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Abstract Mammalian cells encode three D cyclins (D1, D2,
and D3) that coordinately function as allosteric regulators of
cyclin-dependent kinase 4 (CDK4) and CDK6 to regulate cell
cycle transition from G1 to S phase. Cyclin expression, accu-
mulation, and degradation, as well as assembly and activation
of CDK4/CDK6 are governed by growth factor stimulation.
Cyclin D1 is more frequently dysregulated than cyclin D2 or
D3 in human cancers, and as such, it has been more exten-
sively characterized. Overexpression of cyclin D1 results in
dysregulated CDK activity, rapid cell growth under conditions
of restrictedmitogenic signaling, bypass of key cellular check-
points, and ultimately, neoplastic growth. This review dis-
cusses cyclin D1 transcriptional, translational, and post-
translational regulations and its biological function with a par-
ticular focus on the mechanisms that result in its dysregulation
in human cancers.
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Introduction

The cell cycle refers to the experimentally determined inter-
vals during which cells prepare for and subsequently duplicate
their genome equally between two daughter cells. It is divided
into four consecutive phases: G1 phase, during which cells
accumulate mass and metabolites necessary for DNA

replication; S phase, when DNA is replicated; G2, a gap phase
that is essential to ensure accurate DNA replication; and M
phase, during which DNA segregation and cell division occur.
While the primary phases of cell division define states of
proliferation and division, the majority of adult cells are main-
tained in a quiescent state (known as G0 phase), a resting state
cells often enter post-mitotically or prior to terminal differen-
tiation [1]. Unlike many terminally differentiated cells, how-
ever, quiescent cells can re-enter the cell cycle inG1 phasewhen
exposed to appropriate mitogenic stimuli [2].

Transitions through the cell cycle are driven by cyclins and
cyclin-dependent kinases (CDKs) [1]. Cyclins are the allosteric
activators of cognate CDKs; their levels typically oscillate
across the cell cycle, hence gaining the name cyclins. The cy-
clin family shares a homologous N-terminal 100-amino acid
motif referred as the cyclin box that has a highly conserved
three-dimensional structure and provides the binding interface
for the appropriate CDKs [3]. CDKs define the partner kinases
that can be activated only when they bind to their cognate
cyclins. Due to their biological significance, CDK activity is
stringently regulated by the following mechanisms: the levels
of cyclin partners, phosphorylation status, and the abundance of
CDK inhibitory proteins, such as the INK4 family (p16INK4A,
p15INK4B, p18INK4C, and p19INK4D) and the CIP and KIP fam-
ilies (p21CDKN1A, p27CDKN1B, and p57CDKN1C) [4].

D cyclins, including cyclins D1, D2, and D3, form
active complexes with either CDK4 or CDK6, which, in
turn, phosphorylate the retinoblastoma (Rb) protein and
drive G1 to S phase progression [5]. D cyclins coordinate
cell cycle progression with the extracellular stimulation
(e.g., growth factor availability, nutrient availability, and
integrin-derived adhesion signaling) [6]. Given the role of
D cyclins in mediating extracellular cues with cell prolif-
eration, it is not surprising that overexpression of D
cyclins or hyperactivation of their cognate CDKs directly
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contributes to neoplastic growth. More specifically, cyclin
D1 has attracted widespread attention due to the preva-
lence of its dysregulation in human cancers [7]. This re-
view focuses on and discusses cyclin D1 structure; tran-
scriptional, translational, and post-translational regula-
tions; and its biological function. It also addresses the
dysregulation of cyclin D1 in human cancers and the ad-
vancement and impact of new therapeutic inhibitors
targeting CDK4/CDK6.

Transcriptional, post-transcriptional,
and translational regulations of cyclin D1

β-Catenin-dependent regulation of cyclin D1
transcription

Physiologically, Wnt/β-catenin pathway regulates the devel-
opment of various tissues and organs, including the heart,
liver, lung, brain, kidney, and so forth [8]. Moreover, it also
plays important roles in pathological conditions including gas-
tric cancer, colorectal carcinoma, liver cancer, and melanoma
[9].β-Catenin mediates the canonical Wnt signaling pathway:
the binding of Wnt to its receptor suppresses the degradation
of β-catenin, which is mediated by the cytoplasmic β-catenin
destruction complex. Reduced degradation and cytoplasmic
accumulation of β-catenin result in increased nuclear translo-
cation, where it associates with lymphoid enhancer factor/T
cell factor (LEF/TCF) and drives expression of key down-
stream target genes. The CCND1 gene, which encodes cyclin
D1, represents a key target. β-Catenin/LEF-1 complexes tar-
get motifs at −75 and −15 within the CCND1 promoter [10].
Importantly, cyclin D1 is necessary for β-catenin to drive
colon carcinoma development [11]. It is also noteworthy that
Wnt regulates cyclin D1 protein stability independent of β-
catenin as much as Ras signaling regulates cyclin D1 accumu-
lation and activation through multiple mechanisms [12, 13].

Epidermal growth factor receptor and cyclin D1
expression

Cyclin D1 expression is responsive to a variety of growth
factors [14], among which EGF is a classic mediator [15].
Epidermal growth factor receptor (EGFR) overexpression
and/or hyperactivation correlates with poor prognosis in hu-
man cancers, including breast cancer, non-small cell lung car-
cinoma, and colon carcinoma [16]. As a mitogenic growth
factor, EGF regulates prostate cancer cell proliferation at least
partially through regulating cyclin D1 expression [17], and it
regulates cyclin D1 accumulation at both messenger RNA
(mRNA) and protein levels. ErbB2, also known as Neu or
Her2, is implicated in 20–30 % of human breast cancers
[18]. Here again, cyclin D1 expression is induced by

Her2/Neu, Ras, Rac, Rho, c-Jun N-terminal kinase, and p38
[19]; it is of equal importance that cyclin D1-CDK4 function
is required for Her2-driven mammary carcinoma [19–21].
This work has contributed directly to the use and thus the
success of CDK4/CDK6 inhibitors in patients with HER2-
positive breast cancers [22].

