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Abstract The efficacy of directly killing tumors by con-
ventional cancer therapies, such as chemotherapy and ra-
diotherapy, has been for several decades well established.
But, a suppressed immune response might become a lethal
side effect after repeated cycles of intensive treatment.
Recently, achievements in immune checkpoint inhibitors
and adoptive T cell-mediated immunotherapies have result-
ed in changes in frontline management of advanced cancer
diseases. However, accumulated evidence indicates that
immunotherapeutic and conventional strategies alone are
often ineffective to eradicate big tumors or metastasis. To
improve the outcomes of treatment for advanced cancer
diseases, the combination of conventional cancer treatment
with various immunotherapeutic approaches has been
attempted and has shown potential synergistic effects.
Recent studies have unexpectedly demonstrated that some
strategies of conventional cancer treatment can regulate the
immune response positively, thus the understanding of
how to adapt conventional treatment for immunotherapy
is crucial to the design of effective combination therapy
of conventional treatment with immunotherapy. Here, we
review both experimental and clinical studies on the ther-
apeutic effect and its mechanisms of combining conven-
tional therapy with immunotherapy in treatment of cancer.
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Introduction

Conventional chemotherapy or radiotherapy itself is not suf-
ficient to eradicate all tumor cells in advanced cancer,
resulting in recurrence with multiple disadvantages, such as
non-specifically targeting normal cells including effective im-
mune cells, promoting a generation of drug- and radiotherapy-
resistant cancer cells, and inducing systemic and local toxicity
during treatment. To overcome these problems, most studies
have focused on the understanding of intrinsic mechanisms to
develop targeted therapies, such as small molecules targeting
oncogenic signaling or genes related to oncogenic pathways
that contribute to unsuccessful chemotherapy and radiothera-
py treatment [1–10]. Chemotherapy and radiotherapy have
been generally designed to aim at inducing direct tumor cell
death to control local tumor growth. However, tremendous
advances in understanding the molecular mechanisms of tu-
mor immunity have allowed the studies of conventional
chemotherapy- and radiotherapy-mediated immunomodulato-
ry changes that could potentially influence their therapeutic
effects. Recently emerging clinical success of immunother-
apies, particularly immune checkpoint blockade treatment,
confirm that the efficacy of cancer treatment can be achieved
through acting on immune cells/molecules, instead of only
through direct cytotoxic effects on tumor cells. Building on
recent studies that either chemotherapy or radiotherapy can
induce an immune response by promoting immunogenic tu-
mor cell death, or by subverting the tumor microenvironment
including inhibition of immunosuppressive cells, we will re-
view whether and how harnessing conventional therapy along
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with immunotherapy can become a potent strategy for devel-
oping novel immune-based combinatory therapies.

Immune effects of chemotherapy

Rationales of adapting chemotherapy for immunotherapy

In most clinical studies, conventional chemotherapy is usually
used at the maximum-tolerated dose (MTD) to massively kill
tumor cells. Although such a dose regimen could cause lym-
phopenia and immunosuppression of host responses, it has
been shown that induction of lymphopenia by chemotherapy
increases the efficacy of adoptive effector immune cell trans-
fer in cancer patients [11]. This is due to newly transferred T
cells responding to T cell-reactive cytokines for their homeo-
stasis or antigen-driven proliferation. While in the clinical
routine, chemotherapy is administered at lower doses than
MTD, and it has been shown that chemotherapeutic treatment
at this dose is compatible in tumor vaccine studies, eliciting an
immune response against tumors in patients [12]. Moreover, a
combination of carboplatin/paclitaxel-based chemotherapy
with ipilimumab (anti-cytotoxic T lymphocyte-associated
protein 4 (CTLA4) antibodies) has demonstrated improved
efficacy in the treatment of lung cancer patients [13, 14].
However, the impact of conventional chemotherapy on the
host immune response has not been well defined.

