
REVIEW

Understanding complexity in the HIF signaling pathway using
systems biology and mathematical modeling

Zsolt Fábián1
& Cormac T. Taylor1,2 & Lan K. Nguyen2,3

Received: 26 September 2015 /Revised: 10 January 2016 /Accepted: 13 January 2016 /Published online: 29 January 2016
# Springer-Verlag Berlin Heidelberg 2016

Abstract Hypoxia is a common micro-environmental stress
which is experienced by cells during a range of physiologic
and pathophysiologic processes. The identification of the
hypoxia-inducible factor (HIF) as the master regulator of the
transcriptional response to hypoxia transformed our under-
standing of the mechanism underpinning the hypoxic response
at the molecular level and identified HIF as a potentially impor-
tant new therapeutic target. It has recently become clear that
multiple levels of regulatory control exert influence on the
HIF pathway giving the response a complex and dynamic
activity profile. These include positive and negative feedback
loops within the HIF pathway as well as multiple levels of
crosstalk with other signaling pathways. The emerging model
reflects a multi-level regulatory network that affects multiple
aspects of the physiologic response to hypoxia including
proliferation, apoptosis, and differentiation. Understanding the
interplay between the molecular mechanisms involved in the
dynamic regulation of the HIF pathway at a systems level is

critically important in defining new appropriate therapeutic
targets for human diseases including ischemia, cancer, and
chronic inflammation. Here, we review our current knowledge
of the regulatory circuits which exert influence over the HIF
response and give examples of in silico model-based predic-
tions of the dynamic behaviour of this system.
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Introduction

The development of molecular machineries capable of utiliz-
ing atmospheric oxygen for bioenergetic purposes (e.g. oxida-
tive phosphorylation) was a key event in the evolution of life
on Earth. This, along with other processes such as the devel-
opment of membrane compartmentalisation, allowed eukary-
otic organisms to greatly increase their metabolic efficiency.
This enabled the development of a range of biochemical pro-
cesses which provided the bioenergetic capacity to permit the
evolution of more complex life forms such as metazoans [1].
However, this also led to a high degree of dependence of most
eukaryotic cells upon a constant supply of oxygen in order to
maintain metabolic homeostasis and cell, tissue, and organism
survival. Hypoxia, which occurs when oxygen demand ex-
ceeds supply, is a relatively common occurrence in health
and disease [2]. It may occur in response to physiologic stim-
uli such as ascent to high altitude or exercise or as a result of
diseases such as cancer, chronic inflammation, or vascular
disease. The critical dependence on oxygen for metabolic ho-
meostasis and survival led to the early evolution of molecular
mechanisms that enabled cells, tissue, and organisms to adapt
to hypoxia. These adaptive responses include fundamental
changes in cellular metabolism primarily orchestrated by the
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helix-loop-helix (HLH) transcription factor family member
termed hypoxia inducible factors (HIF).

To date, three HIF family members have been identified in
mammals (HIF-1, HIF-2, and HIF-3) of which the best char-
acterized is the HIF-1 [3]. HIF-1 is composed of discrete alpha
and beta subunits (HIF-1α and HIF-1β, respectively) both of
which are ubiquitously expressed in human tissues [4, 5].
While HIF-1β (also known as the aryl hydrocarbon nuclear
translocator, ARNT) is stably expressed, the HIF-α subunits
are continuously degraded by the 26S proteasome under phys-
iologic conditions, thus preventing HIF activity in normoxia.
In hypoxia, degradation of HIF-α is inhibited, and theα andβ
subunits dimerize, translocate to the nucleus, and activate the
expression of a family of genes which facilitate cellular adap-
tation to hypoxia.

The mechanism underpinning the activation of HIF in
hypoxia was first elucidated in 2002 and involves the
inhibition of the oxygen-dependent hydroxylation of
HIF-α subunits by a family of HIF-hydroxylases. To date,
three HIF-regulating prolyl-4-hydroxylases (PHD1,
PHD2, and PHD3) have been identified in mammalian
cells [6]. They utilize molecular oxygen and the Krebs
cycle (TCA cycle) intermediate α-ketoglutarate as co-
substrates to hydroxylate HIF-α subunits at conserved
prolyl residues [7, 8]. This increases the α subunit’s af-
finity for the von Hippel-Lindau protein (pVHL), a mem-
ber of an E3 ubiquitin ligase complex [9]. The pVHL-
mediated ubiquitylation leads to constitutive proteasomal
degradation of the HIF-α subunit. In hypoxia, PHD activ-
ity is reduced due to the lack of available oxygen,
resulting in stabilization and formation of the active HIF
heterodimer. A second level of hydroxylation-dependent
regulation of HIF is mediated by the asparagine hydrox-
ylase termed factor inhibiting HIF (FIH) which prevents
HIF’s interaction with the transcriptional co-activator
p300/CBP [10–12]. The adaptive programmes activated
by HIF include the metabolic switch from the oxygen-
dependent oxidative phosphorylation to glycolysis, in-
creased angiogenesis, and erythropoiesis. Therefore, HIF
represents a key regulator of the metazoan transcriptional
response to hypoxia which plays a key role both in phys-
iology and disease. Appreciating the dynamic nature of
this pathway is critical to our future understanding of
adaptation to hypoxia and targeting the underlying path-
ways for therapeutic benefit.