Phosphatidylinositol 3-kinase regulates cyclin D1

Phosphatidylinositol 3-kinase (PI3K) catalyzes the phosphor-
ylation of phosphatidylinositol 4,5-bisphosphate (PIP2) to
form phosphatidylinositol 3,4,5-triphosphate (PIP3); PIP3, in
turn, recruits Akt/protein kinase B (PKB) to the cell mem-
brane, where it is phosphorylated and activated [23].
Activated Akt/PKB controls cell growth, differentiation, pro-
liferation, motility, and metabolism. Previous work revealed a
role of PI3K in promoting G1/S cell cycle progression [24],
suggesting a potential connection with D-type cyclins. Indeed,
PI3K/Akt regulates nuclear accumulation of cyclin D1
through regulation of glycogen synthase kinase 3β (GSK-
3β) [12]. Consistently, dominant-negative (DN) alleles of ei-
ther subunit of PI3K strongly suppress EGF-induced cyclin
D1 accumulation [24]. Likewise, chemical inhibition of PI3K
also reduces cyclin D1 at both mRNA and protein levels upon
EGF stimulation, while rapamycin, a well-known mTORC1
inhibitor, exhibits no effect on EGF-induced cyclin D1 regu-
lation [24]. Cumulatively, this supports a model where PI3K is
indispensable for EGF-induced cyclin D1 upregulation. In
glioma cells, cyclic-AMP response element binding (CREB)
protein acts as a critical hub that mediates PI3K-Akt-induced
cyclin D1 upregulation upon mitogenic stimulation [25].
Modulation of cyclin D1 by the PI3K-Akt signaling pathway
represents one mechanism of growth factor-dependent sens-
ing by cyclin D1.

Nuclear factor kappa B-dependent control of cyclin D1

The nuclear factor kappa B (NF-κB) transcription factor
family, including p65 (RelA), RelB, c-Rel, p50/p105
(NF-κB1), and p52/p100 (NF-κB2), participates in vari-
ous physiological and pathological processes including
inflammation, tumorigenesis, and tumor progression
[26]. Members of the NF-κB family contain conserved
Rel homology domain that mediates dimerization, nucle-
ar localization, DNA binding, and their interaction with
inhibitory IκB proteins. NF-κB directly binds to cyclin
D1 promoter and controls cyclin D1 transcription [27].
Other related studies implicated c-Rel, RelB, and p52 in
the regulation of cyclin D1 transcription in mammary
tumors of transgenic mice [28], suggesting a key role
of NF-κB-dependent regulation of cyclin D1 during
mammary gland tumorigenesis.
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Post-transcriptional control (alternative splicing)
of cyclin D1

The gene encoding cyclin D1, CCND1, contains five coding
exons, from which two transcripts are derived (cyclins D1a
and D1b) (Fig. 1) [29, 30]. Cyclin D1a is transcribed from an
mRNA transcript derived from all five exons. The N-terminal
region of cyclin D1a has a conserved Rb binding LXCXE
motif; the middle contains the cyclin box with the greatest
homology between D cyclins (cyclin box is the domain that
interacts with CDKs and CDK inhibitors: p21, p27, and p57);
the C-terminal domain regulates protein stability. As
discussed subsequently, this domain contains a threonine res-
idue (Thr-286) that is phosphorylated by GSK-3β [12]; phos-
phorylation of this residue is both necessary and sufficient for
ubiquitylation-dependent degradation. In contrast to cyclin
D1a, cyclin D1b is encoded by an mRNA where intron 4 is
not spliced, resulting in a unique C-terminus. Alternative
splicing of CCND1 occurs primarily in the context of cancer,
and splicing factors implicated in its generation include ASF/
SF2 and Sam68 [31, 32]. As a result of this alternative splic-
ing, cyclin D1b losses its key regulatory motif encoded by
exon 5 that directs its ubiquitylation-dependent degradation;
the consequence is cyclin D1b accumulation in the nucleus
and ultimately tumorigenesis [30, 33].

Post-translational regulation of cyclin D1

Cyclin D1 is highly labile, with a half-life of 10–30 min, and
its degradation depends on cell cycle phases [12, 34]. Protein
degradation is directed by polyubiquitylation and, thereafter,
destruction via the 26S proteasome. Cyclin D1 degradation
requires site-specific phosphorylation by GSK-3β at a con-
served threonine residue, Thr-286. Mutation of this threonine
to a non-phosphorylatable residue dramatically stabilizes cy-
clin D1, inhibits its nuclear export, and triggers the constitu-
tive activation of CDK4/CDK6 within the nuclear

compartment [12, 35, 36]. This nuclear dysregulation ulti-
mately drives p53 inactivation, rampant genomic instability,
and neoplastic transformation in vitro and tumorigenesis
in vivo [35, 37–40]. Although transcriptional regulation of
cyclin D1 is complicated and is likely responsive to an under-
appreciated number of transcriptional regulators, post-
transcriptional control ultimately dictates the overall accumu-
lation of cyclin D1 in both normal and tumor cells due to its
relative instability.