Immunological effects and mechanisms of chemotherapy
with or without combining immunotherapeutic modalities

Although it was stated 50 years ago by Mihich that chemother-
apy could lead to curative effects through induction of the im-
mune response against tumor cells in a murine leukemia model
[15–17], the immune-based molecular mechanisms in the con-
text of chemotherapy have been comprehensively investigated
only in the last decade. Accumulating preclinical and clinical
evidence demonstrate that both innate and adaptive immune
systems of the host could make crucial contributions to the out-
comes of conventional chemotherapy in the treatment of cancer.
Moreover, themolecular and cellular mechanisms of chemother-
apy are various, depending on the type and dose scheme of
therapeutic drugs used in the treatment. For example, cyclophos-
phamide (CPA) treatment in a metronomic regimen (frequent
administration of a low dose of chemotherapy drugs with mini-
mal or no drug-free breaks over prolonged periods) has shown to
stimulate natural killer (NK) activity against the tumor, increase
dendritic cell (DC) recruitment to tumor sites, and promote the
skewing of immunosuppressive M2 macrophages into stimula-
tory M1 type of macrophages [18–20]. Also, the combination of
cyclophosphamide, doxorubicin, and vincristine is able to repo-
larize tumor-associated M2 type of macrophages (TAMs) into
M1 type upon concomitant anti-CD40 plus CpG-ODN

immunotherapy [21]. In addition, the paclitaxel can induce the
activation of DCs, NK cells, and cytotoxic T lymphocytes
(CTLs) through stimulating TAMs to produce interleukin-12
(IL-12) and tumor necrosis factor (TNF) [22]. Furthermore, the
effects of chemotherapy on the adaptive immune system have
also shown therapeutic benefits. For example, the combination
of cisplatin and paclitaxel at low dosage induces a strong tumor-
specific CD8+ T cell response in both mice and patients. Single
5-fluorouracil (5-FU) treatment of tumor-bearing mice showed
selective killing of tumor-associated myeloid-derived suppressor
cells (MDSCs), boosting T cell-dependent antitumor immunity
[23]. Further, combining 5-FUwith cisplatin could increase both
CD4+ and CD8+ T lymphocytes in the tumor microenvironment
in esophageal squamous cell carcinoma patients [24, 25].
Additionally, single CPA treatment enhances adoptive T cell
therapy, which is also dosage and tumor model dependent
[26–28]. This is more likely due to the fact that the immune
effects induced by low-dose CPA depend on tumor immunoge-
nicity when CPA is combined with adoptive immune cell thera-
py [27, 29]. However, whether interferon-α/β (IFN-α/β) also
plays a pivotal role in the combination of CPA and adoptive
immune cell therapy is controversial, as results were mixed.
Such a discrepancy might be explained by the use of different
experimental settings to assess the role of IFN-α/β: in one study,
anti-IFN-α/β antibody was used to deplete cytokines in the con-
text of combination therapy [27], while in another study, recom-
binant IFN-α/βwas combined with adoptive Tcell therapy [28].
Moreover, the different sources of type I IFNs—namely,
chemotherapy-induced endogenous type I IFNs generated by
tumor cells or stromal cells [27] and added exogenous type I
IFNs [28] to the host—might also be responsible for the effects
of CPA on potentiating adoptive immune cell therapy. Further,
the combination therapy of CPA treatment and anti-4-1BB
(CD137) antibody demonstrated synergistic CD8-mediated an-
ticancer effects in a mouse model [30]. In addition to the effects
on innate and adaptive immune cells, some chemotherapeutics
can also inhibit tumor-induced immune suppression. For exam-
ple, cyclophosphamide can downregulate the activity of T regu-
latory cells (Tregs) at a low dose [31–34]. Gemcitabine can
reduce circulatingMDSCs and promote TAM toward stimulato-
ry M1 type of macrophages [35, 36].

