripotent stem cells. Today,
organoids can be grown to resemble a wide variety of organs,
exhibiting remarkable similarity to their in vivo counterparts.
As successful organoid generation is possible from virtually
every patient, organoids hold a great promise for medical re-
search and the development of new treatments. They have
already found their way into the clinic, enabling personalized
medicine in small patient trials. In this review, we provide an
update on current organoid technology and summarize their
application in basic research, disease modelling, drug devel-
opment, personalized treatment and regenerative medicine.
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Introduction

In early 2015, a patient suffering from cystic fibrosis (CF) was
treated for the first time based on information from drug-
screening tests performed on the patient’s own tissue, cultured
ex vivo in the form of organoids. Remarkably, this signalled

the technology’s move from bench to bedside in only 4 years:
the culture conditions developed for the intestinal organoid
cultures used were published in 2011 [1] and by 2013, an
assay had been developed to test the function of the disease-
causing protein (see Section, BGenetic disease^) [2].
Currently, seven patients have been treated according to the
results of this personalized medicine approach in organoids.

The term Borganoid^ simplymeans Bresembling an organ^.
Organoids are defined by three characteristics: self-organiza-
tion, multicellularity and functionality [3] (Fig. 1). Thus, the
cells arrange themselves in vitro into the 3-dimensional (3D)
organization that is characteristic for the organ in vivo, the
resulting structure consists of multiple cell types found in that
particular organ and the cells execute at least some of the
functions that they normally carry out in that organ. For ex-
ample, a prototypical organoid, the mouse intestinal organoid,
grows as a single-layered epithelium organized into domains
such that it resembles the in vivo intestinal crypt-villus archi-
tecture, comprising the different cell types of the intestine
(enterocytes, goblet cells, Paneth cells, enteroendocrine cells
and stem cells) and surrounding a cystic lumen [4] (Fig. 1).

The technology utilizes the defining characteristics of stem
cells, namely, the clonal expansion capacity and production of
daughter cells that can differentiate into multiple cell types (self-
renewal and multipotency) [5]. If placed into the right culture
conditions, any stem cell should be able to self-renew and gen-
erate differentiated offspring, ideally growing into organ- or
tissue-like structures. Organoids can now be grown to resemble
many tissues or tissue layers, such as the epithelial layer of the
gastro-intestinal tract. For each new culture system, researchers
have applied knowledge from developmental studies to mimic
the molecular cues that guide the cells in vivo. There is a general
difference in approach depending on the type of stem cells used
to initiate the organoids, namely, either pluripotent stem cells
(PSCs), encompassing embryonic stem cells as well as induced
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pluripotent stem cells, or adult stem cells (ASCs). In order to
generate the correct tissue type, PSCs must be taken through a
series of carefully choreographed steps using different media
cocktails. ASCs are extracted from adult tissues, where they
normally reside to regenerate the tissue, and are thus already
tissue-specified. Therefore, culture conditions need only mimic
the molecular environment in the adult tissue during homeostasis
and repair (Fig. 2).

The range of organs this general principle has been applied
to is rapidly increasing. Three germ layers are defined during
human development: endo-, meso- and ectoderm. The fact
that organoids have now been established from organs derived
from all three germ layers (Fig. 2) indicates the power of this
technology and suggests that the majority of organs are ame-
nable to such modelling. Organoid systems have already been
reviewed in detail elsewhere [3, 6–10]. Here, we will first
focus on representative organoid systems for each germ layer
before summarizing the role that organoids play in basic bio-
medical research and in the clinic.

Endodermal organoids

The endoderm gives rise to the epithelial lining of the diges-
tive and respiratory tracts and organs such as the lung, liver,
gall bladder, pancreas and urinary bladder, amongst others.
Organoids have been grown from several organs of endoder-
mal origin; indeed, the first organoids were murine small in-
testinal organoids derived from ASCs [4]. In the intestine,
three molecular gradients converge to create the molecular
environment that shapes the epithelium: epidermal growth
factor (EGF) and Wnt are highly active in the crypts, whilst
bone morphogenetic protein (BMP) is active in the villus. To
mimic this environment, Toshiro Sato placed adult epithelial
stem cells into a 3D extracellular matrix called BMatrigel^ and
added three factors: an agonist of the Wnt pathway, R-
spondin1, an inhibitor of BMP signalling, noggin, and EGF.
Under these conditions, the intestinal stem cells proliferate

