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Abstract Arginase-1 (ARG1) deficiency is a rare autosomal
recessive disorder that affects the liver-based urea cycle, lead-
ing to impaired ureagenesis. This genetic disorder is caused by
40+ mutations found fairly uniformly spread throughout the
ARG gene, resulting in partial or complete loss of enzyme
function, which catalyzes the hydrolysis of arginine to
ornithine and urea. ARGI-deficient patients exhibit
hyperargininemia with spastic paraparesis, progressive
neurological and intellectual impairment, persistent growth
retardation, and infrequent episodes of hyperammonemia, a
clinical pattern that differs strikingly from other urea cycle
disorders. This review briefly highlights the current under-
standing of the etiology and pathophysiology of ARG1 defi-
ciency derived from clinical case reports and therapeutic strat-
egies stretching over several decades and reports on several
exciting new developments regarding the pathophysiology of
the disorder using ARG1 global and inducible knockout
mouse models. Gene transfer studies in these mice are reveal-
ing potential therapeutic options that can be exploited in the
future. However, caution is advised in extrapolating results
since the lethal disease phenotype in mice is much more se-
vere than in humans indicating that the mouse models may not
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precisely recapitulate human disease etiology. Finally, some of
the functions and implications of ARG1 in non-urea cycle
activities are considered. Lingering questions and future areas
to be addressed relating to the clinical manifestations of
ARG deficiency in liver and brain are also presented. Hope-
fully, this review will spark invigorated research efforts that
lead to treatments with better clinical outcomes.
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Arginase-1 and the urea cycle

The urea cycle disorders (UCDs) represent a group of inborn
errors of hepatic metabolism that affect the detoxification of
ammonia. Deficiency in any of the six principal enzymes as-
sociated with the urea cycle results in perturbation of
ureagenesis, leading to incomplete removal of ammonia and
eventual hyperammonemia of varying degrees. The liver is the
main site of urea cycle activity where the proximal three en-
zymes are in the mitochondria [N-acetyl-glutamate synthase
(NAGS), carbamoyl phosphate synthetase 1 (CPS1), and or-
nithine transcarbamylase (OTC)], while the distal three are
cytosolic [argininosuccinate synthetase (ASS),
argininosuccinate lyase (ASL), and arginase] [1].

Arginase was discovered in mammalian liver tissue in 1904
[2]. Being the sixth and final enzyme of the cycle, arginase
catalyzes the hydrolysis of arginine to ornithine and urea,
where the latter is transported in the blood to the kidneys
and excreted in the urine, while ornithine is recycled to con-
tinue the cycle for further rounds of urea production (Fig. 1).
There are two major isoforms of arginase, which are encoded
by separate genes in mammals: arginase-1 (ARG1) and
arginase-2 (ARG2) that share approximately 60 % amino acid
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Fig. 1 Central role of arginase-1
to urea cycle function in liver
hepatocytes. Note that the nitric
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sequence homology [3]. They are similar in enzymatic prop-
erties but differ in tissue distribution, subcellular localization,
and metabolic functions. ARG, expressed in highest amounts
in the liver cytosol, serves its primary function in the urea
cycle as mentioned above [3] but is also found in lesser
amounts in human erythrocytes and in the vasculature and
immune cells (M2-like macrophages), to mention a few
[4, 5]. ARG via its metabolic activity also yields ornithine,
which serves as precursor to polyamines, proline, and other
products. ARG2, on the other hand, is in the mitochondrial
compartment of extrahepatic tissues such as kidney and pros-
tate, with lower levels in brain, macrophages, gastrointestinal
tract, and lactating mammary glands [6—9]. Besides regulating
arginine homeostasis, ARG2 also plays pivotal roles in the
biosynthesis of polyamines, proline, creatine, citrulline, y-
aminobutyric acid (GABA), glutamate, and nitric oxide
[3, 8, 10].