While the canonical pathway regulating the activity of HIF
(as outlined above) is the key link between hypoxic sensing
and the activation of an adaptive transcriptional response, a
range of other inputs are also involved in shaping the spatial
and temporal nature of the HIF response (Fig. 1). It is likely
that such inputs confer upon HIF a richly dynamic activity
profile allowing a high degree of selectivity in terms of
context-dependent gene expression profiles. These inputs

include feedback loops within the HIF pathway as well as
crosstalk with other signaling pathways representing a high
degree of complexity.

The intricate nature of these regulatory systems necessi-
tates novel analytic techniques such as mathematical model-
ing. Since it was done recently, reviewing the mathematical
modeling efforts on HIF signaling in its entirety is beyond the
scope of this work [13–16]. Instead here, we review those
sufficiently characterized HIF interactors that are considered
to play key roles in the regulation of the HIF-orchestrated
hypoxic response. In addition, we would like to demonstrate
the potential power of the model-based approach in
disentangling HIF complexity by attempting to answer a se-
ries of questions using simplified mathematical models.
Through these practical examples, we hope to highlight the
type of questions one can ask and how one may go about
interrogating the models to reach answers.

Feedback loops in the HIF pathway

Physiologic Feedback

Upon experiencing systemic hypoxia, coordinated multi-
organ measures are deployed to survive the hypoxic insult
and restore oxygen homeostasis. These include attempts to
increase the oxygen supply through elevated erythropoiesis
and/or neovascularization both governed by HIF-inducible
genes. At a systemic level, hypoxia-activated HIF induces
erythropoietin (EPO) expression in interstitial kidney and liv-
er cells that subsequently increases erythropoiesis in the bone
marrow [17, 18]. In addition, HIF-driven increase of the serum

Fig. 1 Multiple interactions in the HIF pathway. Besides the canonical
PHD-mediated effects, various additional signals can influence the HIF
activity via extensive interactions between the HIF and other pathways.
This complex regulatory network enables HIF to integrate a wide range of
extracellular stimuli and the modulation of the HIF-mediated adaptive
responses to hypoxia according to the demands posed by the variable
extracellular milieu. Green arrows and red connectors indicate positive
(e.g. induction or activation) and negative (inactivation) effects, respec-
tively. Dashed arrows indicate indirect or putative interactions
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erythropoietin levels represses the HAMP gene that encodes
the hepatocyte-specific iron homeostasis regulator hepcidin
[19–21]. The subsequent drop of serum hepcidin results in
elevated iron release from the intestinal epithelium supplying
the increased iron demand of the expanded erythropoiesis
[22]. The consequently elevated oxygen and iron supply, how-
ever, may also provide prolyl-4-hydroxylases their co-sub-
strates, thus promoting a systemic physiological negative
feedback loop in the HIF system [23].

At the tissue level, another negative feedback loop is me-
diated by the vascular endothelial growth factor (VEGF) that
may limit the HIF response. HIF-induced VEGF and their
cognate receptors act on the vascular endothelial cells to pro-
mote angiogenesis that further supports oxygen supply to the
hypoxic tissues [3, 24, 25]. These HIF-orchestrated adaptive
measures ultimately lead to increased tissue oxygenation
which overcomes the causative hypoxic insult resulting in
physiologic negative feedback loops (Fig. 2a).

Metabolic Feedback

At the cellular level, hypoxia-activated HIF rewires metabo-
lism and renders it less oxygen dependent by regulating a
cluster of metabolic enzyme-encoding genes [26]. Some of
these have also been found to regulate HIF activity forming
metabolic feedback loops in the HIF system. A prototype of
such a loop is pyruvate dehydrogenase kinase-1 (PDK-1)
which phosphorylates pyruvate dehydrogenase (PDH). PDH
fuels the mitochondrial TCA cycle via conversion of pyruvate
to the TCA cycle substrate acetyl-coenzyme A (ac-CoA) [27].
PDK-1 mediates inactivating phosphorylation of PDH shut-
ting down the ac-CoA supply of the TCA cycle. This leads to
fundamental changes in mitochondrial functions including the
accumulation of TCA cycle intermediates [28]. Since HIF-
regulating prolyl-4-hydroxylases utilise α-ketoglutarate as a
co-substrate and produce succinate during their catalytic ac-
tivity, it is not surprising that the accumulation of succinate
blocks these hydroxylases [29]. Indeed, loss-of-function mu-
tations in succinate dehydrogenase were found to be inhibito-
ry towards PHDs leading to the stabilisation of HIF-α sub-
units and succinate was identified as the mediator of this effect
[30, 31]. Thus, PHDs can also integrate metabolism-
dependent stimuli in the regulation of HIF-α which, in return,
induces a panel of adaptive genes forming a classical
feedforward loop.

Glycerol-3-phosphate dehydrogenase 1 like (GPD1-L), an-
other metabolic enzyme indirectly regulated by HIF, has also
been suggested to act on the prolyl hydroxylase-mediated lim-
itation of HIF function. GPD1-L has enzymatic activity sim-
ilar to the mitochondrial glycerol-3-phosphate dehydrogenase
that catalyses the redox conversion of glycerol-3-phosphate
(G3P) to dihydroxyacetone phosphate (DAP) and is believed
to connect oxidative phosphorylation to glycolysis and

lipogenesis via the regulation of the amount of the cytosolic
G3P [32]. The microRNA-210 (miR-210)-mediated silencing
of GPD1-L was found to decrease the rate of PHD-mediated
HIF-1α degradation, and this effect was reversed by pharma-
cological inhibition of the proteasome or PHD activities [33].
GPD1-L, however, is not the only metabolic enzyme that af-
fects HIF stability via its microRNA-mediated regulation. In
hypoxia, miR-183 targets isocitrate dehydrogenase, the TCA
cycle mediator that produces α-ketoglutarate from isocitrate.
Due to the α-ketoglutarate-dependent nature of the prolyl-4-
hydroxylases, the miR-183-mediated blockade of the α-
ketoglutarate production favours HIF-α stabilisation via inhi-
bition of PHDs [34]. Although the mechanism of hypoxic
upregulation of miR-183 is yet to be determined, miR-210
has already shown to be HIF-1-inducible. Thus, both the
HIF-inducible PDK-1 and miR-210 complete synergistic met-
abolic positive feedback loops within the HIF pathway
targeting the primary HIF repressor prolyl-4-hydroxylases
[35] (Fig. 2a).