and form small cysts which grow into 3D structures with a
cystic body and small buds protruding outwards into the ma-
trix. These organoids contain all the cell types of the intestine
and—upon serial replating—display an apparently infinite ex-
pansion capacity [4]. This technique has subsequently been
adapted to culture organoids from the human intestine [1],
mouse and human stomach [11–13], pancreas [14–16], liver
[17], prostate [18, 19], oesophagus [1, 20], gall bladder [21,
22] and taste buds [23]. The development of lung organoids
from ASCs has so far been challenging. An early protocol
allowed the initial culture of basal cells isolated from the tra-
chea to organoids containing basal and luminal cells but lack-
ing other cell types of the trachea and the culture could not be
maintained long-term [24]. Short-term cultures from the alve-
oli develop into alveolar type I cells [25, 26].

In parallel developments, several endodermal organoid
cultures have been generated from PSCs. Currently, hu-
man PSCs can be grown into organoids resembling the
small intestine [27], lung [28–30], liver [31], thyroid [32,
33] stomach [34, 35] and pancreatic [36] and bile duct
tissues [37]. The latest addition to this growing list is hu-
man gastric corpus, which present an excellent example to
illustrate typical PSC-derived organoid culture [38]. The
evolution of the protocol started by defining conditions to
grow intestinal organoids from PSCs [27]. To generate
gastric organoids, Kyle McCracken in the Wells lab then
made use of reports that the murine stomach requires intact
retinoic acid signalling to develop [39]. Indeed, adding
retinoic acid to the growth cocktail switched cells from a
hindgut fate to a foregut fate. Further culture in Matrigel
and EGF then gave rise to organoids which resembled the
part of the stomach that is closest to the intestine, the
gastric antrum [34]. Generating a stomach-specific knock-
out of beta catenin, McCracken and colleagues could then
show that Wnt is necessary for promoting growth of the
proximal stomach, the corpus, and in the absence of
Wnt signalling corpus specification, and especially the de-
velopment of the parietal cells (the acid-secreting cells),

Fig. 1 Organoids are mini-versions of organs. The definition of an
organoid includes the 3 characteristics of organization, multicellularity
and function. The example shown here is a small intestinal organoid
grown from adult stem cells of the mouse. It self-organizes into a 3D
structure with small buddings protruding from a central lumen. These
buddings contain the cells typically found in the crypts of the small

intestine, especially Paneth cells and stem cells. The cystic body contains
the cells of the villus region. Within an organoid, cells can execute (part
of) the functions that they carry out in vivo, e.g. Paneth cells can provide
niche signals for stem cells and, when stimulated, can secrete
antimicrobials
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was impaired [38]. By adding a Wnt agonist (CHIR) to the
combined treatment with EGF and the known stomach-
specific signalling factor FGF10, organoids were initiated
that supported the differentiation of gastric corpus cells,
and including, impressively, acid-producing parietal cells
[38]. However, these parietal cells were lost with passag-
ing. Thus, the conditions for preservation of parietal cells
in long-term expansion remain to be identified [38].
Another exciting new development from the Wells lab is
the generation of PSC-derived intestinal organoids with a
functional enteric nervous system. For this, the PSC-
derived neural crest cells were seeded together with PSC-
derived intestinal organoids into Matrigel. The neural cells
migrated into the mesenchymal compartment, which sur-
rounds the PSC-derived organoids. When transplanted,
they formed ganglionic structures that exhibited spontane-
ous calcium oscillations and could be stimulated to induce
contractions of the intestinal organoids [40].

Mesodermal organoids

The mesoderm forms the mesenchyme, haematopoietic sys-
tem, muscles, cartilage, bone, kidneys, spleen, gonads and
genital ducts. The kidney is a highly complex organ, with

more than 20 differentiated cell types whose 3D arrangement
is crucial for its function. The two progenitor tissues of the
nephron, the ureteric bud and the metanephric mesenchyme
induce each other reciprocally. Both originate from the
same mesoderm (the intermediate mesoderm, derived from
the primitive streak), and both have been generated sepa-
rately from PSCs [41, 42], but it has long been challenging
to generate the two progenitor populations simultaneously.
A protocol was developed in the lab of Melissa Little that
initially used Activin A and BMP4 to induce a primitive
streak identity from PSCs, followed by stimulation with
FGF9 to induce an intermediate mesoderm identity. These
cells then spontaneously developed into both uretric bud
and metanephric mesenchyme [43]. The group then identi-
fied the molecular switch that guides the cells between the
two fates: the timing and duration of Wnt and FGF9 signal-
ling defines the resulting cell types. The refined protocol,
which comprises 4 days of Wnt activity induced by the
GSK3β inhibitor CHIR, then 3 days of exposure to FGF9,
followed by only a single hour of induced Wnt activity,
results in one of the most fascinating and complete
organoid structures of multicellular kidney organoids with
podocytes and segmented tubules [44]. Following an
adapted protocol for ASC-derived cultures, also fallopian
tube organoids have been grown from adult tissue [45].