The first crystal structure of arginase to be solved derived
from rat liver [11]. X-ray crystallographic analysis at 2.1 A
resolution revealed that Argl exists as a 105-kDa
homotrimeric metalloprotein, which requires bivalent metal
ions, in particular manganese (Mn”") for maximal catalytic
activity and structural stabilization. Each subunit contains a
highly conserved binuclear Mn?*cluster with metal-
coordinating histidine and aspartic acid residues at the active
site [12—14] (see Fig. 2). According to a proposed mechanism
of arginase-catalyzed hydrolysis, the metal-activated mecha-
nism is facilitated when the binuclear manganese cluster
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activates nucleophilic attack of a metal-bridging hydroxide
ion at the substrate guanidinium group of arginine to yield
omithine and urea [14].

Fig.2 ARG “mutations” superimposed on a crystal structure of native,
unliganded human arginase at 1.90 A resolution (PDB ID: 2PHA) [15].
ARGTI residues 5-318 are displayed in gray cartoon mode to represent
secondary structural properties. Mn?" is represented using cyan spheres.
Residues associated with the most commonly occurring mutations are
shown (R21, T134, D234, G235, and R308). Residues 14 and 319-
322 were not resolved in this crystal structure



J Mol Med (2015) 93:1287-1296

1289

Arginase-1 deficiency: clinical characteristics

The first patients with ARG1 deficiency, two female sib-
lings, were described in 1969. One presented at 22 months
of age with epileptic seizures, abnormal gait at 2.5 years,
and spastic diplegia at 3 years; the other had cerebral sei-
zures at 3 months followed by periodic vomiting and he-
patomegaly and later spasticity. Both had psychomotor re-
tardation [16].

The clinical presentation of ARG1 deficiency is character-
ized by the development of spasticity predominantly in the
lower limbs during early childhood [3, 17]. The clinical picture
is strikingly uniform and has occasionally been mislabeled as
cerebral palsy. Progressive loss of mental and motor skills,
increasingly more severe spasticity, and pyramidal tract signs
are the hallmarks of the disease [18]. The course and severity
of spasticity distinguish ARG1 deficiency clinically from the
other UCDs and from other disorders of amino acid metabo-
lism [18].

The clinical manifestation of hyperammonemia in
ARGT deficiency is also different from the other UCDs.
The initial presentation is usually not characterized by
hyperammonemia. Rather, it is often only moderate, and
neonatal presentations are rarely reported, although fatal
hyperammonemic events [19, 20] and cases with early
presentation [21-23] have been observed. Cyclic
hyperammonemic episodes have been found related to
the menstrual cycle [24, 25].

The development of progressive spastic paraplegia is the
most obvious sign of the disease. Early symptoms of the dis-
ease include clumsiness, generalized developmental delays,
failure to thrive, irritability, recurrent vomiting, feeding/
protein aversion, and anorexia. Growth rate remains low lead-
ing to short stature. Ataxia, which is rare and usually only
intermittent, is likely linked to hyperammonemia. Most of
the patients show some degree of cognitive impairment and
both loss of acquired skills and severe intellectual disability
may occur [20, 26, 27].

Seizures occur in more than half of the patients and usually
in the absence of hyperammonemia. They are mostly gener-
alized tonic-clonic but can include simple focal epilepsy, com-
plex focal epilepsy, generalized tonic, and generalized absence
epilepsy and even generalized tonic-clonic status epilepticus
[26]. The electroencephalograms are described as diffuse
slowing, compatible with metabolic encephalopathy, and epi-
leptic graphoelements [26], with no myopathy or neurogenic
process in electromyography (EMG) and normal sensory and
motor nerve conduction velocities [26].

Brain imaging may reveal cerebral atrophy, ranging from
mild subcortical atrophy to severe cortical and subcortical
atrophy, and less frequently cerebellar atrophy. Microcephaly
observed in a few patients is likely a consequence of the ce-
rebral atrophy. White matter changes with increased T2 signal

have been observed in the periventricular and more peripheral
white matter regions [26, 27].

Extraneurological symptoms of the disease are rare, affect-
ing mostly the liver and the skeletal system. As in other UCDs,
the liver can be involved with a spectrum ranging from mild
hepatocellular injury with transient elevation of liver transam-
inases to mild dysfunction with coagulation abnormalities to
acute liver failure [28, 29]. Histopathological and morpholog-
ical findings include swollen hepatocytes, portal and sinusoi-
dal fibrosis, macrovacuolar steatosis, increased cellular glyco-
gen, and dilated endoplasmic reticulum [18, 26]. Intrahepatic
cholestasis can lead to neonatal presentation with jaundice,
hepatomegaly, and cirrhosis [30, 31]. Spinal deformities, such
as scoliosis and lordosis, may occur as a consequence of the
increasing spasticity [26].

