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Abstract Increased dietary fat intake and lipolysis result in
excessive lipid availability, which relates to impaired insulin
sensitivity. Over the last years, several mechanisms possibly
underlying lipid-mediated insulin resistance evolved. Lipid
intermediates such as diacylglycerols (DAG) associate with
changes in insulin sensitivity in many models. DAG activate
novel protein kinase C (PKC) isoforms followed by inhibitory
serine phosphorylation of insulin receptor substrate 1 (IRS1).
Activation of Toll-like receptor 4 (TLR4) raises another lipid
class, ceramides (CER), which induce pro-inflammatory path-
ways and lead to inhibition of Akt phosphorylation. Inhibition
of glucosylceramide and ganglioside synthesis results in im-
proved insulin sensitivity and increased activatory tyrosine
phosphorylation of IRS1 in the muscle. Incomplete fat oxida-
tion can increase acylcarnitines (ACC), which in turn stimu-
late pro-inflammatory pathways. This review analyzed the
effects of lipid metabolites on insulin action in skeletal muscle
of humans and rodents. Despite the evidence for the associa-
tion of both DAG and CER with insulin resistance, its causal
relevance may differ depending on the subcellular localization
and the tested cohorts, e.g., athletes. Nevertheless, recent data
indicate that individual lipid species and their degree of fatty
acid saturation, particularly membrane and cytosolic C18:2

DAG, specifically activate PKCθ and induce both acute
lipid-induced and chronic insulin resistance in humans.
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Introduction

Obesity predisposes for type 2 diabetes mellitus (T2DM),
non-alcoholic fatty liver disease (NAFLD), cardiovascular
mortality and cancer [1–3]. All these disorders tightly relate
to impaired insulin action, i.e., insulin resistance (IR). Obesity
is characterized by excessive accumulation of triacylglycerols
(TAG) primarily in adipose tissue [4]. When storage capacity
is exceeded, lipids are released into the circulation as fatty
acids (FA) and ectopically stored in liver, skeletal muscle,
pancreas, and heart. Accumulation of intramyocellular lipids
(IMCL) and hepatocellular lipids is generally higher in obesity
and T2DM [5, 6] and correlates with IR [7, 8]. Unlike TAG,
lipid species such as diacylglycerols (DAG), ceramides
(CER), and acylcarnitines (ACC) have been linked to devel-
opment of IR in different tissues [9]. However, their mecha-
nisms of action and causative role for IR have remained
unclear.

Skeletal muscle accounts for approximately 80–90 % of
insulin-stimulated glucose disposal in the postprandial state
[10]. Thus, we focus here on studies exploring lipid-induced
IR in muscle, while the role of other tissues is beyond the
scope of this review. We review human and animal studies
addressing the effects of lipids, lipid metabolites and their
composition on insulin sensitivity, which were accessible in
PubMed (2000–2015). The search terms comprised all possi-
ble combinations, abbreviations and synonyms of Bsaturated
unsaturated fatty acids insulin resistance^, Bdiacylglycerol
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ceramides insulin resistance^, “acylcarnitines insulin resis-
tance”, BTLR4 inflammation ceramides insulin resistance^,
Bfatty acid metabolism^ Blipotoxicity lipid intermediates^,
and Blipids insulin resistance^. Additional references were re-
trieved from reviewing the references cited in selected articles
and the authors’ knowledge.

Lipid metabolism and interaction with insulin
signaling

Dietary and hepatic TAG are transported by lipoproteins as
chylomicrons or VLDL. Membrane-bound lipoprotein lipase
releases FA and facilitates their entry into the cell by transport
proteins and partially by diffusion [11, 12] (Fig. 1). Within
cells, cytoplasmic fatty acid binding protein (FABPc) binds
and activates free FA to fatty acyl-CoA (FA-CoA). FA-CoA
enter different metabolic pathways, depending on cellular en-
ergy demand, FA chain length, and saturation [12, 13]. Trans-
port of long-chain (LC) FA-CoA (13–21 carbons) into the
mitochondrial matrix for β-oxidation and tricarboxylic acid
(TCA) cycle is regulated by the carnitine shuttle [14]. Short-
chain (SC) and medium-chain (MC) FA-CoA (<6 and 6–12
carbons) bypass the carnitine shuttle and serve as ready-to-go
energy source [13]. During low energy demand, LCFA-CoA
are stored as TAG in droplets or channeled into glycerolipid
biosynthesis, while only palmitoyl-CoA serves for
sphingolipid synthesis [13, 15]. Overall, intramyocellular lipid
metabolism results from a complex interplay between several
tightly regulated processes such as lipogenesis, lipolysis, lipid
droplets trafficking, and organelle interaction (reviewed
in [9, 16]).