Fig. 2 Current organoid techniques. Organoids can be grown via two
approaches, either from tissue biopsies containing adult stem cells (ASCs;
yellow box), or from pluripotent stem cells (PSCs; blue box). In the ASC
approach, researchers mimic the adult stem cell niche to allow natural
expansion of the stem cells. In the PSC approach, researchers mimic

developmental steps occurring during the generation of a particular
organ. A wide range of organs are amenable to either approach (top
row). The fact that these include organs of endodermal, mesodermal
and ectodermal origin implies that it may be possible to grow all organs
Bin a dish^
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Ectodermal organoids

The (neuro-)ectoderm forms all neural tissues, including the
central nervous system and sensory epithelia (e.g., of the
eye), the pituitary gland, the tooth enamel, the epidermis
and several glands such as the mammary glands and salivary
glands. In the lab of Yoshiki Sasai, Mototsugu Eiraku devel-
oped a culture in which he seeded ESCs in non-adhesive
culture plates and serum-free medium. Under these condi-
tions, ESCs form aggregates that are similar to embryoid
bodies [46]. From these aggregates, Sasai and colleagues
could generate organoids resembling the optic cup [47,
48], cerebellum [49], hippocampus [50] and adenohypophy-
sis [51], each driven by specific culture conditions. For ex-
ample, for retinal organoids, transient activin treatment and
addition of 2% Matrigel to the suspension culture lead to the
development of early optic vesicles marked by expression of
the retinal anlage gene, Rax. These vesicles are mechanically
cut from the aggregates and cultured in Matrigel-
supplemented suspension culture containing serum, retinoic
acid and L-taurine in high oxygen. Under these conditions,
the vesicles undergo a shape change to form two-walled
cups with a stratified epithelium containing photoreceptors,
ganglion cells, bipolar cells, horizontal cells, amacrine cells
and Müller glia, reminiscent of the early neonatal eye [47].
Using a different approach, Madeline Lancaster in the lab of
Juergen Knoblich generated a neuroectoderm from embryoid
bodies and embedded it into the Matrigel without the addi-
tion of specific growth factors. This allowed the outgrowth
of buds that further developed into different brain regions. A
single cerebellar organoid may contain many different brain
regions, but the population of organoids is heterogeneous.
Grown in small bioreactors, these Bmini-brains^ can become
a few millimetres in size [52]. Single cell analysis showed
that the cells in these brain organoids resemble human foetal
brain [53].

The two ectodermal organoid cultures derived from
ASCs, mammary gland and salivary gland organoids high-
light the importance of Wnt signalling in maintaining long-
term expansion of organoids in culture. Mammary gland
organoids have been generated from ASCs in the epitheli-
um, but the initial culture conditions only allowed for two
passages [54]. By adding Wnt and neuregulin, the life span
of these organoids could be extended to 2.5 months in cul-
ture [55]. Similarly, the initial culture conditions for salivary
gland organoids only allowed their short-term culture [56]
but the addition of Wnt3A and R-spondin1 to these has now
enabled their long-term culture [57]. It is remarkable that, as
a general rule and regardless of germ layer identity, Wnt
signalling appears essential for the establishment and main-
tenance of organoid systems from ASCs and for the main-
tenance and expansion of many organoids derived from
PSCs.

Applications

It is evident that organoids hold great promise for basic bio-
medical research: whilst the establishment of organoid cul-
tures was built on knowledge from developmental studies, this
new tool has now enabled researchers to study in vitro the
exact cues that govern organogenesis, lineage specification
and tissue homeostasis in areas that are inaccessible in vivo
using current techniques, e.g. the impact of timed pulses of
specific stimuli, as in the case of the kidney. However,
organoid technology holds promise for a much wider range
of applications and may fill an urgent need for new models in
medical research and translational studies (Fig. 3).