Which PHD isoforms control the transient dynamics
of HIF-1α?

The transient dynamics of HIF-1α protein expression in re-
sponse to a hypoxic insult has been observed in multiple cell
types [13, 14]. Since such an adaptive response profile is often
underpinned by negative feedback regulation, PHD-mediated
feedback loops have long been thought to be the underlying
mechanisms. However, the fact that both PHD2 and PHD3
form negative feedback loops with HIF-1α posed questions of
whether they are functionally redundant, and if not, how indi-
vidual isoforms are different in modulating HIF timing, dura-
tion, and signaling amplitude. To probe these questions, we
adapted a model recently developed by Bagnall et al. which
was trained using single-cell imaging data of HIF dynamic
profiles [36]. The schematic diagram of this model is given
in Fig. 2a and Figure S1. Detailed model information is pre-
sented in the Supplementary Materials (SM). A major advan-
tage of having a model is that one can analyze and predict how
a particular signaling output depends on changes of certain
biological factors in the modeled system. Techniques such as
sensitivity analysis allow us to do just that.

First, we theoretically vary the parameter controlling
PHD2-mediated feedback strength and simulate the corre-
sponding HIF-1α response to hypoxia. The model predicts
that strong feedback induces not only a lower steady-state
level of HIF-1α response but also a lower peak amplitude
and shorter peak duration (Fig. 2b). A similar analysis for
the PHD3-mediated feedback, however, shows a much less
pronounced effect. While varying, the feedback strength mild-
ly affects the response peak, such change does not seem to
influence steady-state level of HIF-1α (Fig. 2d). This
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observation is further supported by dose-response simulations
showing that the steady-state level of HIF-1α exponentially
depends on the PHD2-mediated feedback strength while it is
relatively insensitive to change in feedback strength mediated
by PHD3 (Fig. 2f). These simulations are in agreement with
the conclusions in previous reports suggesting PHD2 to be the
more dominant isoform in driving HIF-1α transient response
[36, 37]. Further questions could be asked. For example, how
would the turnover rate of PHD2 and PHD3 differentially

affect HIF response? These simulations could be readily per-
formed as shown in Fig. 2c, e which predict that less stable
PHD3 imparts a more pronounced effect on steady-state level
of HIF-1α.

Transcriptional Feedback

As a transcription factor, HIF actively contributes to its own
regulation. Most importantly, HIF trans-activates the PHD2

Fig. 2 Connected feedback loops in HIF regulation. a Simplified
overview of the PHD-mediated regulatory feedbacks of HIF-α proteins.
Binding of active HIF to its consensus sequences (HRE) is under the
control of multiple, interlocked feedback loops mediated by HIF target
gene products and metabolic intermediates alike. b–f Role of PHD iso-
forms in shaping HIF-1α transient dynamics. b, c, d, eModel simulations
of HIF-1α time course in response to hypoxia exposure at time 0 for
different values of the indicated parameters. The system was modeled
to reach steady state in normoxia first before being exposed to hypoxia.
f Dose-response simulation of dependence of steady-state HIF-1α on
increasing feedback strength of the PHD2- and PHD3-mediated

feedbacks. Details of the model equations and values used for plotting
are given in the Appendix (or Supplementary Material). g–kmiR-155 vs.
PHD2 in shaping HIF-1α transient dynamics. g–j Model simulations of
HIF-1α time course in response to hypoxia exposure at time 0 for differ-
ent values of the indicated parameters. The system was modeled to reach
steady state in normoxia first before being exposed to hypoxia. k A 3D
simulation plot showing the dependence of steady-state HIF-1α fold
change (hypoxia vs. normoxia) on miR-155-HIF-1α binding and HIF-
1α protein degradation rate. Details of the model equations and values
used for plotting are given in the Appendix (or Supplementary Material).
All species units are in nM
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and PHD3 genes adding a direct negative feedback arm to the
PHD-mediated HIF regulation [38, 39]. Despite their oxygen
dependency, which prevents them from functioning under
hypoxic conditions, experimental data indicate that enzymatic
activity of both PHD2 and PHD3 remains detectable in hyp-
oxic cells maintaining reactivity of the HIF system for addi-
tional hypoxic insults [39]. This feedback loop is possibly
further supported by oxygen redistributed from mitochondria
during the HIF-driven metabolic switch. Indeed, upon the in-
hibition of the mitochondrial respiration by nitric oxide, O2

redistribution was observed leading to the inactivation of HIF
[40]. Thus, one can speculate that the HIF-mediated induction
of the PHDs may allow setting the PHD-HIF system to a new
steady state at lower pO2 levels (Fig. 2a).