Genetics of arginase-1 deficiency

The 11.1-kb arginase gene (ARGI)-encoding ARGI sits on
chromosome 6 (6q23) comprised of eight exons. There are
at least 43 potentially disease-causing variations in ARG/ with
the majority (23) being missense (18)/nonsense (5) mutations
and small deletions (9) [see Table 1]. The mutations are spread
out fairly uniformly across the eight exons as well as at several
exon-intron boundary splice sites, and the disorder is inherited
in an autosomal recessive Mendelian manner [21-23, 32-49].
The incidence of ARG1 deficiency has been reported to range
somewhere between approximately 1:300,000—1:2,000,000
live births, with the most complete study combining databases
in the USA/Europe indicating an incidence of 1:950,000 [50].
Formerly regarded as the rarest UCD, the recent estimates [50]
would place ARG1 deficiency as the third rarest of the six
main UCDs (after NAGS and CPS1 deficiencies). Various
case studies indicate that ARGI deficiency is pan-ethnic with
subjects being reported of Arabic (Palestinean, Saudi), Irani-
an, Korean, Puerto Rican, Chinese, French Canadian, Italian,
Portuguese (mainland and Madeira Islands), Brazilian, Paki-
stani, Hispanic, Japanese, Turkish, Ashkenazi Jewish, and
Caucasian descent [21-23, 32-49]. Approximately half of re-
ported subjects are compound heterozygotes with the other
half homozygous with a moderate number of cases arising
from consanguineous relations.

Attempts to correlate genotype and phenotype have been
carried out only to a limited extent [36] due to the rarity of the
disorder. Thus, the scientific literature is mainly populated by
isolated case reports and small scale studies on a distinct eth-
nic population [21-23, 32-48]. Patients present with symp-
toms at different ages in early infancy, some with very mild
symptoms, others much more severe and with progression to
variable degrees of mental retardation and spastic diplegia as
mentioned above. In general, however, those patients with
nonsense mutations have severe disease. While only a fraction
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Table1 ARGI mutant alleles

1 ¢.23 T>A (exon 1) pISK

2 ¢.32 T>C (exon 1) pllIT

3 ¢.34G>T (exon 1) p.G12*

4 ¢.53G> A (exon 1) p.GISE

5 ¢.57+ 1G> A (splice site) p.?

6 # g.del10753GB_AL121575 p.0?

7 ¢.61C> T(exon 2) p-R21*

8 ¢.67delG (exon 2) pV24Wfs*8
9 c.77delA (exon 2) p.G27Afs*5
10 ¢.80G> 4 (exon 2) p.G27D

11 ¢.93delG (exon 2) P-R32Efs*16
12 ¢.221G>T (exon 3) p.G74V

13 ¢.2234> T (exon 3) p.K75%

14 ¢.232dupG (exon 3) p-E78Gfs*40
15 ¢.262_265delAAGA (exon 3) D.K88Rfs*45
16 ¢.292G> A4 (exon 3) p.G98S

17 #¢.305+ 1323 T> C(intron) #p.0?

18 ¢.365G> A (exon 4) p-Wi22*

19 ¢.374C>T (exon 4) p.AI25V

20 ¢.3834> G (exon 4) p.DI28G

21 ¢.385_387delATC (exon 4) p-1129del

22 ¢.401C>T (exon 4) p.T1341

23 ¢.413G> T (exon 4) p.G138V

24 ¢.4224> T (exon 4) p-HI4IL

25 ¢.425G> A (exon 4) p.GI42E

26 ¢.466-1G> C (splice site) p.?

27 ¢.466-24> G (splice site) p.?

28 ¢.523delG (exon 5) p.VI75Cfs*S5
29 ¢.539G> C (exon 5) p.RISOT

30 ¢.560+ 5G> A (by splice site) p.?

31 ¢.646_649delCTCA (exon 6) p.L216Afs*4
32 # ¢.647_648ins32 (exon 6) #p.?