Disease modelling

Infectious disease

In contrast to cell lines, which are monotypic and usually
transformed, organoids are composed of (ideally all) differen-
tiated cell types of a particular organ. This makes them an
attractive tool for the study of infectious diseases, especially
of the agents that so far lack a suitable model system, either
because they are restricted to humans or because current ani-
mal models do not faithfully recapitulate human pathology
(reviewed in detail elsewhere [58]). Human gastric organoids
can be infected with the gastric pathogen Helicobacter pylori
and the model recapitulates the known hallmarks of infection
[13, 34]. Differentiation of the organoids has shown that the
cellular response to the infection depends on the cell types
present in the organoids [13]. ASC-derived intestinal
organoids have now also provided the cellular material to
grow norovirus, which has previously been refractory to
in vitro culture attempts, despite its capacity to consistently
and repetitively cause outbreaks of severe gastroenteritis. This
is probably due to a tropism of the virus for differentiated
primary enterocytes, absent from cell lines but readily pro-
duced by organoid technology [59]. Another inspiring exam-
ple is the recent necessity to develop new models for the
emerging Zika virus (ZIKV). ZIKV is particularly dangerous
for the developing foetus and causes microcephaly. Since hu-
man PSC-derived brain organoids are similar to the foetal
brain, they are outstanding candidates for an ideal model. In
2016, three groups demonstrated in parallel that ZIKV can
productively infect brain organoids and that the virus exhibits
a specific tropism for neural progenitors [60–62]. Early-stage
organoids representing first trimester foetal brains are partic-
ularly susceptible to destruction by the virus, leading to small-
er organoids with a thinner neuronal layer, thus phenocopying
the disease [62]. In another study, sequencing unravelled a
null mutation in the gene interferon regulatory factor 7,
IRF7, in a 7-year-old patient suffering from life-threatening
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influenza. Lung organoids, grown via iPSCs from the child’s
fibroblasts, produced low levels of interferon upon influenza
infection allowing the virus to spread and explaining the pa-
tient’s condition [63].

Genetic disease

Cystic fibrosis is caused by a variety of mutations in the cystic
fibrosis transmembrane conductance regulator gene, CFTR,
responsible for ion transport. The site of major complications
is the lung but the protein is also functional in other epithelia,
such as the intestine. Lung organoids derived from iPSCs
from healthy donors express functional CFTR protein, whilst
those derived from CF patients with the most common muta-
tion (F508del) display the typical misfolding of the protein,
leading to accumulation inside the cell [28]. The function of
the lung organoids could be restored if the mutation was
corrected by CRISPR/Cas9 genome editing in the iPSCs
[64]. Dekkers and colleagues generated ASC-derived
organoids from rectal biopsies and developed a microscopic
assay to evaluate CFTR function. In this assay, forskolin raises
intracellular cyclic AMP and thereby activates CFTR, leading
to ion uptake. Subsequent fluid secretion into the lumen of the
organoids leads to swelling of the organoids that is

quantifiable by microscopic readout (Fig. 4). Intestinal
organoids from CF patients show reduced swelling compared
to those of healthy controls. The swelling could be restored by
drug treatment of the organoids [2] or by correction of the
mutation by CRISPR/Cas9 gene editing [65].

Organoids have mirrored the in vivo phenotypes of other
genetic diseases, such as multiple intestinal atresia [66], alpha
1-antitrypsin deficiency and Alagille syndrome in the liver
[17], microcephaly [52] and even autism [67].

It would seem obvious that the approaches for culturing
healthy adult stem cells should be readily applicable to the
culturing of their malignant counterparts, i.e. cancer stem cells
in the form of cancer organoids, also termed tumoroids.
Indeed, organoids have been established from primary cancers
of the colon, stomach, prostate and pancreas [1, 13, 15, 36,
68–70], providing unique possibilities for cancer drug testing,
but also for better understanding of the influence of specific
genetic mutations on cancer progression in vitro. To experi-
mentally generate cancers in organoids, genetic modifications
have been introduced into cancer driver genes by shRNA-
mediated knockdown [71]. Further, two groups reconstructed
the cascade from normal tissue to adenocarcinoma by sequen-
tially altering cancer driver genes by CRISPR/Cas9 gene
editing in intestinal organoids [72, 73]. A similar approach

Fig. 3 Diagnostic and
therapeutic potential of organoids.
For individual patients, organoids
have already been used to identify
beneficial treatments, so
providing true personalized
medicine. They may further serve
as autologous material for cell
replacement therapies or even
future organ transplants, with the
possibility to correct disease-
causing mutations by CRISPR/
Cas9 before transplantation.
Organoids grown from groups of
patients can be used to model
disease, for example in infection
biology, but also to understand
specific genetic mutations. For
drug development, organoid
biobanks are a very promising
tool for drug discovery. Further,
kidney and liver organoids in
particular may help in the future
to complement or even replace
current animal tests for toxicity.
Both ASC- and PSC-derived
organoids can be used for these
areas of biomedicine
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used transfection of mutant KRAS or TP53 to generate tu-
mour organoids from PSC-derived pancreatic organoids [36].