A distinct type of transcriptional feedback is mediated by
one of the HIF-3α isoforms termed inhibitory PAS domain
protein (IPAS). IPAS is an alternative splicing product of the
HIF-3α locus that lacks the region encoding the C-terminal
transactivation domains of the HIF-1 and HIF-2α [41]. As
such, it competes with ARNT for binding HIF-α subunits
acting as a dominant negative regulator of HIFs [42]. The
IPAS-specific splicing product of the HIF-3α locus is
hypoxia-inducible and HIF-1 binds to the hypoxia-
responsive cis-element of the IPAS promoter representing a
classic negative feedback that restricts HIF-mediated gene ex-
pression in hypoxia (Fig. 2a) [41, 43]. Interestingly, however,
the IPAS-specific mRNA splicing was still observed in the
absence of the HIF-1-binding site of the IPAS promoter indi-
cating that HIF-independent factors may also be involved in
the production of the dominant negative isoform [43]. The
uncoupled nature of IPAS expression and IPAS mRNA splic-
ing suggest additional control mechanisms in this regulation.
Indeed, since the normoxic expression of IPAS is apparently
restricted to corneal epithelial cells and some neuronal ele-
ments in mice, HIF-independent control mechanisms may
contribute to the tissue-specific nature of the IPAS-mediated
regulation of HIF activity.

HIF-1α is not only under feedback control by hydroxylases
or IPAS but an increasing body of experimental evidence
shows that it is also negatively regulated by miRNAs. These
include miR-210 that not only indirectly facilitates HIF activ-
ity by targeting GPD1-L but also silences MNT, a member of
the MYC/MAD/MYX transcription factor family, which an-
tagonizes the trans-activating function of MYC [44]. This en-
ables MYC-mediated induction of genes involved in the res-
olution of HIF-induced cell cycle arrest as well as cellular
metabolism. The latter includes PDK1 that, as mentioned
above, may play a role in the metabolic inhibition of PHDs,
so one can speculate that the miR-210-mediated upregulation
of MYC represents a mechanism to amplify HIF activity [45].
Since MYC has also been reported to support HIF-1α directly
by interfering with the VHL-dependent degradation of HIF-
1α, these findings suggest the existence of MYC-mediated

feedforward loops in the HIF pathway [46]. Intriguingly, how-
ever, HIF and MYC are traditionally considered to have an-
tagonistic effects in the hypoxic cell. Indeed, HIF was found to
counteract MYC by various underlying mechanisms includ-
ing the induction of MXI1, another MYC antagonist, compe-
tition with MYC for promoter binding or promoting its
proteasomal degradation [47, 48]. This paradox may reflect
the different models studied, so the biological relevance of the
miR-210-promoted MYC functions in the regulation of HIF
requires further clarification. Additional targets of miR-210
including the mitochondrial iron-sulfur cluster scaffold pro-
tein or the transferrin receptor, elements of the intracellular
iron homeostasis, add another level of complexity to the reg-
ulation of the HIF pathway bymerging physiologic, metabolic
and transcriptional feedback loops [49, 50].

Besides miR-210, the hypoxia up-regulated, HIF-inducible
miR-155 also seems to be critical in the regulation of HIF.
While (as we discuss later) miR-155 targets multiple elements
related to the mTOR pathway adding further complexity to the
interplay between HIF and other signaling pathways (Fig. 3a),
it also mediates the degradation of the HIF-1α transcript itself
establishing a hypoxia-responsive negative transcriptional
feedback loop within the HIF pathway [51] (Fig. 2a).

Do microRNAs contribute to shaping HIF
dynamics?

The miRNA-mediated negative feedback loops pose the ques-
tion if they have any role in shaping HIF system’s dynamics?
Having different mechanistic details, miRNA-mediated feed-
backs generally operate on a shorter time-scale than feedbacks
induced by the PHDs and are, thus, expected to have differ-
ential roles. Nevertheless, our understanding regarding their
functional redundancy remains poorly defined.

In order to examine this question, we constructed a
core mathematical model of HIF regulation that ac-
counts for the mechanistic differences between
miRNA- and PHD-mediated feedbacks. For simplicity,
the model considers only one feedback of each type
assumed to be driven by PHD2 and miR-155 (model
scheme is given in Fig. 2a and Figure S2, model de-
scription is in the SM). We calibrate the model so that
it could capture the typical transient HIF-1α profile un-
der a hypoxic insult based on previously obtained pa-
rameter values [14]. Model simulations revealed unex-
pected differences between the feedbacks. While alter-
ing, the PHD2-mediated feedback (by changing HIF-1
induced PHD2 transcription rate) does not really affect
HIF-1α rising time (Fig. 2h), strengthening the miR-
155-induced feedback, instead, accelerates the reaction
of HIF-1α to hypoxia with a faster response rate and
a quicker return to steady-state level (Fig. 2g). This
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suggests the negative feedback induced by miR-155
provides additional control to the reaction rate, duration,
and amplitude of HIF-1α response to hypoxia that are
not easily achieved with hydroxylase-induced feedback
alone. Instead of increasing miR-155 transcriptional rate,
we next asked the model whether a tighter association
between miR-155 and HIF-1α mRNA would affect the
system’s dynamics, and if so, how? Interestingly, com-
parative simulations of HIF-1α dynamic response show
that when miR-155 binds weakly to HIF-1α mRNA,
increasing the rate of HIF-1α degradation triggered by
PHD2 lowers HIF-1α steady-state level as expected
(Fig. 2i). However, the opposite is predicted when
miR-155 binds tightly to HIF-1α mRNA (Fig. 2j).
Moreover, when we simulate the steady-state HIF-1α
level fold change in response to hypoxia allowing both
miR-155-HIF-1α binding rate and HIF-1α degradation
rate to change, we found that HIF-1α level responds
in a biphasic manner to its degradation rate at weak
miR-155-HIF-1α association, while it increases mono-
tonically with its degradation rate at strong miR-155-
HIF-1α association (Fig. 2k). These predictions together
imply that miR-155 does not just add another redundant
feedback to HIF control but serves to fine-tune HIF
signaling dynamics in an intricate and nonlinear manner.