33 c.673delA (exon 7) Pp-R225Gfs*5
34 ¢.6954> T (exon 7) p.D232V

35 ¢.700G> C (exon 7) p.D234H

36 ¢.703G> A (exon 7) p.G235R

37 ¢.703G> C (exon 7) p.G235R

38 #c.712 713dupGGACC (exon 7) #p.?

39 ¢.842delC (exon 8) p-L282Wfs*8
40 ¢.871C>T (exon 8) p.R291*

41 ¢.892G> C (exon 8) p.A298P

42 ¢.913G> 4 (exon 8) p.G305R

43 ¢.923G> A (exon 8) Pp.R308Q

Current human genome variation society nomenclature is used, which
differs in some cases from the original designations in the literature
[21-23, 32-49] describing the mutations. The DNA mutation column,
in parentheses, is the location of the mutation within the gene

p.?, protein has not been analyzed but an effect is likely expected but
difficult to predict; p.0?, probably no protein is produced

#, entry 6: a large deletion of 10,753 nucleotides from the first intron to
past the poly(A) site; the exact reference positions are difficult to deduce
from the reported publication

#, entry 17: an exon-splicing enhancer mutation that leads to a cryptic
splicing of intronic sequence verified at the mRNA level and predicted to
lead to a frameshift in the protein-coding sequence

#, entry 32: the 32-nucleotide insertion was not specified so the correct
protein designation cannot be specified exactly but this mutation will
definitely lead to a frameshift in the protein-coding sequence

#, entry 38: the predicted protein effect p.P238Rfs*77 differs from 254X
designation in original publication

p-T290S variant not included as unlikely to be disease causing
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of ARG I mutations have been systematically investigated bio-
chemically in both patient erythrocyte enzyme assays and
using in vitro overexpression systems, most have been pre-
dicted to modify enzyme function based on in silico methods.
ARG mutations may alter structure/function and/or stability
of the enzyme by compromising active site residues, by intro-
ducing packing defects or by causing incorrect translation due
to frameshifts [51]. Thus, these various mutations can affect
the binuclear manganese cluster and influence the metal-
activated hydroxide mechanism by distorting the active site
or bridging residues, created steric clashes, and buried hydro-
philic groups as well as by influencing the regions necessary
for oligomerization (see Fig. 2 for sites of some residues that
are most often mutated).

Modeling of arginase-1 deficiency in animals
and new insights learned about arginase-1 deficiency
disease pathogenesis

The ARG gene was cloned in the 1980s, and the study of the
genomic structure revealed a high degree of sequence homol-
ogy between humans and rodents [52, 53]. Genetically
manipulated mouse models have been employed to study the
pathobiologic characteristics of ARG deficiency [54—62] (for
summary, see Table 2). Thus, the first Argl-deficient mouse
model was generated by Iyer et al. [54] using standard gene
knockout techniques to study the disease mechanisms. Exon 4
was replaced with a neomycin cassette, which would
eliminate critical residues for enzymatic activity. This resulted
in homozygous disruption of ARG1 expression with both
mRNA and enzyme activities reduced to undetectable levels.
The knockout (KO) mice were smaller at birth and continued
to deviate in weight and other parameters from wildtype
littermates until they died approximately 2 weeks postnatally,
resulting in a much more severe phenotype than that
observed in human patients. This model of arginase-
deficient mice termed the “juvenile lethal model” [59] exhib-
ited hyperargininemia, hypoornithinemia, and severe
hyperammonemia [54]. The latter, which causes neurologic
deficits, was thought to be the cause of death. Although a
2-fold upregulation in ARG2 activity was noted, it was still
insufficient to compensate for lack of liver ARG1. A rescue
strategy using intraperitoneal administration of ornithine was
also unsuccessful [54].