The DAG-PKC pathway

DAG consist of two FA bound to glycerol and the most abun-
dant isoform, 1,2-DAG, serves as component of membranes as
well as second messenger for signal transduction [17]. Sources
of 1,2-DAG are (i) de novo synthesis including esterification of
two LCFA-CoA to glycerol-3-phosphate, (ii) cleavage of
glycerophospholipids and phosphatidylinositols by phospholi-
pases C and D [18], or (iii) breakdown of TAG (Fig. 1). During
de novo synthesis, esterification at the first position of DAG
occurs in different subcellular compartments. Saturated FA
(SFA) are processed in mitochondria, peroxisomes, and endo-
plasmic reticulum (ER), while unsaturated FA (UFA) in ER
[19]. Hydrolysis of phospholipids yields DAG with different
FA composition [18]. Phosphatidylinositol-derived DAG have
stearic acid at position 1 and arachidonic acid at position 2,
while phosphatidylcholine-derived DAG have mainly SFA
and monounsaturated FA (MUFA) at position 2 [18]. Chain
length and saturation of FA moieties give rise to many 1,2-
DAG species, affecting their physicochemical properties, rates

of membrane fusion as well as interactions with membrane-
associated proteins [20].

DAG interact and activate proteins containing at least one
conserved 1 (C1) domain in their sequence. DAG composition
determines the specificity and affinity to C1 domains and al-
location of proteins to different intracellular DAG pools, i.e.,
plasma membrane or lipid droplet (LD) [18]. Novel PKC
(nPKC) isoforms PKCθ, PKCδ, PKCβ, and PKCε, are par-
ticularly activated by DAG containing at least one UFA and
specifically by n−3 and n−6 polyunsaturated FA [21] with
different potencies [22]. Activation of PKCθ induces inhibi-
tory phosphorylation of muscle insulin receptor substrate
(IRS) at several residues, but mainly pSer1101 and pSer307
[23, 24] have been linked to decreased phosphatidylinositol 3-
kinase (PI3K) and Akt activity and thereby IR [23, 24]
(Fig. 2). Other isoforms, such as PKCδ and PKCβ have also
been linked to IR in skeletal muscle [25]. In rat liver, PKCδ
increased after short-term lipid infusion [26] and PKCε after
3 days on high-fat diet (HFD) [27].

The TLR4-CER pathway

CER are sphingosines covalently bound to one FA and serve
as membrane components or second messengers to various
cellular stress stimuli [28, 29]. In mammals, more than 200
distinct CER can arise from (i) de novo synthesis by conden-
sation of palmitoyl-CoA and serine via serine palmitoyl trans-
ferase and dihydroceramide desaturase (Fig. 1); (ii)
sphingomyelin hydrolysis; and (iii) degradation of high-
order sphingolipids via the Salvage pathway [29–31].

Increased FA supply and virtually all stress stimuli can
raise intracellular CER [28]. Binding of SFA to the Toll-like
receptor 4 (TLR4), potentially mediated by fetuin A [32],
stimulates de novo synthesis of CER [33] (Fig. 2). In parallel,
pro-inflammatory pathways related to IR are activated, includ-
ing IκB kinase (IKK), mitogen activated protein kinase
(MAPK), c-Jun N-terminal kinase (JNK), and cytokine ex-
pression [34, 35]. CER accumulation decreases Akt activity
and insulin sensitivity independently of IRS1/2 and PI3K [33,
34]. This may result from activation of protein phosphatase
2A, followed by inhibitory Akt dephosphorylation [29].