Drug development: screening and toxicology

Several organoid biobanks of diseased and healthy control
tissues have been established or are currently in the process
of being established. Examples are two organoid biobanks
derived from various stages of colon cancer and their
matching healthy controls [68, 69] and a biobank of intestinal
organoids from 71 CF patients [74]. These biobanks cover the
range of genetic mutations known from a large-scale sequenc-
ing analysis and thus provide the ideal material to screen for
new drugs. A proof-of-principle study was performed on a
colon cancer biobank, which was used to screen 83 drugs that
are currently used in the clinic or in clinical trials for cancer
treatment. The screen corroborated known gene-drug associ-
ations and thus demonstrated that organoid biobanks are ame-
nable to high-throughput screens. Similarly, a drug screen of
known drugs on the CF biobank confirmed previous data from
drug responses to two relatively new CF drugs, but further-
more also demonstrated that the screen could identify patients
with unusual CFTR mutations that would benefit from a par-
ticular treatment [74].

Future screens using these and other biobanks will not only
aim to identify new drugs, but also to reveal which patients

may benefit from treatment with a certain (existing) drug. In
addition, focused tests of potential drugs should identify new
leads for the pharmaceutical industry. For example, experi-
mental treatment of PSC-derived CF organoids with a small
molecule led to increased surface expression of the receptor
[28].

Furthermore, it is envisaged that organoids may be used in
the future for toxicology testing to complement, if not in part
replace, animal testing. For example, iPSC-derived kidney
organoids readily respond to the cancer drug and known
nephrotoxin cisplatin by undergoing apoptosis [44].
Hepatocytes derived from an expansion phase as liver
organoids will also be a valuable tool for toxicity testing in
the future [17].

Regenerative medicine

Material for transplantation is always scarce, and alternative
sources are urgently needed. As organoids can be initiated
from minuscule amounts of donor cells, expanded and differ-
entiated in vitro, they could provide autologous cells or—in
the future—even tissue for transplantation. Organoids have
already been transplanted into the murine colon, where they
engrafted and retained typical organ features like tissue archi-
tecture and cell differentiation status [75, 76]. Similarly, hu-
man liver organoids have been engrafted into the mouse liver,

Fig. 4 Measurement of CFTR function with organoids. Cystic fibrosis
(CF) is caused by a large range of possible mutations in the gene CFTR.
There are drugs available, but they only work for some of the mutations.
Although the site of major complications is the lung, the protein is also
expressed in the intestine. Organoids grown from a rectal biopsy allow the
in vitro expansion of the patient’s epithelial cells, providing enough ma-
terial for cost-effective drug testing. In healthy organoids, addition of
forskolin leads to CFTR-dependent swelling, and this can be quantified

by image analysis. Swelling is impaired in CF organoids and can be
restored by treatment with drugs in vitro. This test is now used to identify
the patients that most benefit from particular treatments. With the devel-
opment of living organoid biobanks from larger cohorts of patients, it will
now be possible to screen new drugs for efficacy in specific cohorts. The
CF biobank in the Netherlands currently includes 300 patients, with num-
bers growing
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and kidney organoids transplanted under the kidney capsule
have become vascularized [17, 42, 77]. Future studies need to
show whether grafts can execute all functions of the tissue.
Autologous organoid transplantations would also allow
CRISPR/Cas9-mediated gene correction of disease-causing
mutations.

Personalized medicine

Being the miniaturized avatar of a specific patient’s organ,
organoids have the potential to identify the ideal treatment
for a particular patient. The prime example is cystic fibrosis.
Whilst CF as such is fairly common (about 1 in 3000 children
are born with CF), some of the mutations inCFTR are rare and
patients with rare mutations may not receive the ideal treat-
ment. This was the case for the first CF patient treated on the
basis of organoid screening results: the one drug prescribed at
that time in the Netherlands was neither prescribed nor reim-
bursed for patients with this mutation, because it was too rare
to have been tested in a clinical trial. Researchers grew
organoids from a rectal biopsy from the patient and, using
the forskolin-induced swelling assay, identified a positive re-
sponse to the drug Kalydeco. A second patient followed with
the same rare mutation. The treatment was given to the pa-
tients, who both improved significantly [74]. After this initial
translational success, blinded follow-up studies with larger
patient cohorts have now been initiated.