Protein ubiquitylation requires the concerted and coordi-
nated function of three enzymes: E1 ubiquitin-activating en-
zyme, E2 conjugating enzyme, and E3 ubiquitin ligase. The
E3 ligase directs substrate specificity; it contains the largest
family members and is generally the key regulatory compo-
nent in this pathway. E3 ligases are classified into three cate-
gories: Homologous to E6-Associated Protein C-Terminus
(HECT), Really Interesting New Gene (RING), and U-box
[41]. Among these, cyclin D1 ubiquitylation is directed by
the RING family E3 ligases. As discussed below, the S-
phase kinase-associated protein 1 (SKP1)-Cullin 1-F-box
(SCF) is the primary subclass that directs cyclin D1
ubiquitylation [42]. Within this subclass, SKP1 and Cullin 1
are core components, while the F-box proteins, composed of
∼80 family members, determine the substrate specificity. F-
box proteins are defined by an F-box motif that is so coined
for its homologywith cyclin F [43]. F-box proteins are divided
into three classes: Fbxw (with WD40 repeats as a substrate
binding domain), Fbxl (with leucine-rich repeats as a substrate
binding domain), and Fbxo (with other substrate binding do-
mains) [44]. The following section discusses the E3 ligases
that have been implicated in regulating cyclin D1
ubiquitylation and degradation.

Fbxo4

Fbxo4 andαB-crystallin, identified through the purification of
cyclin D1 under conditions that favor stabilization of
substrate-E3 ligase binding, were subsequently implicated as

Fig. 1 The structures of two
transcripts of cyclin D1.
Schematic illustration of cyclin
D1a (top) and cyclin D1b
(bottom)

J Mol Med (2016) 94:1313–1326 1315



the major F-box protein binding to Thr-286-phosphorylated
cyclin D1 [34, 45]. It was also noted that αB-crystallin is
indispensable for Fbxo4-dependent binding to phosphorylated
cyclin D1. Fbxo4-mediated cyclin D1 degradation involves
the following steps: (i) cyclin D1 phosphorylation, (2) chro-
mosome region maintenance (CRM1)-dependent nuclear ex-
port, and (3) cytoplasmic polyubiquitylation and degradation
(Fig. 2) [46]. Phosphorylation of cyclin D1 at Thr-286 by
GSK-3β is required for both binding to CRM1, which, in turn,
directs nuclear export and recognition by Fbxo4 [47]. GSK-
3β also phosphorylates Fbxo4; this phosphorylation generates
a 14-3-3ε binding site, and it is necessary for Fbxo4
homodimerization [48], a regulatory event required for effi-
cient cyclin D1 ubiquitylation. The importance of phosphory-
lation and dimerization is emphasized by the identification of
mutations in human cancers that directly abrogate phosphor-
ylation/dimerization, which, in turn, leads to cyclin D1 accu-
mulation in human esophageal squamous cell carcinoma and
melanoma [34, 47]. In tumor cells, the overexpression and/or
hyperactivation of mitogenic signaling pathways activates
PI3K-Akt signaling, which phosphorylates and inactivates
GSK-3β. This hypersignaling directly impacts the Fbxo4-
cyclin D1 axis, resulting in dysregulation of nuclear cyclin
D1-CDK4 and, finally, tumorigenesis [46, 48, 49].

While Fbxo4 is subject to point mutations in certain can-
cers, findings in hepatocellular carcinoma (HCC) reflect a
different mechanism. In HCC, sequencing analysis revealed
four Fbxo4 isoforms: Fbxo4α (full length), Fbxo4β (with
seven amino acids encoded by a read through intron 5, thus
causing a sequence replacement for exon 6), Fbxo4γ (missing
168–245 nt of exon 1), and Fbxo4δ (missing exon 6) [50].
Only Fbxo4α regulates cyclin D1 ubiquitylation-dependent
degradation. These mechanisms regulate the alternative splic-
ing and generation of different isoforms, and their impacts on
cancers remain to be clearly established.

Fbxo31

Cellular senescence can be triggered by the attrition of chro-
mosomal telomeric ends or via stress conditions that include
low nutrient levels, oncogene activation, reactive oxygen spe-
cies, and radiation treatment. Among these, oncogene-
induced senescence is considered as an important mechanism
for tumor suppression. Fbxo31 was identified in screening for
factors that regulate senescence. Fbxo31 levels can be induced
by DNA damage, and interestingly, elevated Fbxo31 levels
reversely correlate with cyclin D1 levels. Follow-up investi-
gation suggested that Fbxo31 is a checkpoint protein that ar-
rests cells upon genotoxic stress treatment [51]. Another work
has revealed that Fbxo4 is also a major regulator of cyclin D1
stability following DNA damage [52]. In fact, Fbxo4 is sub-
ject to hemizygous mutations in human melanoma; moreover,
Fbxo4 knockout mice overexpress cyclin D1 in all tissues,
including melanocytes. Of equal importance, Fbxo4 loss co-
operates with BRAFV600E to promote the development of met-
astatic melanoma in a cyclin D1-dependent manner [47].