Recent advances in the immune-based molecular
mechanisms of chemotherapy

The molecular mechanisms by which chemotherapeutic drugs
regulate tumor immunogenicity, triggering host immunity,
have not been defined until recently. Several studies have
demonstrated that some chemotherapeutic drugs induce im-
munogenic cell death (ICD), rendering tumor cells to be rec-
ognized by the host immune system and eliciting the immune
response against the tumor (Fig. 1). The results showed that
dying tumor cells release the danger signal high-mobility group
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box 1 (HMGB1), which can promote DC maturation and ac-
tivation through its binding to Toll-like receptor 4 (TLR4)
[37]. Also, chemotherapeutic drugs such as taxanes (e.g., do-
cetaxel, paclitaxel) and vinca alkaloids (e.g., vinorelbine, vin-
blastine) have been shown to increase calreticulin (CALR)
exposure to facilitate tumor cell recognition by the immune
system [38]. In addition, after chemotherapy, adenosine tri-
phosphate (ATP) is released by tumor cells in an autophagy-
dependent manner, at which point it can bind to both P2RY2
(purinergic receptor P2Y, G-protein coupled, 2) and P2RX7
(purinergic receptor P2X, ligand-gated ion channel, 7) to re-
cruit myeloid cells into the tumor bed and stimulate them to
differentiate into inflammatory DC-like cells for tumor antigen
presentation [39–41]. Moreover, after chemotherapy, the
expression of type I IFN can be significantly upregulated in
cancer cells, which can both activate DC for cross-priming
and recruit T cells through the CXCL10 pathway [42].

Consistent with this preclinical study, a type I IFN-related
signature was reported as predicting a clinical response to
anthracycline-based chemotherapy in several independent co-
horts of patients with breast carcinoma [42].

Taken together, both preclinical and clinical studies suggest
that adapting chemotherapy to immunotherapy during the
combinatory therapy of these two treatment modalities is a
promising strategy to enhance antitumor effects and improve
clinical outcome of cancer treatment.

Immune effects of local radiotherapy

Rationales of adapting radiotherapy for immunotherapy

Radiotherapy has conventionally been used for patients with
localized disease. Despite recent improvements in radiotherapy
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Fig. 1 Immune-based mechanisms of conventional chemotherapy and
radiotherapy. Chemotherapy and radiotherapy can induce the anti-tumor
immune response through several different pathways. Some
chemotherapeutic drugs can promote CRT exposure and the release of
HMGB1 and ATP, as well as the expression of type I IFN and CXCL10
inside tumor microenvironment, which would enhance tumor associated
antigen (TAA) cross-presentation by DCs and the recruitment of CTLs
into the tumor microenvironment. Local irradiation can induce massive
DNA damage within the tumor tissues, triggering the innate DNA

sensing-cGAS/STING pathway to generate abundant type I IFN. This
further increases the cross-priming and maturation of DCs, resulting in
the activation of CTLs. However, type I IFN can also upregulate PD-L1
expression, which indicates that the combination of radiotherapy and
anti-PD-L1 antibody may improve clinical outcomes for tumor patients.
As described above, chemotherapy and radiotherapy can induce
immunological effects through distinct mechanisms. Whether these two
conventional treatment modalities share some common pathway remains
to be further investigated
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through increasing biologically effective doses of larger radio-
therapy fractions to kill as many tumor cells as possible, a
newly emerging paradigm is the use of radiotherapy to stimu-
late the immune system to treat metastatic tumors [43]. It has
been increasingly observed that the use of local radiotherapy
may stimulate an antitumor immune response by increasing
both apoptosis and necrosis of tumor cells and subsequently
increasing antigen presentation and expression of immuno-
modulatory genes [44].