Modulating how miR-155 regulates HIF-1α transcrip-
t ion could signif icantly influence how HIF-1α
responding to factors related to the hydroxylases under
both normal and hypoxic conditions.

What controls HIF-1’s oscillation?

While a primary function of negative feedback regulation is to
enable signal adaptation, it is well known to underlie oscilla-
tory behaviors [52, 53]. Under concurrent control of multiple
negative feedbacks, it is expected that HIF-1 may oscillate in
specific cellular contexts [53]. Although it remains debatable
what physiological function an oscillatory HIF-1 profile may
bring, accumulating evidence suggest that oscillatory dynam-
ics may provide a way to encode more signaling information
than transient dynamics [54]. We use our simplified model to
ask how oscillation may arise and what may control HIF os-
cillatory dynamics (see model details in Figure S3 and related
SM). Exploration of the model parameter space shows that
spontaneous oscillation could robustly arise in the system un-
der both normoxic and hypoxic conditions. Interestingly, we
observed four typical scenarios from simulations when cells
are switched from equilibrium in normoxia to hypoxia as
displayed in Fig. 3a. In response to hypoxia, pre-existing

Fig. 3 Emergence of oscillation and controlling factors. a Illustrative
simulations of different scenarios showing non-oscillatory dynamics,
damped and sustained oscillations and their dynamic transition when
the cells are switched from normoxic to hypoxic conditions.
Simulations were carried out using the model given in Fig. 2. b

Comparative knock-out simulations of HIF-1α time course when the
negative feedback loop mediated by PHD2 and miR-155 are broken. c
Sensitivity analysis showing the effect of the PHD2 feedback strength on
the oscillation pattern. Parameter values used for plotting are given in the
Appendix (or Supplementary Material). All species units are in nM
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oscillation occurring in normoxia may be completely
abolished, maintained, or changed to damped oscillation de-
pending on the parameter regimes. In case where oscillation
persists when cells are switched to hypoxia, we frequently
observed change in the oscillatory pattern with lower or higher
amplitude, but generally the oscillation period is preserved.
While examining the role of miR-155- and PHD2-mediated
feedbacks in the emergence of oscillation, model simulations
of feedback knock-out predict that breaking the miR-155 feed-
back only mildly affects oscillation while breaking the PHD2
feedback completely eliminates oscillation (Fig. 3b). This sug-
gests that negative feedbacks induced by the PHDs play a
determining role in triggering oscillation. Moreover, varying
the strength of this feedback loop could robustly modulate the
amplitude of the oscillatory profile (Fig. 3c).

Crosstalk between the HIF and other regulatory
pathways

The above examples demonstrate the intricate nature of the
HIF regulation by various feedback loops and how these in-
dividual circuits create regulatory networks to provide contex-
tual opportunities for the precise temporo-spatial regulation of
the HIF-mediated responses. However, additional layers of
complexity also exist in the form of crosstalk between HIF
and other signaling pathways.

The HIF-mediated hypoxic induction of the PHDs has been
hypothesized to form a link between the HIF and the mam-
malian target of rapamycin (mTOR) pathway as well. In this
model, elevated levels of PHDs represent an adaptive step to
match the stabilized HIFs and, thus, limit the effect of the
mTOR pathway on HIF-1α [55]. The involvement of
mTOR in the regulation of HIF-1 was first suggested by inde-
pendent studies of the oncogene-related activation of VEGF
[56–60]. Although mTOR is believed to act as a hub for var-
ious signaling pathways, the PKB/AKT pathway was found to
be the dominant upstream regulator of the mTOR-mediated
HIF-1 activity in hypoxia [61–63]. It became also clear that
mTOR enhances HIF-1 transcriptional activity without affect-
ing its mRNA levels or degradation rate [58, 63]. Current data
suggest that mTORmay up-regulate HIF-1 by multiple mech-
anisms possibly depending on the cell type and/or physiolog-
ical context (Fig. 4a).

mTOR is a known regulator of the translation by phosphor-
ylating the eukaryotic initiation factor 4E-binding protein 1
(eIF4E-BP1), a suppressor of the 5′ CAP-dependent transla-
tion [64]. As this has been shown to alter the protein expres-
sion pattern in hypoxic cells, the mTOR-mediated enhance-
ment of the HIF-α translation is a widely accepted explanation
for the negative effects of rapamycin on HIF-1 [65]. Indeed,
down-regulation of the mTOR complex 2 (mTORC2), a
redox-sensitive activator of the PKB/AKT pathway, leads to

decreased abundance of the HIF-2α transcripts in the
polysomal fractions (Fig. 4a) [66].