SKP2

The Cullin 1-SKP2-SKP1 E3 ligases make a significant con-
tribution to the regulation of the G1/S transition. Key sub-
strates include the CDK inhibitors p21 and p27 [53–57],
which have been validated biochemically and in cells through
loss-of-function experiments. Cyclin D1 has also been sug-
gested to be a substrate [58]. This conclusion was based on
SKP2 loss-of-function analysis and its binding to cyclin D1 in
co-immunoprecipitation experiments. However, SKP2 E3 li-
gase has not been shown to ubiquitylate cyclin D1, suggesting
that this regulation may be an indirect effect. In addition, pre-
vious reports have already demonstrated that both p21 and
p27 could stabilize cyclin D1 through inhibition of its nuclear

Fig. 2 Ubiquitin proteasome-
mediated cyclin D1 degradation.
Phosphorylation is the first step
for cyclin D1 degradation. GSK-
3β phosphorylates cyclin D1 at
Thr-286. After phosphorylation,
cyclin D1 is transported from the
nucleus to the cytoplasm, where it
is recognized by different E3
ligases, including Fbxo4, Fbxo31,
Fbxw8, β-TrCP, and APC/C.
After polyubiquitylation, cyclin
D1 is targeted to proteasome for
degradation
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export [53]. Taken together, SKP2 loss-medicated cyclin D1
upregulation likely reflects decreased ubiquitylation and deg-
radation of p21 and p27; increased levels of p21 or p27, in
turn, contribute to cyclin D1 stabilization.

β-TrCP

β-TrCP, a WD40 repeat-containing F-box and β-transducin
repeat-containing protein, regulates cell division and signaling
pathways that contribute to tumorigenesis [59]. β-TrCP rec-
ognizes a substrate with a specific phosphorylated motif:
DSG(X)2S [42]. β-TrCP-mediated cyclin D1 ubiquitylation
and degradation is found in a condition treated with a com-
pound, named STG28, a derivative of troglitazone [60]. It has
been shown to suppress cyclin D1 as well as cell cycle regu-
latory proteins, such as β-catenin and androgen receptor [61,
62]. In a work investigating the mechanism how STG28 reg-
ulates cyclin D1 expression, the E3 ligase β-TrCP was impli-
cated as an active partner that interacts with cyclin D1 instead
of the reported ligases, such as SKP2, Fbxo4, and Fbxw8.
Ubiquitylation assay suggests that β-TrCP is an E3 ligase that
controls cyclin D1 stability upon STG28 treatment [60]. The
interaction between cyclin D1 and β-TrCP depends on Thr-
286 phosphorylation. Given that cyclin D1 lacks a β-TrCP-
binding motif, the precise mechanism of regulation is likely
indirect and remains to be elucidated.

Cdc27/anaphase-promoting complex 3
and the anaphase-promoting complex/cyclosome

As a conserved E3 ubiquitin ligase, anaphase-promoting
complex/cyclosome (APC/C) is critically important for the
fidelity of mitosis and directly regulates anaphase progression
[63]. APC/C promotes the degradation of securin that facili-
tates the division of two daughter genomes. In addition to a
variety of mitotic substrates, APC/C has been implicated in
the regulation of cyclin D1 degradation via direct binding
[64]. Additional work suggests that Cdc27/APC3 not only
associates with cyclin D1 but also promotes cyclin D1
ubiquitylation [64]. Cdc27-mediated cyclin D1 degradation
depends on a D-box for interaction and RK residues at posi-
tion 179/180 for ubiquitylation [64]. How APC/C and under
what physiological conditions contributes to cyclin D1 regu-
lation remains unclear. Given that D1 is destroyed in G1 phase
following DNA damage in an SCF-dependent manner, it
seems unlikely that APC/C-dependent degradation would
play a significant contribution at least in normal cells.
However, in cells where Fbxo4 for example has been deleted,
APC/C-dependent control may be important for maintaining
mitotic viability. If this is the case, it might also represent a
therapeutically tractable event.

Discrepancies in the E3 ligases that regulate cyclin
D1 ubiquitylation

It is apparent from the above discussion that cyclin D1
ubiquitylation is likely to reflect the activity of more than
a single E3 ligase. It is not uncommon to have redundancy
in the regulation of key growth regulatory proteins. For
example, c-Myc polyubiquitylation can be catalyzed by at
least three distinct E3 ligases [65–68]. With regard to cy-
clin D1 and each distinct E3 ligase, it remains important to
evaluate the regulation in model organisms and multiple
cell lines. For example, although transient knockdown of
SKP2 results in its accumulation, cyclin D1 does not accu-
mulate in SKP2 knockout mouse embryonic fibroblasts
(MEFs). In addition, SKP2 regulates p21 and p27, two
factors that control cyclin D1 nuclear export [53], and thus
upon acute SKP2 loss, any cyclin D1 accumulation ob-
served would likely reflect an indirect regulation. Fbxo4
has been knocked out in mice by two independent groups.
Here again, a discrepancy was noted with one group ob-
serving cyclin D1 overexpression and tumor susceptibility
in tissues sensitive to cyclin D1 overexpression [47, 49];
tumor and biochemical data also support the validity of
Fbxo4 as one def in i t ive regula tor of cycl in D1
ubiquitylation and abundance. In contrast, the second
group failed to observe significant cyclin D1 overexpres-
sion when altering any ligase tested [69]. The reasons for
the discrepancy remain unclear; it could reflect context
dependency or tissue specificity.