ACC and incomplete fat oxidation

ACC are formed when LCFA-CoA enter mitochondria for β-
oxidation and TCA cycle by the carnitine shuttle. Levels of
ACC may vary depending on the metabolic conditions, but
can accumulate during decreasedβ-oxidation or when rates of
β-oxidation exceed rates of TCA cycle [14]. Abnormal FA
oxidation can lead to impaired mitochondrial function, includ-
ing the inability to switch to carbohydrate oxidation, depletion
of TCA intermediates, and accumulation of ACC, thus con-
tributing to IR [36–38] (Fig. 2). Nevertheless, evidence for a
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direct interaction between ACC and insulin signaling is miss-
ing. ACC species could also induce IR indirectly via NFκB
signaling and cytokine secretion as shown in mouse leukemic
macrophages and human epithelial cells [39]. The increased
pro-inflammatory response can subsequently induce IR in var-
ious tissues, including muscle [40].

Other lipids and insulin resistance

Glucosylceramides These sphingolipids are generated via
glycosylation of CER by glucosylceramide synthase and can
be further transformed into gangliosides [41] (Fig. 1). They
are ligands and modulators of receptor activity. The synthesis

of ganglioside monosialo 3 (GM3) is induced by TNF-α and
paralleled by decreased tyrosine phosphorylation of the insu-
lin receptor and IRS1 (IRS1-tyrPx), resulting in impaired
insulin-stimulated glucose uptake in 3T3-L1 adipocytes [42].
However, in vitro studies suggest that GM3 does not induce
IR in myocytes [43]. Depending on its acyl chain composi-
tion, glucosylceramides (GluCER) can stimulate innate im-
mune cells [44].

Hydroxy fatty acids These lipid intermediates arise as prod-
ucts of lipid oxidation [45]. Patients with diabetes and IR
show increased concentrations of hydroxy fatty acids (HFA)
in serum and feces [46, 47]. Recently, a new class of HFA,

Fig. 1 Metabolic pathways leading to the production of lipid
intermediates. After the hydrolysis of circulating triacylglycerols (TAG)
by membrane-bound lipoprotein lipase (LPL), free fatty acids (FFA) enter
the cell by transport proteins or partially by diffusion. Cytoplasmic fatty
acid binding protein (FABPc) activates FFA to fatty acyl-CoA (FA-CoA),
which are redirected to different metabolic pathways: (i) de novo
synthesis of ceramides (CER) by condensation of palmitoyl-CoA and
serine via serine palmitoyl transferase (SPT); (ii) de novo synthesis of
diacylglycerols (DAG) including esterification of two FA-CoA to
glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferase
(GPAT) and 1-acylglycerol-3-phosphate acyltransferase (AGPAT) and/or
(iii) mitochondrial β-oxidation. Decreased or incomplete β-oxidation,
i.e., when rates of β-oxidation exceed the rates of tricarboxylic acid

(TCA) cycle, results in accumulation of acylcarnitines (ACC).
Glycolysation of CER by glucosylceramide synthase (GluCER) yields
glucosylceramides (GluCER), which can be further converted to
ganglioside monosialo 3 (GM3) by GM3 synthase (GM3S). TAG are
produced after the addition of FA-CoA to DAG by diacylglycerol
acyltransferase (DGAT). Another sources of DAG are hydrolysis of
TAG and cleavage of phospholipids by phospholipases C and D
(PLC/PLD). Finally, CER can be also produced by degradation of
sphingolipids. Abbreviations: ACS Acyl-CoA synthetase, CD36 cluster
of differentiation 36, ER endoplasmic reticulum, FABPmmembrane fatty
acid binding protein, FATP fatty acid transport protein, IP3 inositol
triphosphate, LD lipid droplet, PM plasma membrane, VLDL (very low
density lipoproteins)
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palmitic acid hydroxy-stearic acids (PAHSA) have been pos-
itively linked to insulin sensitivity in adipose tissue of humans
and mice [48] and thus could have metabolically beneficial
effects, similar to n−3 FA and endogenous palmitoleate [49,
50]. However, the relevance in human muscle may be minor
due to low muscular concentrations of PASHA and their
downstream mediators [48, 51].