In recent years, it has become appreciated that reactive
oxygen species (ROS) may also play an important role in
cellular signaling pathways. A number of studies have pro-
posed that ROS can regulate hydroxylase activity and promote
stabilization of HIF [67–70]. A good example for the ROS-
mediated HIF regulation is the HIF-inducible lysyl oxidase
(LOX) [63]. The LOX gene encodes a copper-dependent
amine oxidase that catalyzes the cross-linking of collagen
and elastin in the extracellular matrix while producing hydro-
gen peroxide (H2O2). Current data indicate that, following its
HIF-dependent up-regulation in hypoxia, LOX-generated
H2O2 activates the PKB/AKT-mTOR axis leading to the up-
regulation of the HIF-1α translation forming another positive
feedback loop between mTOR and HIF [63]. These data also
raise the question of whether the mTORC2 receives and trans-
mits the signals of the reactive oxygen species to the HIF
pathway via the PKB/AKT-mTORC1 axis.

Besides the mTOR-mediated translational regulation,
PKB/AKT has also been reported to be involved in the
proteasomal degradation of HIF-1α [71]. This effect seems
to involve the glycogen synthase kinase 3β (GSK3β)-medi-
ated phosphorylation of HIF-1α that facilitates its binding to
FBW7, an E3 ubiquitin ligase that recognizes GSK3β-
phosphorylated proteins and targets them for proteasomal
degradation [72]. Since the inactivating phosphorylation of
GSK3β is primarily mediated by PKB/AKT, activation of
the PKB/AKT pathway not only elevates the translational
rate of the HIF-1α transcript via mTOR but also mimics
the effect of hypoxia as it blocks proteasomal degradation
of HIF-1.

mTOR has additional effects on HIF-1α that are also inde-
pendent of the up-regulation of HIF-1α translation. It was
found to associate with HIF-1α via the mTOR complex 1
member RAPTOR and a putative TOR motif of HIF-1α [60].
AlthoughmTOR possesses serine/threonine kinase activity and
phosphorylation of HIF-1α has been reported as well, conse-
quences of the physical association of mTOR and HIF-1 re-
main to be determined [60, 73]. More recently, however,
mTOR has been shown to phosphorylate MINT3, a regulator
of the membrane-type matrix metalloproteinases (MT-MMPs),
at its threonine 5/serine 7 residues [74]. This modification pro-
motes MINT3 binding to and inactivating of FIH-1 [75]. By
sequestering the HIF-1 suppressor FIH-1 to the Golgi mem-
brane in cooperation with the MT1-MMP, the mTOR/MINT3/
MT1-MMP axis could efficiently support the transcriptional
activity of HIF-1 independently of the rate of its translation.
Interestingly, in independent studies, MT1-MMP has been
found to be a target gene for HIF-2 in renal cell carcinoma cells
raising the question if the mTOR-regulated MINT3/MT1-
MMP/FIH-1-mediated positive feedback loop is a general
mechanism in the regulation of HIFs (Fig. 4a) [76].
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The rapamycin-sensitive up-regulation of the HIF-1 activ-
ity has been observed in various experimental settings leading
to the induction of a wide range of HIF-1 targets. Many of
these target genes have been found to form feedback loops via
the regulation of the hypoxia-related activity of the mTOR

pathway. These include REDD1 that has been reported to
activate the Tuberous Sclerosis Complex 1/2 (TSC1/2) [77].
The TSC1/2 possesses GTPase-activating function that ren-
ders the mTOR activator RHEB inactive [78]. BNIP3, another
known HIF-1 target, has also been reported to facilitate the

Fig. 4 Intensive crosstalk between the AKT/mTOR and HIF pathways.
Schematic overview of the interplay between the AKT/mTOR and HIF
pathway including the positive feedback loop via LOX and a coherent
feedforward loop via GSK-3β. mTOR, that can integrate various stimuli,
influences the HIF-mediated cellular responses directly by adjusting the
translational rate of the HIF-1α mRNA and indirectly via the modification
of its transcriptional activity. In return, HIF induces a number ofmeasures to
regulate various elements of the mTOR pathway. b–e Modeling AKT/
mTORC1-HIF crosstalk. b Simulated bistable dependence of HIF-1α

steady-state level on increasing total AKT. T1 (T2) indicates the AKT level
threshold at which the system abruptly switches up (down) to a high (low)
level of HIF-1α as a consequence of bistability-induced hysteresis. c Time-
course simulations showing the system could settle in either one of two
stable steady states when it resides within a bistable regime. c Predicted
effect of changing mTORC1 activity on bistability. e Predicted effect of
changing GSK-3β abundance on bistability. Details of the model equations
and values used for plotting are given in the Appendix (or Supplementary
Material). All species units are in nM
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accumulation of the GDP-bound form of RHEB and the con-
sequent down-regulation of mTOR in hypoxia [79]. In addi-
tion, the HIF-1-inducible miR-155 also targets elements of the
mTOR pathway including RHEB, the mTORC2 member
RICTOR and the mTOR effector ribosomal protein S6KB2
[80]. Down-regulation of these targets seemingly comple-
ments the effect of REDD1 and BNIP3 and may contribute
to the limitation of the mTOR activity during hypoxia, thereby
forming a negative feedback loop via the mTOR and HIF
pathways (Fig. 4a).

Crosstalk with ERK

Anabolic extracellular signals that activate the mTOR path-
way often diverge and activate the ERK signaling cascade as
well. Although the link between the ERK and HIF pathway
was identified soon after the discovery of HIFs, the nature of
their interplay has remained less clear. Stabilized HIF-1α has
shown to be phosphorylated by p42/44 MAP kinases both
under hypoxic conditions and in response to receptor-
mediated ERK-activating stimuli [81–83]. The ERK-
mediated phosphorylation was found to enhance the transcrip-
tional activity of HIF-1 in various model systems, although
the exact mechanism is still to be elucidated [84, 85].
Phosphorylation sites were identified within the carboxy-
terminal part of HIF-1α at the 641 and 643 positions [86].
Experimental data suggest that these modifications affect the
nuclear export of HIF-1 and fundamentally alter the predicted
composition of HIF-1 containing nuclear complexes [87, 88].
Hence, current data suggest that the ERK-mediated up-regu-
lation of the HIF pathway differs from the mTOR-mediated
effect and primarily acts on the transactivation function of
HIFs possibly complementing the mTOR-mediated effects.