Stress-dependent regulation of cyclin D1

Cyclin D1 and the DNA damage response

Nuclear cyclin D1 accumulation leads to uncontrolled cell
cycle progression [35]. Given the capacity of cyclin D1 to
drive inappropriate cell division, it is not surprising that dys-
regulation of cyclin D1 might generate genome instability.
Investigation of the mechanisms that underscore nuclear cy-
clin D1-dependent neoplastic growth revealed overexpression
of the constitutively nuclear and stable cyclin D1 (T286A),
but not wild-type cyclin D1, which promotes stabilization and
mis-expression of the DNA replication licensing factor Cdt1,
which then triggers DNA re-replication and DNA damage
[37]. As a result, cyclin D1 T286A increases the incidence
of DNA damage-induced chromatid breaks that favor the oc-
currence of Bsecond hit^ and contribute to overt malignancy. Is
this activity of non-phosphorylatable cyclin D1 relevant in the
context of tumors that harbor wild-type cyclin D1 but have
mutations in upstream E3 ligases? Indeed, the loss of Fbxo4, for
example, results in nuclear accumulation of cyclin D1 and
misregulation of Cdt1 [52]. This likely reflects the fact that
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nuclear export of cyclin D1 is constitutive, and ubiquitylation-
dependent destruction is the key event in preventing cyclin D1
nuclear accumulation.

In the context of DNA damage, cyclin D1 proteolysis
depends on the activation of ataxia telangiectasia mutated
(ATM) and GSK-3β, which, in turn, trigger Fbxo4-
dependent cyclin D1 ubiquitylation [52]. As anticipated,
nuclear cyclin D1-CDK4 drives genomic instability and
facilitates neoplastic transformation and tumorigenesis in
the absence of ATM [70]. Cyclin D1 also intersects with
genome integrity through additional mechanisms.
Genome-wide screening showed a direct interaction be-
tween cyclin D1 and DNA damage response (DDR) pro-
teins, such as Rad51 [71]. Rad51, as a recombinase, plays
a critical role in homologous recombination, which keeps
the genomic stability and normal cell cycle. Radiation
enhances the interaction between Rad51 and cyclin D1;
therefore, cyclin D1 is recruited to DNA damage sites in a
BRCA2-dependent manner [71]. Loss of cyclin D1 in-
hibits Rad51-mediated DDR and increases cellular sensi-
tivity to radiation. Cyclin D1-dependent effects on tran-
scription have also been implicated in DDR [40, 72]. The
effects of nuclear cyclin D1 in mediating DDR highlight a
novel mechanism of genomic instability and pave the mo-
lecular basis for utilizing CDK inhibitors to treat tumors
with cyclin D1 dysregulation.

The unfolded protein response suppresses cyclin D1
protein synthesis

The unfolded protein response (UPR) defines the cellular re-
sponse to unfolded and/or misfolded proteins in the endoplas-
mic reticulum (ER). This stress results in the activation of
three signal transducers: PKR-like ER kinase (PERK) and
inositol-requiring enzyme 1 (IRE1), both of which harbor in-
trinsic protein kinase activity, and activating transcription fac-
tor 6 (ATF6), a transmembrane transcription factor that is ac-
tivated by proteolytic cleavage [73]. UPR activation triggers a
rapid G1 arrest, providing cells an opportunity to abrogate
stresses and damages prior to cell apoptosis. The characteri-
zation of this response revealed that the arrest is a direct con-
sequence of the inhibition of cyclin D1 protein synthesis with
no alterations in gene transcription or protein degradation
[74]. The major regulator of protein synthesis following
UPR engagement is PERK. Under stress conditions, PERK
phosphorylates eIF2α, which inhibits the global gene transla-
tion [75–77]. Additional analysis demonstrated that PERK
activation is both necessary and sufficient for cyclin D1 down-
regulation during the UPR [78, 79]. Therefore, cyclin D1 sup-
pression mediated by UPR is regarded as a conserved re-
sponse, which coordinates cell proliferation with the homeo-
stasis of both extracellular and intracellular environments and
keeps cell survival under stress conditions.

Substrates of cyclin D1-CDK4 complex

The cyclin D-CDK4/CDK6 kinase is unusual among the larg-
er families of proline-directed kinases in that it is highly spe-
cific and few bona fide substrates have been identified and
validated. The best-characterized substrate for the cyclin D-
CDK4/CDK6 kinases is Rb (and related p107 and p130)
[80–82]. Hyperphosphorylation of Rb leads to de-repression
of E2F family transcription factors and transcriptional activa-
tion of genes that control cell cycle progression, development,
and metabolism [5]. Analysis of primary tumors and tumor-
derived cell lines has established that Rb and its related family
proteins are the key substrates of cyclin D1-CDK4/CDK6.
First, the loss of Rb is mutually exclusive with cyclin D1muta-
tion or amplification. Second and of equal importance, the fact
that cyclin D1 activity is superfluous in cells lacking Rb is
another genetic evidence for the kinase-substrate relationship.
Importantly, this key observation establishes the patient pop-
ulation that will be benefited from anti-CDK4/CDK6 therapy.
In an attempt to broaden our understanding of substrates, an
unbiased systematic substrate screen was utilized and 68 po-
tential candidates were implicated [83]. However, the majority
of these candidates remain to be validated. Substrates that
have been biochemically and functionally validated include
Smad3, forkhead box M1 (Foxm1), nuclear respiratory factor
1 (Nrf1), and the protein arginine methyltransferase 5
(PRMT5) co-factor, MEP50 [84].