Immunological effects and mechanisms of radiotherapy
with or without combining immunotherapeutic modalities

Most studies have focused on the immune-modulating effects
directly induced on tumor cells. Radiation can modulate the
peptide repertoire and enhance major histocompatibility com-
plex (MHC) class I expression on tumor cells, which boosts
the efficacy of adoptive CTL immunotherapy [45]. Other re-
ports have illustrated that local radiation of tumors alters the
phenotype of tumor cells, rendering them more susceptible to
vaccine-mediated killing of T cells [46, 47]. Local radiation
may also work by altering the tumor microenvironment to
promote greater infiltration of immune effector cells
[48–50]. For example, it can induce the expression of certain
chemokines, including CXCL9 (chemokine (C-X-C motif)
ligand 9), CXCL10, and CXCL16, which promote the recruit-
ment of T cells into the tumor microenvironment [49, 50]. It is
acknowledged that radiation can trigger host immunity against
tumors, however, the extent of tumor reduction by this process
is poorly defined.

Recent advance in the immune-based molecular
mechanisms of radiotherapy

Our lab and other groups have unexpectedly observed that
rapid reduction of tumor burden after a short course of ablative
radiation largely depends on the T cell response [51, 52]. We
have demonstrated that ablative radiation-initiated immune
response and tumor reduction are sometimes abrogated by
conventional fractionated radiation or certain adjuvant chemo-
therapies but are greatly amplified by local immunotherapy
[51]. Although the mechanisms of local irradiation (IR)-me-
diated tumor regression are likely to be multiple, our study
further demonstrated that the effect of type I IFN on host cells
is essential, as interferon-alpha/beta receptor alpha chain
(IFNAR)-deficient mice fail to control tumor growth by an
otherwise ablative dose of IR [53]. Further, the mice that are
lacking in IFNAR only in CD11c+ cells also fail to control
tumor growth by ablative IR. Together, it suggests that host
cells, especially dendritic cells (DCs), have to respond to type
I IFN in order to generate an effective IR-mediated immune
response against the tumor. The source of IFN after IR has not
been well defined. It appears that CD45+ and CD11c+ cells

produce more IFN type I than other cells, but a relative con-
tribution is not easy to calculate due to the lack of the specific
deletion of type I IFN on various types of cell and the involve-
ment of more than one type of cell.

There are several pathways that control IFN production. To
trace how IR induces type I IFN, we first tested the most
recognized pathway, MyD88 (myeloid differentiation primary
response gene 88) pathway, and observed no impact of
MyD88 deficiency on IR-mediated tumor regression. We then
tested another pathway that controls IFN, TRIF (TIR domain-
containing adapter-inducing interferon-β), and also observed
no impact [53]. Considering massive DNA damage by abla-
tive IR inside tumor tissues, we evaluated the role of IR for
IFN production by testing a key DNA sensing pathway, the
STING (stimulator of interferon genes) pathway.We observed
that the STING pathway is essential for IR-mediated IFN pro-
duction, cross-priming of DC, and most importantly, tumor
regression (Fig. 1) [53]. Recent studies showed that cGAS
(cyclic GMP-AMP synthase) is a key enzyme that processes
DNA into dinucleotide in cytosol, activating innate immune
signaling [54–56]. Indeed, cGAS-deficient DCs fail to pro-
duce IFN in the presence of an irradiated tumor cell line while
normal DCs can. Therefore, local IR can trigger innate sensing
through the DNA sensing pathway to produce type I IFN,
which then increases cross-priming and maturation of DCs
for reactivating newly arrived CTL [53]. These data support
the rationale for the synergy between radiotherapy and immu-
notherapy, emphasizing the need for proper radiotherapy that
not only reduces tumor burden but also enhances immune
activation. Therefore, subsequent immunotherapy can sustain
or amplify the IR-initiated immune response.