Crosstalk with NF-kappaB

Although the regulation of HIF-1α is considered mostly post-
translational, recent studies revealed processes that influence
its transcription as well. Intriguingly, besides its role in the
mTOR-mediated HIF regulation, miR-155 is one of the iden-
tified feedbacks targeting the HIF-1α mRNA indicating its
pivotal role in the regulation of the HIF pathway. In addition,
besides HIF responsive elements, NF-κB consensus se-
quences are also present in the miR-155 promoter indicating
the capacity of NF-κB-mediated stimuli to influence the HIF
pathway via miR-155 [51]. Indeed, although the detailed
mechanism is still not fully understood, it is clear that basal
NF-κB is moderately activated in hypoxia [89–91].
Experimental data suggest that the hypoxia-mediated inhibi-
tion of the PHD activity contributes to the up-regulation of the
NF-κB pathway. While active, PHDs inhibit the I kappa B
kinase (IKK) attenuating the dissociation of the inhibitory
kappa B (IκB) from NF-κB [92, 93]. In hypoxia, the PHD-

mediated blockade of IKK is resolved leading to phosphory-
lation of IκB followed by activation of NF-κB. This mecha-
nism is able to potentiates NF-κB responsiveness to certain
stimuli, e.g. TNF-α [92]. It is noteworthy, however, that under
other cytokine-stimulated conditions (e.g. IL-1β), inhibition
of the prolyl-4-hydroxylases blocks NF-κB activity suggest-
ing a stimulus and/or cell type-specific interaction between
HIF and NF-κB pathway [94]. Once active, NF-κB induces
HIF-1α via evolutionary conserved consensus binding sites
identified in the HIF-1α promoter [93, 95–97]. Since NF-κB
activity is not sufficient for the accumulation of the
HIF-1α protein in the absence of hypoxia, current data
suggest that the canonical NF-κB pathway contributes to
the maintenance of the HIF-1α mRNA level, a
pre-requisite of the PHD-mediated post-translational regu-
lation of the HIF system [93]. An additional, possibly
tissue specific arm of the NF-κB-mediated regulation of
the HIF pathway has also been identified by showing that
NF-κB can rescue HIF-2α subunits from proteasomal
degradation by directly trans-activating the ARNT promoter
[98]. Considering the HIF-inducible properties of the
prolyl-4-hydroxylases, the PHD/NF-κB/HIF axis may
represent a regulatory circuit in the HIF pathway that is
capable of integrating extracellular stimuli distinct from
the ones mediated by the mTOR or ERK pathways
(Fig. 5). This hypothesis is further supported by recent
findings that HIF-1 activity contributes to the down-
regulation of inflammatory stimuli-activated NF-κB pathway
via kinases including IKKβ that may represent the negative
feedback arm of this putative regulatory loop [99].

Fig. 5 Interplay between the NF-κB and HIF pathways. The PHD-HIF
axis can sense inflammatory stimuli and modulate both inflammatory
signaling and hypoxia response via multi-level crosstalk with the NF-
κB pathway. Green arrows and red connectors indicate positive (e.g.
induction or activation) and negative (inactivation) effects, respectively
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What are the consequences of the crosstalk
between the HIF-1 and other pathways?

Althoughmost of the experimental andmodeling effort to date
has been centered on the in vitro HIF response to hypoxia with
the HIF pathway being the sole focus, HIF is known to have
important roles in normoxia and more complex physiological
conditions as well [55]. Current data on the intensive crosstalk
between the HIF and other signaling pathways depict a com-
plex regulatory system that complements hypoxia-driven
feedbacks by enabling the cell to adjust the HIF-mediated
response to the status of the surrounding microenvironment.
Here, we demonstrate the potential benefit of modeling by
investigating the crosstalk between HIF and mTOR signaling
pathways using a mathematical modeling approach.

The model’s schematic diagram is given in Fig. 4a and
Figure S4. Model description is presented in details in the
SM. Following the experimental details reviewed in the pre-
vious sections, the model is designed to capture a positive
feedback between mTORC1 and HIF-1 mediated via LOX,
on one hand, and a positive feed-forward loop between AKT
and HIF-1 via GSK-3β, on the other. The presence of a pos-
itive feedback loop in the interaction circuit prompts us to
hypothesize that the system may display bistable switch-like
behavior. Nevertheless, it is not trivial under what parameter
regime bistability could arise, nor what factors may control its
emergence and how one may go about in experimentally val-
idating such hypothesis. Our model simulations show that
under permissive parameter conditions, bistability can arise
in the system as illustrated in Fig. 4b. Here, the steady-state
level of HIF-1α is predicted to respond in a bistable fashion to
increasing total AKT (and activity, not shown).