Smad3

Smad3 is a critical downstream mediator of transforming
growth factor beta (TGF-β) [85]. Smad3, as a transcription
factor, regulates the transcription of cell cycle regulators in-
cluding p15, p21, and c-Myc [86]. In the presence of TGF-β,
Smad3 associates with E2F4, E2F5, DP1, p107, as well as
Smad4 to form transcriptional inhibitory complexes [87].
The oscillation of Smad3 in a cell cycle-dependent manner
suggested its potential as a cyclin-CDK substrate.
Biochemical analysis confirmed phosphorylation by both
CDK4 and CDK2 at Thr8, The178, and Ser212 [88].
Phosphorylation of Smad3 inhibits its transcriptional function
and thus its antiproliferative activity. As such, hyperactivation
of CDK, as is frequently observed in cancers, promotes tu-
morigenesis and resistance to TGF-β through Smad3 phos-
phorylation. In addition, suppression of CDK-mediated
Smad3 phosphorylation leads to decreased cell migration
and invasion and, finally, inhibition of xenograft growth of
triple-negative breast cancer cells [89].

Foxm1

Foxm1, a member of forkhead superfamily of transcription
factors, contributes to embryonic development and tissue
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homeostasis as well as pathological conditions, such as tumor-
igenesis and tumor progression [90]. It regulates the expres-
sion of a large spectrum of genes that control cell cycle pro-
gression; cell proliferation, differentiation, migration, and sur-
vival; DNA damage response; and blood vessel formation
[91]. Unbiased screening identified Foxm1 as a direct sub-
strate of cyclin D1-CDK4 complex. Phosphorylation of
Foxm1 enhances its stability and transcriptional activity,
resulting in cell cycle re-entry and suppression of senescence
in melanoma cells but not in melanocytes [83]. This study
provided a previously unanticipated molecular basis for the
utilization of CDK4/CDK6 inhibitors to treat melanoma.

Nrf1

Nrf1, a nuclear-encoded, mitochondrial transcription factor,
increases mitochondrial respiratory function through direct
transcription of genes that mediate respiratory activities and
cell size [92]. Cyclin D1 has been linked with mitochondrial
function through a work demonstrating the capacity of the
cyclin D1-CDK4 kinase to directly phosphorylate Nrf1 on
serine 47 [93]. Phosphorylation of Nrf1, in turn, reduces the
expression of Nrf1-dependent genes. Based on these results, a
model is suggested wherein the overexpression of cyclin D1
and, by extension, the overactivation of the cyclin D1-CDK4
kinase, in tumor cells, will reduce mitochondrial respiration
with a consequent shift towards cytosolic glycolysis. The
Warburg effect, as it is termed, is critical for increasing bio-
synthetic precursors that are needed to support a high rate of
cell proliferation and growth [94].

The biological functions of cyclin D1

Cyclin D1 and cell cycle regulation

Cyclin D1, with its partner CDKs, regulates G1/S transition
through Rb phosphorylation [81, 95]. Small polypeptide in-
hibitors of CDK4/CDK6 efficiently block Rb phosphorylation
in vivo. Moreover, Rb is also phosphorylated by cyclin E-
CDK2 in the late G1 phase. The hyperphosphorylation of
Rb triggers reduced affinity for E2F, thereby permitting E2F
activation and transcription of client genes required for cell
division [1]. In human tumors, the cyclin D1-CDK4 axis
shows a high frequency of alterations, highlighting the impor-
tance of this pathway for tumor progression. With the recent
advent of small molecule inhibitors of CDK4/CDK6, it is
critical to discern key contributions of cyclin D1 with CDK-
dependent and CDK-independent effects in order to develop
rational and successful therapeutic regimes. The additional
discussion below will introduce our current understanding of
major activities of cyclin D1 with regard to these functions.

Cyclin D1-dependent transcriptional regulation

Gene transcription is a multi-step process that includes the
recruitment of transcription factors and co-activator com-
plexes to modify the chromatin at or near the transcription
start site. In addition to CDK regulation, cyclin D1 has also
been implicated in the regulation of gene transcription. Its
function as a transcriptional regulator invokes both CDK-
independent and CDK-dependent mechanisms.

With regard to the former mechanism, cyclin D1 can asso-
ciate with a variety of transcriptional regulators including
chromatin-modifying enzymes such as histone acetyl transfer-
ases P/CAF, NcoA/SRC1a, AIB-1, GRIP-1, TFIID, and
TAFII250 [96]. Cyclin D1 can also function as a co-
repressor through recruitment of histone deacetylase
(HDAC) 3; this repression can be alleviated by trichostatin
A treatment [97]. Cyclin D1 also interacts with sequence-
specific DNA-binding proteins such as the estrogen receptor,
the androgen receptor, and the myb-like protein, DMP1
[98–100]. It is interesting to note that such association is gen-
erally correlated with transcriptional repression.

The binding and regulation of the above transcription fac-
tors is a CDK-independent activity of cyclin D1, raising the
question of whether any transcriptional activities of cyclin D1
are CDK-dependent and thus could be modulated by small
molecule CDK4 inhibitors. Indeed, purification of nuclear,
oncogenic cyclin D1 alleles from tumor tissues led to the
identification of PRMT5-MEP50 as a target of the cyclin
D1-CDK4 complex [38]. PRMT5 symmetrically dimethylates
proteins, for example the methylation of histones 3 and 4,
resulting in heterochromatinization and transcriptional silenc-
ing [101]. In the context of cyclin D1-driven malignancies,
cyclin D1-CDK4 directs PRMT5-MEP50 to the Cul4A/
Cul4B promoters, thereby repressing transcription of these
genes. It is the phosphorylation of MEP50 by cyclin D1-
CDK4 that is integral to this regulation; phosphorylation of
MEP50 also increases the catalytic activity of PRMT5 [38].
Histones are not the only target of cyclin D1-CDK4-activated
PRMT5. More recent work revealed that cyclin D1-CDK4
can inactivate p53 through PRMT5-dependent p53 methyla-
tion, thereby permitting tumor progression while maintaining
wild-type p53 [40, 102]. Collectively, cyclin D1 has both di-
rect and indirect impacts on transcriptional regulation.
Additional work is required to determine how these activities
contribute to normal versus neoplastic growth and whether
such activities represent druggable targets.