Deignan et al. [55] later created Arg1/Arg2 gene double KO
mice, resulting in a model completely devoid of all arginase
activity. The double KO mice shared the same phenotype as
the single 4Arg/ gene KO mice, with death invariably occur-
ring by 14 days of age following severe hyperargininemia,
hyperammonemia, and ornithine deficiency. There was no
significant difference in plasma arginine and ornithine levels
between the single and double KO mice. Taken together, their
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Table 2 Comparison of the main phenotypic abnormalities in the four established ARG1 deficient mouse models as compared to their wild-type
littermates

Mouse model Knockout method Phenotype Life span Refs
C57BL/6) Argl™"~ Deletion of exon 4 Hyperargininemia, 10-14 days postnatal [54]

of Argl

C57BL/6Y Argl™" /Arg2™"~
double KO

Deletion of exon 4
of Argl, and part
of exon 4 and 5
of Arg2

Conditional deletion
of exons 7 and 8
of Argl

JAX strains B6.129-
GH(ROSA)26Sor"™! <ERTI- Ty«
C57BL/6-Arg ™"y
(two intragastric tamoxifen
administrations in neonates or
fivex 1 mg daily i.p. in adult
mice)

JAX strains B6.Cg-Tg(UBC-
cre/ERT2)1Ejb/J x C57BL/6-Arg ™7™/
(single oral dose of 4 mg tamoxifen)

Conditional deletion
of exons 7 and 8
of Argl

hyperammonemia,
hypoornithinemia,
decreased body size

at birth

Severe hyperargininemia, <14 days postnatal [55, 56]
hyperammonemia,
and hypoornithinemia

Hyperargininemia, 19 days after first [57]
hyperammonemia, tamoxifen administration

ornithine unaffected,
progressive weight loss

regardless of starting age,
humane end point set
at >15 % loss of body

weight
Hyperargininemia, 21.5 days after first tamoxifen [58]
hyperammonemia, administration, humane end
hypoornithinemia, point set at >30 % loss of

progressive weight loss body weight

findings indicated that ARG2 deficiency has no effect on the
phenotype of ARG deficiency [55]. It was later reported that
several guanidino compounds were elevated in plasma and
brain tissues collected from the mouse model [56], similar to
that observed in hyperargininemic patients [60]. Clearly, am-
monia is not solely responsible for having undue adverse ef-
fects on the central nervous system in ARG1 deficiency.
These guanidino compounds are also neurotoxins and are
equally likely to cause the developing neurological sequelae
in the disorder. Previous studies in the juvenile lethal model
using helper-dependent adenoviral vectors expressing ARG1
showed only transient rescue by extending lifespan from 14 to
28 days [61], while adeno-associated vector (AAV) expres-
sion of ARGI has allowed for metabolic correction lasting
longer than 8 months, albeit with some lingering defects
[59, 62]. Unlike the human disorder, where survival into adult-
hood is common, mice of the juvenile lethal model that die in
the perinatal period were not amenable to further studies on
somatic growth and neurological development/impairment.
To overcome this limitation, knockout technology and
inducible expression systems were employed to circum-
vent the neonatal lethality. Using a Cre/loxP-directed con-
ditional targeting strategy, two new ARG1-deficient mouse
models that allowed spatial and temporal control of 4Arg/
gene deletion were generated [57, 58]. Tamoxifen-
mediated inducible 4rg/ KO was performed in mice of
different ages (ranging from the neonatal period to adult-
hood) to replicate a later-onset juvenile ARG1 deficiency
phenotype. Despite using different Cre reporter strains
(ROSA26 vs ubiquitin C), the deletion of Arg/ at various
stages results in a phenotype similar to the original juvenile

lethal global knockout model [57, 58]. However, different
tamoxifen administration regimens attained different
degrees of Cre-mediated recombination efficiency.
Apparently, a regimen of five daily injections of 1 mg
tamoxifen resulted in more substantial Arg/ gene disrup-
tion than did a single oral dose of 4 mg tamoxifen, as
demonstrated by a consistent near complete knockout of
Argl [57]. Thus, tamoxifen-induced excision of floxed
exons 7 and 8 of Argl resulted in significant loss of
ARGTH at both mRNA and protein expression levels, especially
in liver. The mice exhibited several hallmark presentations of
ARGTI deficiency, such as impaired hepatic arginase activity
and profound hyperargininemia accompanied by
hyperammonemia, prior to the humane euthanization end point.
The symptoms presented in these KO mice were consistent
with perturbation of the urea cycle. Coincidently, both research
groups provided evidence that the phenotypic abnormalities in
the KO mice were independent of age of the animal and were
most likely attributable to the biochemical derangements of the
disorder [57, 58]. Thus, in concordance with previous observa-
tions using ARG deficient mice [54], these inducible KO mice
also exhibited significant alterations in plasma metabolic pro-
files, including proline, citrulline, alanine, glycine, serine, iso-
leucine, and guanidino compounds. Interestingly, amino acids
such as alanine, glycine, proline, and serine, which are involved
in the incorporation of ammonia nitrogen, are conversely
reduced, hence suggesting an alternative ammonia-scavenging
pathway [57].