Studies on lipid-mediated insulin resistance

These studies employed experimental alteration of circulating
lipids (interventional studies, Tables 1 and 2) or compared
groups with different degrees of IR (cross-sectional studies,
Table 3) in human and rodent muscles.

Interventional studies

To study early mechanisms underlying lipid-induced IR, pro-
tocols of short-term lipid infusion or HFD were developed. At
least 3–4 h of lipid infusion are needed to detect a decrease in
whole-body insulin-stimulated glucose disposal, due to a se-
quence of events starting with a relevant raise in circulating

insulin (∼0.5 h) and FA (1–1.5 h), followed by the
intramyocellular accumulation of lipid metabolites (∼2.5 h)
[60, 75, 76]. Fat emulsions Intralipid 20 % (53 % n−6 PUFA,
24%UFA, 16% SFA) and Liposyn II (66% n−6 PUFA, 18%
UFA, 12% SFA) [77, 78] are commonly used and consistently
induce IR [79, 80]. On the other hand, a wide range of HFD,
differing in energy and fat content and FA composition are
employed, leading to variable effects on insulin sensitivity.
Most studies assess insulin sensitivity in vivo with
hyperinsulinemic-euglycemic clamps (HEC) and/or ex vivo
from muscle biopsies at different time points.

Rodents Liposyn II or Intralipid 12% infusion in rats resulted
in IR at 5 h [23, 53], but only Liposyn II infusion was accom-
panied by intramyocellular DAG accumulation, increased
PKCθ activity, decreased IRS1-tyrPx and associated
PI3K activity [23]. In contrast, Intralipid 20 % increased
Akt activity and IRS1-tyrPx [53]. Uniformly, CER pools
were unaffected (Table 1).

Another study directly compared lipid emulsions differing
in FA saturation in rats. Infusions of lard oil (rich in SFA) or
soybean oil (rich in UFA) induced IR, decreased muscle Akt
and increased DAG [52]. However, only lard oil raised CER,

Fig. 2 Interaction of lipid intermediates with insulin signaling and
inflammatory pathways in the muscle. Increased diacylglycerols (DAG)
interact and activate novel isoforms of protein kinase C (PKC), such as
PKCθ, PKCδ, and PKCβ. Activation of PKCθ in muscle induces
inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) with
subsequent decrease in phosphatidylinositol 3-kinase (PI3K), Akt and
glucose transporter 4 (GLUT4) activities, overall leading to decreased
glucose (GLU) uptake. Ceramides (CER) impair glucose uptake by

decreasing the activity of Akt. Acylcarnitines potentially induce the
activity of nuclear factor kappa-light-chain-enhancer of activated B-
cells (NFκB) and inflammatory response. Saturated fatty acids (SFA)
bind to toll-like receptor 4 (TLR4), potentially by fetuin A, inducing
inflammatory response and increased CER synthesis. Abbreviations:
cJNK c-Jun N-terminal kinase, ER endoplasmic reticulum, FA fatty
acids, FFA free fatty acids, IR insulin receptor, IKKβ IκB kinase, LD
lipid droplet, SFA saturated fatty acids, TCA tricarboxylic acid
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indicating that de novo CER synthesis is exclusively induced
by SFA. Moreover, inhibition of CER synthesis prevented
from lard oil, but not soybean oil-induced IR. Thus, SFA
and UFA induce muscle IR by distinct pathways.

Although HFD induces obesity and IR in rodents [81], the
underlying mechanisms are not fully understood. This could
be a consequence of a dietary composition, in that diets rich in
SFA or UFA could lead to preferential accumulation of CER
or DAG. Indeed, SFA induced IR via TLR4-mediated increase
in CER [33]. Accordingly, HFD containing similar levels of
SFA and UFA induced IR with concomitant increase in both
CER and DAG levels [55]. Furthermore, genetic ablation of
CER synthesis led to lower CER, higher Akt activity, but only
partial protection from HFD-induced IR. Thus, it is conceiv-
able that DAG mediate the residual IR in these mice.