Cyclin D1 and metabolism

Dysregulated metabolism is implicated as a major contributor
to a number of human diseases, including cancer, obesity, and
diabetes. Notwithstanding, the cyclin D1-CDK4 axis impacts
specific aspects of metabolic regulation. Peroxisome
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proliferator-activated receptor (PPAR)-γ coactivator-1α
(PGC-1α) regulates mitochondrial biogenesis and acts as a
transcriptional regulator that controls the expression of anti-
oxidant genes, energy fuel selection, and muscle fiber differ-
entiation and transformation [103]. A recent study revealed
that cyclin D1-CDK4 can modulate PGC-1α acetylation, pu-
tatively through GCN5 phosphorylation; moreover, the cyclin
D1 T286Amutant can constitutively acetylate PGC-1α [104].
Acetylation of PGC-1α inhibits its activity on gluconeogenic
genes, such as PCK1 and G6PC [104]. In addition, insulin
deactivates GSK-3β through PI3K-Akt signaling pathway,
resulting in cyclin D1 nuclear accumulation; therefore, insulin
utilizes cyclin D1-CDK4 machinery to regulate glucose ho-
meostasis independent of their function in cell cycle regula-
tion. Further support stems from work demonstrating that
CDK4/CDK6 inhibition increases mitochondrial number,
leading to increased reactive oxygen species (ROS) [105]. In
addition to regulation of gluconeogenesis, cyclin D1 can sup-
press glucose-induced key lipogenic genes, such as carbohy-
drate response element-binding protein (ChREBP) and hepa-
tocyte nuclear factor 4α (HNF4α); this regulation occurs via
both CDK4-dependent and CDK4-independent mechanisms,
highlighting the direct relationship between the components
of cell cycle and the transcriptional reprogramming of lipid
metabolism [106]. Cyclin D1-CDK4 can also regulate mito-
chondrial function through direct phosphorylation of the mi-
tochondrial transcription factor, Nrf1 [93]. How these findings
will influence the development of future therapies, particularly
with regard to combining CDK4 inhibitors with small mole-
cules that target metabolic pathways, will be of interest. For
example, a recent study reported the combined therapy using
CDK4/CDK6, mTOR, and Mitogen Activated Protein Kinase
Kinase (MEK) inhibitors can synergistically suppress pancre-
atic adenocarcinoma development [105].

Cyclin D1 and cell migration

Cell migration directly contributes to embryogenesis, immune
response, wound repair, and tumor metastasis [107].
Surprisingly, cyclin D1 deletion was noted to increase the
migratory behavior of MEFs [108]. To ascertain functional
intersections, a genome-wide screen was undertaken. The
screen revealed that cyclin D1 suppresses the expression of
Rho-activated kinase II (ROCKII) and thrombospondin 1
(TSP-1), both of which are important regulators for cell mi-
gration [108]. Mechanistically, the loss of cyclin D1 correlates
with increased phosphorylation of the ROCKII substrates:
LIM kinase, cofilin, and myosin light chain, in cyclin D1
knockout MEFs. How cyclin D1 regulates ROCKII remains
to be firmly established. Interestingly, as a physiological in-
hibitor of CDK4, p27 can increase migration through suppres-
sion of RhoA activity [109]; this regulatory effect appears to
be cyclin D1-independent. As the master regulator of

microRNA (miRNA) maturation, Dicer also contributes to
cyclin D1-dependent cell migration. Cyclin D1 knockdown
reduces cell migration in Dicer+/+ but not in Dicer−/−
HCT116 cells [110]. Tumor metastasis correlates with poor
prognosis, and very few interventions effectively targeting
metastatic diseases make treatment much more difficult. If D
cyclins directly contribute to metastatic diseases, the advent of
small molecule regulators of the cyclin D-CDK4 kinases could
have tremendous clinical impacts. However, this concept is
yet to be interrogated.

Cyclin D1 dysregulation in human cancers

Cyclin D1 is overexpressed and/or amplified in a large frac-
tion of human cancers [111]. Cancers that frequently harbor
cyclin D1 genomic alterations include pancreatic cancer
(∼25–82 %) [112], non-small cell lung carcinoma (∼5–
76 %) [111, 113, 114], breast cancer (∼15–70 %) [115], head
and neck squamous cell carcinoma (HNSCC) (∼20–68 %)
[116, 117], melanoma (∼0–65 %) [118], endometrial cancer
(∼26–56 %) [119, 120], and colorectal carcinoma (∼2.5–
55 %) [7]. In mantle cell lymphoma (MCL), cyclin D1 over-
expression is the result of t(11;14)(q13;q32) rearrangement,
and this rearrangement accounts for more than 90 % of
MCL patients, making this translocation a hallmark of MCL
[121]. Multiple myeloma has IgH translocation with cyclin
D1: 11q13 (CCND1) ∼16 %), which accounts for cyclin D1
overexpression in ∼30–50 % of cases [7].