To date, one primary focus has been on targeting immune
checkpoints, CTLA4 and PD-L1/PD-1 pathways with
blocking antibodies. Our lab discovered that radiotherapy
can upregulate PD-L1 expression through increased type I
IFN production in the tumor microenvironment, triggering a
tumor escape mechanism from infiltrating effector T cells [57,
58]. Moreover, we showed that the combination of radiother-
apy with anti-PD-L1 antibody therapy synergized in the treat-
ment of murine breast cancer and colon tumor models.
Furthermore, the combination treatment not only led to
prolonged antitumor immunity upon tumor rechallenge but
also induced an abscopal effect, thereby controlling secondary
tumors distant from the irradiated primary tumor in both tu-
mor models. More importantly, we confirmed the pivotal con-
tribution of CD8+ T cell effector functions. Thus, our results
reveal not only that CD8+ T cells are essential for the synergy
of irradiation and anti-PD-L1 antibody therapy but also that
the effector functions of replenished CTLs in the tumor mi-
croenvironment following irradiation are restored by PD-L1
blockade [57]. In further support of our data, a study from
another group demonstrated that anti-PD-L1 antibody treat-
ment can also reverse the T cell exhaustion that is associated
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with high expression of PD-L1 in the treatment of radiother-
apy and anti-CTLA4 therapy in the murine melanoma model
[59]. Moreover, our results indicate that the combination of
irradiation and anti-PD-L1 antibody therapies synergistically
achieved effective tumor control by enhancing CTL effector
functions, which in turn negatively regulates the accumulation
of MDSCs through TNF signaling [57, 58]. Although previ-
ous studies showed that the combination of radiotherapy and
anti-CTLA4 antibodies resulted in a successful T cell-
mediated immune response and inhibition of metastases in
several murine tumor models [60, 61], a recent clinical study
has shown that melanoma patients with high PD-L1 tumor
expression did not respond to radiation and anti-CTLA4 ther-
apy [59]. Taken together, it suggests that the combination of
radiotherapy, CTLA4, and PD-L1 blockade may be a potent
strategy for cancer treatment, although the potential toxicity
induced by such a combination therapy remains to be further
investigated.

It is now known that radiation creates stress for tumor cells,
causing them to release danger signals that are recognized by
patrolling DCs [53]. Additionally, tumor-derived DNA is re-
leased to the cytosol of DCs and, in turn, activates the cGAS-
STING-IRF3-IFN-β axis [53, 62]. The mechanisms by how
tumor DNA gets into the cytosol of DCs remain to be deter-
mined. Natural dinucleotides fail to trigger innate sensing,
while additional local IR can enhance its effect, suggesting
the additional effect of IR for DNA sensing inside the cytosol.
However, it is unclear whether local IR allows DNA to enter
into the cytosol or if additional signaling is required for pro-
cessing of cytosol DNA. Radiation therapy can enhance the
activation significantly in a more quantitative manner com-
pared to the natural immunity of the tumor. This recently
redefined mechanism has bridged the tumor DNA damage
response and host cell cytosolic DNA sensing pathways in
the context of radiation therapy. Despite remaining uncer-
tainties, the evidence at minimum indicates that cytosolic
DNA sensing in immune cells potentially plays an important
role during the antitumor immune response, and supports the
notion that the nucleic acid sensing pathways are responsible
for the induction of type I IFN and are essential for an effective
adaptive immune response after radiation. These results dem-
onstrate that the combination of irradiation with various im-
munotherapeutic approaches can potentially control both local
and distal tumors.

Conclusions and perspectives

In conclusion, it is a promising and practical strategy to com-
bine conventional chemotherapy and radiotherapy with vari-
ous immunotherapeutic approaches to achieve improved anti-
tumor effects. Understanding the mechanisms of combination
therapy is necessary for the clinical development of novel

effective conventional treatment and immune mechanism-
based cancer treatment. Key details addressing chemotherapy
and radiotherapy regimens—including timing, dosage, fre-
quency, fractionation, and treatment sequences—need to be
defined in both preclinical and clinical settings. The bio-
markers to predict the immune response against tumors during
or after conventional treatment alone or in combination with
immunotherapy are also urgently needed. Taken together, the
combination of conventional treatment with immunotherapy
has great potential for treatment of advanced cancer patients
and needs to be further investigated in larger controlled and
randomized phase trials.
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