In addition, progressive decline in animal body weight
was detected in both inducible knockout models [57, 58].
Despite tamoxifen being known to cause alterations in
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gastric physiology [63], Sin et al. [57] showed that the
substantial weight loss is unrelated to tamoxifen adminis-
tration. According to the aminostatic hypothesis [64], it is
possible that the abnormally high level of arginine triggers
a satiety mechanism in the brain, resulting in a waning of
appetite. Elevated levels of ammonia may also suppress
food intake through the effect of insulin, a potent anorex-
igenic hormone [65]. Consequently, prolonged reduced
food intake affects amino acid homeostasis, which may
lead to undernutrition and eventually become life-threaten-
ing. However, the molecular mechanisms causing these
weight differences remain to be elucidated.

There was some discrepancy between the two inducible
models related to the expression of renal ARG2. As previ-
ously reported, a compensatory increase in ARG2 activity
could be triggered to assuage symptoms of ARGI-
deficient patients [19]. Although the exact mechanism is
not clearly understood, it was hypothesized that the elevat-
ed expression of this second form of arginase could miti-
gate the severity of ARG1 deficiency via residual
ureagenesis [19]. However, Sin et al. [57] found no evi-
dence for renal ARG2 compensation, although Kasten
et al. [58] reported a slight increment in renal expression,
yet this failed to extend the lifespan of their KO mice.
While ornithine was supplemented in an attempt to rescue
the lethality of induced Argl deficiency, there was an ab-
sence of any phenotypic improvement despite showing el-
evated levels of ornithine in the blood [57, 66]. Other com-
monly used treatments for ARG1 deficiency, such as low-
protein diet and administration of a nitrogen-scavenging
drug, sodium phenylbutyrate, were also ineffective in alle-
viating the biochemical consequences in the induced KO
mice [66]. These paradoxical observations indicate that
compensatory responses in ARG1 deficiency are different
between mice and humans.

Since there are so many uncertainties regarding the
development of disease in ARG1 deficiency, it will be
important to develop tissue-selective knockout mice. For
instance, comparing liver-selective versus neuron-
selective ARG1 knockout mice might aid in determining
the steps of developing neurological symptoms; i.e., is it
liver-derived circulating metabolites affecting the brain
or metabolites derived within neurons that initiate
neuropathogenesis?

Therapeutic strategies for arginase-1 deficiency

Reconstitution of enzyme function represents the only
causal treatment but has not been successful in ARG1 de-
ficiency. The attempt to replace the deficient enzyme by
administration of packed red blood cells (which contain
ARG1) led to a small immediate decrease of serum
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arginine but no significant clinical change [67, 68]. Eryth-
rocyte exchange transfusion in addition to low-protein diet,
an essential amino acid mixture, and sodium benzoate in
one patient resulted in normalization of ammonia levels
and serum arginine concentrations, but cerebrospinal fluid
(CSF) concentrations of arginine remained unchanged
[69]. Pegylated human recombinant ARG1, developed for
treatment of liver cancer, has been tested in ARGI1-
deficient mice where it seems to normalize plasma and
brain arginine levels but not in the liver and fails to rescue
Argl KO mice from the lethal phenotype [70]. Liver trans-
plantation in humans “cures” the disease in the liver but
not in other organs including the brain, although it may
normalize ammonia and arginine in blood [71, 72]. Extra-
hepatic ARGI expression may be one explanation for in-
complete phenotype reversal. An early attempt at “gene
therapy” in three patients by intravenous injection of the
Shope papilloma virus, which induces a viral-encoded ar-
ginase, was unsuccessful [73].