Bistability is an interesting phenomenon inwhich a dynam-
ic system could switch between two distinct stable equilibrium
states in response to a single given input [100]. Long known to
be widespread in physics, bistable behaviors have been iden-
tified in many cellular systems which underlie key functions,
particularly decision-making in cell cycle progression, cellular
differentiation, and apoptosis [100]. The occurrence of
bistable behavior has three different and related consequences.
Firstly, there exists a range (i.e. bistable range) of input level
(in this case AKT total), within which a given input could
induce two different, a low and a high, expression levels of
HIF-1 protein at steady state (Fig. 4c). Whether the system
settles in a low or a high state is a nontrivial matter, the answer
to which depends on the system’s initial condition (i.e. its
previous history). However, given sufficient knowledge of
the system’s initial condition (i.e. expression and activity
levels of its species), such prediction could be made with
accuracy using model-based analysis. The second conse-
quence, arguably more biologically relevant in many cases,
is the ability of the system to generate abrupt switch-like re-
sponses to graded change in the triggering cues, i.e. the ability

to convert an analogue input to a digital output. Consequently,
a graded increase in the AKTconcentration (or activity) could
result in a sudden surge of HIF-1α expression when AKT
exceeds a threshold level. The third consequence of bistability
is termed Bhysteresis^, which is the dependence of the system
not only on its current input, but also on the history of the
input itself. Such property could be demonstrated by visually
tracing the dose-dependence curve in Fig. 4b. Starting from a
low level, a gradual increase of AKT will abruptly lead to a
high HIF-1 level at threshold T1 following the Blow^ branch
of the curve. On the other hand, if the system starts at the
Bhigh^ branch with high HIF-1 level and gradually decreases,
it will traverse the high branch and jump to the low branch at
the second AKT threshold (T2), which is lower than the first.
The existence of two different input thresholds that character-
ize the system switching between the low and high branch is
the hallmark of hysteresis, providing a Bmemory^ for the sys-
tem in response to that signal.

Since mTORC1 are often hyper-activated in cancer cells,
we ask whether enhanced mTORC1 activity would affect the
occurrence of bistability. Model simulations of this scenario
suggest that enhanced mTORC activation induces more pro-
nounced bistable switch characterised by enlarged bistable
range, while in contrast low mTORC1 activity could abolish
bistable behavior (Fig. 4d). We next interrogate the role of
GSK-3β. Interestingly, although without the positive feed-
back induced by LOX, the feedforward governed by GSK-
3β alone is incapable of giving rise to bistability, the level of
GSK-3β profoundly affects the occurrence and profile of the
bistable switch. Higher GSK-3β promotes bistability but leads
to reduced HIF-1 steady-state level as expected, while loss of
GSK-3β could transform the dose response from a bistable to
a sigmoidal switch (Fig. 4e).

Summary and conclusions

As we have seen previously, decades of experimental work
using traditional biochemical approaches have uncovered a
great deal of mechanistic understanding into hypoxia and
HIF signaling. What has emerged is a complex picture that
substitutes the notion of HIF pathway as a linear cascade of
signal transduction with a novel network-based perspective,
where complexity and non-linearity are appreciated. With this
view, HIF is not merely a transducer but an integrator of mul-
tiple signals, making it a processing hub in a network of con-
nected interactions. The ability of HIF to precisely receive,
integrate and mediate signals from multiple sources to main-
tain homeostasis and adequately respond to extracellular per-
turbations is enabled by complex feedback loops and crosstalk
with other signaling pathways. Such intricate control mecha-
nisms allow the timing and amplitude of each signaling re-
sponse to be fine-tuned and kept within an appropriate range.
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Under disease conditions, genomic and epigenetic alterations
leading to aberrant protein expression or function often disrupt
these regulatory mechanisms. Understanding how these com-
plex mechanisms operate under homeostasis and how they
break down in pathogenesis is of great importance. Systems
biology approaches where network-based mathematical
modeling is employed to manage and model complexity will
be increasingly needed to obtain a systems-level understand-
ing of the basic functioning of HIF and hypoxia signaling as
well as to discover more effective therapeutic strategies with
less adverse side effects.

Mathematical models provide a platform for the descrip-
tion, prediction and understanding of the various regulatory
mechanisms in a quantitative and integrative way [100–102].
Although much has been learnt about the HIF pathway as a
key sensor of hypoxia, many outstanding questions remain
including, but not limited to, those exampled above. These
questions are not only of interest from a basic understanding
of the HIF pathway viewpoint but also could aid in our effort
to target HIF signaling for therapeutic purposes. Indeed, HIF
is a key regulator of metabolic homeostasis in health and in a
range of disease states. Developing our understanding of the
temporal and dynamic activity of this critical pathway will
involve an appreciation of a systems biology approach to
model the HIF pathway. This includes the integration of the
canonical HIF pathway with the multiple feedback loops and
levels of crosstalk which exist with other signaling networks.
Interestingly, but perhaps not surprisingly, due to the increased
complexity of the system, studies aimed at providing an inte-
grated, system-level understanding the HIF signaling remain
limited. We strongly believe that systems biology approaches,
where mathematical modeling is integrated with experimenta-
tion in a systematic and iterative manner, will be particularly
useful to disentangle the network complexity of HIF signaling
and identify governing conditions that characterize the net-
work behavior. Deployment of models with different levels
of detail enables us to flexibly zoom-in and zoom-out of the
network structure which facilitates not only numerical simu-
lations but also analytical studies. Importantly, model-based
analyses and predictions are excellent ways to articulate novel
hypotheses and design appropriate experiments to test them.
Using this approach, we expect to develop a deep understand-
ing of the nature of the HIF response in hypoxia and how this
impacts on physiology and disease. This will be important in
identifying appropriate pharmacological approaches to inter-
fere with this pathway for therapeutic benefit.
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