While the t(11;14)(q13;q32) translocation is a hallmark of
MCL, it is unlikely the only factor that contributes to cyclin D1
overexpression and dysregulation. Screening of primary MCL
revealed that cyclin D1 has mutations in the 3′-untranslated
region (3′UTR) from either 3′UTR deletion or point mutations
that create a premature polyadenylation signal [122]. These
mutations result in cyclin D1 mRNA stabilization and cyclin
D1 upregulation (∼4–10 %) [16]. As discussed above, alterna-
tive splicing of CCND1, resulting in the expression of cyclin
D1b, has been observed in a variety of cancers, including car-
cinomas of the breast, esophagus, and prostate [7, 30].

In addition, cyclin D1 mutations can directly perturb its
degradation. In esophageal and uterine cancers, mutations
that directly target the GSK-3β phosphorylation site or
disruption of the adjacent nuclear export signal are fre-
quently observed [123, 124]. In addition to mutations in
cyclin D1, Fbxo4 also undergoes hemizygous missense
mutations (S8R, S12L, P13S, L23Q, G30N, and P76T),
accounting for 14 % of the primary esophageal tumors
[34]. Such mutations result in cyclin D1 overexpression,
being consistent with Fbxo4-mediated cyclin D1 degrada-
tion. Mutations in cyclin D1 (P287S, P287T, and del-
ta289–292) have also been reported in endometrial can-
cers (∼4 %) [125]. Other dimensions of cyclin D1
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upregulation depend on the activation of mitogenic sig-
naling pathways, such as Ras-MEK-Erk, PI3K-Akt, and
ErbB2 oncogenic pathways [14, 126–132], and loss of
miRNAs that control cyclin D1 mRNA stability, for ex-
ample miR-15a and miR-16 in prostate cancers [133].

Clinicopathological studies showed that cyclin D1
overexpression correlates with tumor metastasis and poor
prognosis in a series of human cancers [7, 123, 134]. The
following are some representative examples: cyclin D1
levels directly correlate with tumor size, lymph node me-
tastasis, and advanced clinical stages of HNSCC [116];
other work supports the use of cyclin D1 expression as
a prognostic indicator to evaluate the survival of patients
with lung cancer and breast cancer [7]; finally, in tumors
such as pancreatic adenocarcinoma, cutaneous melanoma,
endometrial cancer, colorectal carcinoma, and MCL, cy-
clin D1 influences local invasion, metastasis, and patients’
prognosis [135]. The importance of cyclin D1 in the
above tumors emphasizes the potential of utilizing CDK
inhibitors for treatment.

Therapeutic inhibition of the cyclin D1-dependent
kinases

The critical role of cyclin D1-CDK4 in regulating cell cy-
cle progression and the hyperactivation of cyclin D1-
CDK4 in human tumors makes this complex an attractive
target for cancer treatment. Cyclin D1 does not possess
enzymatic activity, making it a challenging therapeutic tar-
get. However, its catalytic partners CDK4/CDK6 can be
targeted; therefore, highly specific inhibitors have been
developed [136]. Among a variety of inhibitors, those with
the highest degree of specificity for CDK4/CDK6 kinases
include PD0332991 (palbociclib) [22], LY2835219
(abemaciclib) [137], and LEE011 (ribociclib) [138]. The
above three inhibitors exhibit strong efficacy in regard to
suppressing Rb phosphorylation with IC50 at the
nanomolar range. Palbociclib was the first CDK4/CDK6
inhibitor approved by the FDA to treat ER (+), Her2 (−)
locally advanced, or metastatic breast cancers [139].
Abemaciclib was also recently received FDA approval
for treating patients with refractory hormone receptor-
positive (HR+) advanced or metastatic breast cancers.
Besides breast cancers, these inhibitors are undergoing ex-
tensive investigations in various clinical trials; the activi-
ties and efforts to evaluate CDK4/CDK6 inhibitors in a
variety of indications have recently been reviewed in depth
[1]. In addition, several other compounds are also under-
going clinical trials; for more detailed information, refer to
Table 1, which lists the information on these inhibitors
tested in various tumors in different clinical trials.T
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Future prospects

Extensive studies illustrated the critical roles of cyclin D1-CDK4
in normal cell cycle regulation and their dysregulation in human
cancers [140]. Since cyclin D1 expression is regulated by mito-
genic signaling, driver oncogenes frequently induce these same
pathways to enforce cyclin D1 overexpression and thereby pro-
mote tumor progression. During the past decade, details regard-
ing the mechanism of cyclin D1 post-translational regulation
have been revealed, providing key insights that have clinical
importance with the advent of highly specific CDK4/CDK6
small molecule inhibitors.

As requisite functional partner kinases of cyclin D1, suppres-
sion of CDK4/CDK6 activity successfully blocks cyclin D1-
mediated cell cycle progression, making these protein kinases
attractive therapeutic targets. The currently available small mol-
ecule inhibitors exhibit strong efficacy in the nanomolar range.
The evaluation of the activities in various clinical trials (from
phase I to phase IV) in various solid tumors and leukemia/
lymphoma is providing hope for clinical efficacy. The high ef-
ficacy of these inhibitors opens a new era for targeted cancer
therapy. However, like all other chemotherapeutical chemicals,
CDK inhibitors exhibit some degree of side effects, the most
common of which is neutropenia. Generally speaking, these side
effects can be tolerated by the majority of the patients. Another
emerging question is the development of resistance to
CDK4/CDK6 inhibitors in preclinical studies; therefore, it is
urgent to dissect the detailed mechanisms of how tumor cells
develop resistance to these inhibitors. To eliminate the possibility
of developing resistance, combined therapy may help to some
extent. By solving the above questions, in the near future, cancer
patients will be benefited from CDK inhibitors as an officially
approved medicine.
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