Management and treatment of ARGI, in general, is the
same as for the other UCDs with the exception being that there
is no supplementation with arginine or citrulline [74]. Diet
plays the key role in the treatment of hyperargininemia since
it has been shown that strict restriction of dietary protein in
combination with the supplementation of an essential amino
acid mixture that is free of arginine can ameliorate arginine
levels in plasma and CSF. However, the response to dietary
restriction is relatively poor and improvement of the clinical
picture is unsatisfactory [18, 26, 75-77]. Reviewing the liter-
ature, Prasad et al. [20] found a clinical improvement in 50 %,
stabilization in 25 %, and progression of the disease in 25 % of
patients on treatment.

The use of nitrogen scavengers such as benzoate,
phenylbutyrate, and phenylacetate, is an alternative pathway ther-
apy for excretion of waste nitrogen via formation and excretion
of hippuric acid and phenylacetylglutamine and can be used to
lower plasma ammonia levels in ARG1 deficiency [3, 78, 79].
Since the removal of nitrogen via alternative pathways lowers the
flux through the urea cycle and this cycle is the only synthetic
pathway for arginine, nitrogen scavengers can also be used to
lower the formation of arginine in ARG1 deficiency.

Treatment with the amino acid ornithine may help to re-
plenish hepatocellular ornithine to prevent hyperammonemia
[23], and it may also inhibit the formation of neurotoxic
guanidino compounds through inhibition of the enzyme
arginine:glycine amidinotransferase [32]. Lysine supplemen-
tation has been trialed to augment argininuria but also in the
hope that lysine might compete with arginine for uptake in the
brain, thus lowering brain arginine levels [67, 80, 81]. Symp-
tomatic treatments to alleviate the consequences of spasticity
progression, despite the aforementioned treatments, include
injections with botulinum toxin and orthopedic surgery (i.e.,
tendon release procedures).
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No gene therapy trials for delivery of an arginase repair
construct have been attempted yet in humans. However, based
on some of the promising results in the juvenile lethal and
inducible ARG1-deficient mouse models using AAV delivery
[59, 62, 66], it is likely only a matter of time before human
trials will be initiated.

Non-urea cycle functions of arginase-1

ARG not only plays a vital role in urea cycle metabolism but
is also known to affect a variety of other systems in ways that
are not yet fully understood. Related to the cardiovascular
system, there has been intense interest in L-arginine metabolic
pathways since this amino acid is the substrate required for
both the synthesis of vasorelaxant nitric oxide by endothelial
nitric oxide synthase (eNOS) as well as for being the key
substrate of ARG1 [82]. L-Arginine is found in endothelial
cells at levels far exceeding the K,,, for eNOS, indicating that
substrate is not a limiting factor in vivo. Yet, infusion studies
of L-arginine often enhance vasodilatation in an eNOS-
dependent manner, a phenomenon referred to as the “arginine
paradox” [83]. High arginase activity is associated with car-
diovascular dysfunction potentially by limiting available sub-
strate for eNOS and by excessive ornithine that can lead to
vascular structural problems [84]. While the relationship of
arginase with NOS activity is complex, inhibition of arginase
has been shown in small-scale human studies to improve car-
diovascular health in patients with coronary artery discase,
type 2 diabetes, heart failure, hypertension, or following re-
suscitation after cardiac arrest [84]. It should be mentioned
that some of the cardiovascular actions of arginase may be
mediated by ARG2 and not by ARGI.

ARGI is also known to play a large role in the immune
system and cancer through the ability of the enzyme to alter
macrophage and myeloid-derived suppressor cell (MDSC)
states [85]. Macrophages are generally divided into two
groups—M 1 macrophages that are responsible for inflamma-
tion and immunity and M2 macrophages that promote resolu-
tion of inflammation, wound healing, and aid in tumor growth,
with ARG1 expression being a hallmark marker of M2 mac-
rophage expression. Ron receptor kinase activation induces
ARG activity [86], leading to attenuation of the M1 pheno-
type. An increase in tumor-associated MDSCs is a key feature
of the malignancy-mediated inflammatory response and a fac-
tor leading to T cell suppression in cancer [87]. ARGI-
expressing MDSCs can deplete arginine in the tumor micro-
environment leading to accumulation of ornithine for poly-
amine synthesis in cancer cells. Thus, via its ability to deplete
arginine, ARG1-expressing cells can regulate the production
of nitric oxide and modulate T lymphocyte function [88].