In a similar approach, organoids from cancer patients could
not only be used to identify the ideal treatment for a specific
patient, but also as cancer organoids retain the genetic hetero-
geneity of the primary tumour, it is likely that under the appli-
cation of a specific drug, the same resistant clones may grow
out as in vivo, thus predicting the acquisition of drug resis-
tance during treatment. Ongoing studies will have to demon-
strate the accuracy of these predictions.

Current limitations

The current version of organoid culture still represents a some-
what reductionist model. Not all organoids contain all cell
types of the tissue being modelled; one of many examples is
the gastric organoid that cannot maintain parietal cells long-
term. Further, a real stomach or intestine is not only more than
just the inner epithelial layer, but also has a surrounding mes-
enchyme, muscular layers, nervous system, vasculature, im-
mune cells and luminal microbiota. The mesenchyme is pres-
ent in PSC-derived organoids, but the other components are
usually missing in our current organoid systems. A good ex-
ample of the generation of a higher level of tissue complexity
is the above-mentioned recent development of human PSC-
derived intestinal tissue containing a functional enteric

nervous system [40]. This advance represents the only
organoid system containing derivatives of all three germ
layers: the endodermal intestinal epithelium, mesodermal
mesenchyme and ectodermal (neural crest-derived) nervous
cells. Similarly, experimental infection of organoids (summa-
rized earlier and elsewhere [58]) adds a layer of complexity to
the technology that increases its accuracy as a model system.
Future developments in organoid technology and interesting
fusions with approaches in tissue engineering will generate
ever more complex model systems, combining tissue matrices
with organoids [78] or adding other cellular components such
as immune cells, thus permitting further insights into disease
development. In PSC-derived organoids, current differentia-
tion protocols often mimic the foetal stages of development,
but sometimes only recapitulate fully mature cells when the
organoid is transplanted in vivo, indicating that some final
factors for differentiation are yet to be defined [3].

PSC-derived organoids are typically expanded as stem
cells expanded in a specific PSC-state. Their subsequent con-
version into defined organoids (e.g. retinal organoids or mini-
brains) is incompatible with further expansion. Only where
PSC-derived organoids can be cultured in media that were
originally developed for ASC-derived organoids (such as
mini-guts) can such organoids expand further. Whilst it was
previously believed that ASC-derived cells (or organoids) on-
ly had a limited life span, a series of examples now exist which
refute that dogma. We believe that it will ultimately be possi-
ble to develop media that allow the long-term expansion of all
epithelial ASCs in the form of organoids.

For regenerative medicine, a current bottleneck is the de-
pendence on Matrigel, which is an extracellular matrix pro-
duced by the Engelbreth-Holm-Swarm mouse tumour line,
thus precluding its use in humans. Recently, new matrices
have been created based on synthetic hydrogel networks that
overcome this limitation, at least for intestinal organoids [79].
Tackling these challenges will open new avenues for biomed-
ical research.

Concluding remarks

Organoids can be generated from virtually every patient, ei-
ther from iPSCs or tissue biopsies containing the ASCs. This
allows the study of rare mutations that cause disease.
Organoids are also amenable to genetic modification using
common tools like lentiviruses or CRISPR/Cas9 and can be
generated from single cells to form clonal organoids with the
desired genetic changes, either to analyse the effect of a spe-
cific mutation or to repair a mutation present in a patient [34,
65, 80]. Lastly, they can be expanded to provide enough ma-
terial for experimental testing and are amenable to a wide
range of standard laboratory techniques includingmicroscopy,
RNA-, DNA-, protein- and even proteome [81] analysis as
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well as many specific functional assays or for example viabil-
ity assays after drug application. These qualities render
organoids a highly promising tool for medical research. For
now, organoids are already contributing to basic science in
developmental biology, adult stem cell biology and also to
disease modelling. In the clinic, the most immediate impact
is that of drug testing and personalized medicine. The clinical
success obtained with the seven CF patients has convinced
Dutch healthcare providers to invest heavily in the test. The
CF patient biobank now holds samples of more than 300 pa-
tients, with numbers growing steadily. Ultimately, organoid
technology may change drug development from testing the
cohort with the most prevalent mutations to providing simple
and cost-effective tests for all patients to identify those that
most benefit from a given treatment.
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