ARG1 is also implicated in airway hyperresponsiveness in
asthma and airway inflammation [89]. Chronic asthma

patients have a 4.4-fold increase in ARG1 expression com-
pared to controls, while murine models of acute airway in-
flammation show an 11-fold increase in expression of the
enzyme [90].Very high doses of L-arginine are beneficial in
murine airway hyperresponsiveness models by reducing
levels of TH2 cytokines, eotaxin, TGF-{31, and ovalbumin-
specific IgE [91]. Additionally, inhibition of ARG1 expres-
sion through the use of a shRNA decreases IL13-induced
airway hyperresponsiveness in mice [92].

Arginase plays a key role in maintaining levels of ornithine
for use in polyamine synthesis [84]. Polyamines such as pu-
trescine, spermidine, and spermine are derived from ornithine
via ornithine decarboxylase (ODC). ARGl KO mice have
increased expression of vital polyamine enzymes ornithine
aminotransferase (OAT) and spermidine/spermine-N1-acetyl-
transferase (SSAT) in the liver; however, the levels of poly-
amines were highly variable and few significant trends were
seen in the KO mouse tissues [93]. Conversely, overexpres-
sion of arginase in mouse macrophages leads to significant
increases in putrescine and spermidine when cells are stimu-
lated with either lipopolysaccharide or 8-Bromo-cAMP [94].

Concluding thoughts and future outlooks

Several lingering questions remain relating to the unique clin-
ical manifestations of ARG1 deficiency among urea cycle
disorders. In particular, is it excess arginine contributing to
the main neurological features of the disease, or is it other
toxic guanidino metabolites, diminished nitric oxide produc-
tion, altered polyamine biosynthesis, or a combination of all
these metabolic derangements in various regions of the brain
and other tissues? The development of ARG 1-deficient mouse
models has revealed hyperargininemia in concert with dimin-
ished amounts of several other amino acids that affect feeding,
leading to a wasting phenotype [57, 66]. It remains an enigma
as to why the disorder is so much more severe in mice than in
humans. Differences in extrahepatic ARG1 (and ARG2) ex-
pression patterns between humans and rodents are likely to
explain these differences. Going forward, strategies that can
rescue the severe phenotype of ARG1 KO mice should offer
promise for similar therapeutic approaches in humans, al-
though this remains to be seen. How much expression of liver
ARG is necessary to restore adequate urea cycle function in
ARGTH deficiency? Based on AAV delivery experiments in
mice [66], it is likely that at least 15 % of normal levels are
required, but this may not be enough to rescue the neurolog-
ical sequelae. Adequate ARG1 expression may need to be
present in precise metabolic zones of liver, in addition to prop-
er expression in erythrocytes, immune cells [95], and various
structures in the brain to adequately control pathophysiology.

Rapid advances have been achieved in modeling diseases
in vitro using appropriately differentiated induced pluripotent
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stem cells (iPSCs) from patients, combined with gene-editing
tools to create “repaired” cells that are genetically identical to
the patient cells except for the gene mutation site [96, 97].
Since ARG1 deficiency is so rare and obtaining adequate,
unlimited supply of tissue (e.g., liver, blood, brain) from these
patients is impossible, adopting these methodologies to study
ARGI deficiency is paramount. We have developed iPSC
lines from three separate patients and have initiated the pro-
cess to gene-edit the cells (unpublished observations). Thus,
comparisons can be carried out at the cellular, transcriptomic,
proteomic, and metabolomics levels of gene-edited versus
parental-mutated iPSCs that have been differentiated to
hepatocyte-like cells (and/or other cell types expressing
ARG, e.g., neuronal cells). This will enable insights into
biochemical regulatory pathways, besides the urea cycle, that
are disrupted/augmented, as well as detection of novel metab-
olites in ARG1 deficiency and may also lead to cellular phe-
notypes that would predict pathogenesis. Moreover, strategies
to introduce gene-edited hepatocyte-like cells in a patient-
specific manner may eventually be feasible, if engraftment
strategies can be ameliorated. Hopefully, these types of studies
will lead to new insights into this disorder and lead to new
therapeutic options.
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