Not all studies support the concept that SFA and TLR4 are
exclusively responsible for ceramide-induced IR. For exam-
ple, TLR4-deficient mice on SFA-rich HFD developed glu-
cose intolerance [82]. Furthermore, SFA-rich HFD increased
intramyocellular DAG, PKCθ, and PKCε activation and im-
paired insulin signaling in mice [57]. CERwere not measured,
thus, their possible role cannot be excluded. However, rats on
SFA-rich HFD also showed 125 % higher intramyocellular
DAG, but unchanged CER [83]. On the other hand, mice on
HFD rich in either lard or safflower oil (n−6 PUFA) had
increased CER but no alterations in DAG [84].

These inconsistencies may result from different study de-
signs, i.e., lipid infusion vs. HFD, acute vs. chronic interven-
tion, or different species and strains used. Of note, there is no
diet containing exclusively either SFA or UFA. Also, different
bioavailability and metabolism of dietary fat likely affects
circulating and intracellular lipid class, composition and/or
intracellular localization. Mice developed muscle IR after
3 weeks on HFD, but only DAG containing 16:0, 16:1,
18:1, 18:2, and CER C18:0 were increased [56]. Interestingly,
13 weeks later, the DAG and CER profiles changed,
underlining the relevance of time-dependent changes for un-
derstanding the cause-consequence relationships. In this con-
text, onset of IR due to excessive endogenous lipolysis and
elevated FA associated with increases in DAG containing at
least one UFA, while CER remained unchanged [85]. As to
FA chain length, only saturated MC-FA but not LCFA de-
creased glucose tolerance in rats independent of impaired in-
sulin signaling [54]. LCFA rather increased intramyocellular
ACC but not DAG [54].

Regarding other lipid species, ob/ob mice and ZDF rats
showed higher levels of muscle GM3 [86, 87], but dietary
intervention led to high GluCER in adipose rather thanmuscle
tissue [43]. Moreover, in vitro treatment with GluCER/GM3
induced IR, whereas inhibition of GluCER/GM3 synthesis
prevented from IR in adipocytes, but not myocytes. On the
other hand, in vivo pharmacological and genetic inhibition of
GM3 in mice enhanced insulin signaling and prevented from

HFD-induced IR in muscle [87, 88]. Thus, GM3 could be
involved in muscle IR and may serve as a target to for its
treatment. Finally, lipids such as n−3 FA [50], palmitoleate
[49] and PASHA in adipose tissue [48] may even positively
associate with glucose tolerance and insulin sensitivity in
animals.

Humans Liposyn II infusion led to increased serum FAwith
subsequent IR, characterized by impaired glucose transport/
phosphorylation followed by decreased glycogen synthesis in
healthy [75, 79] and in T2DM humans [89]. Also, muscle
DAG increased with concomitant activation of PKCβII and
PKCδ at 6 h, while CER remained unchanged [25]. Interest-
ingly, IκB-α, the inhibitor of NFκB, was reduced, suggesting
a link between PKC activation and NFĸB-signaling. Indeed,
PKCδ binds to TIRAP, a TLR4 downstream adaptor protein,
thereby inducing activation of IR-associated kinases such as
IKK, MAPK, JNK, and expression of pro-inflammatory fac-
tors in human monocytes [90] (Fig. 2). This mechanism could
be also relevant in myocytes, where TLR4 and related genes
are expressed [91] (Table 2).

Intralipid 20 % infusion also resulted in IR in most studies,
frequently associated with changes in DAG but not other lipid
species [59, 60, 62]. As in rodents, individual DAG species
and their compartmentalization better correlate with the onset
of lipid-induced IR. Membrane C18:2/C18:2 [59] and C18:1,
C18:2, and C18:3 [62] DAG species accumulated in human
muscle after lipid infusion. By performing serial muscle biop-
sies, we recently described the sequence of events determining
the onset of lipid-induced IR [60]. At 2.5 h, both membrane
and cytosolic DAG (mostly 18:0, 18:1, and 18:2) were tran-
siently increased, while CER and ACC remain unchanged. At
4 h, PKCθ and pIRS1-Ser1101 increased and PI3K and Akt
phosphorylation decreased. These results underlie the pres-
ence of dynamic changes in the individual components of
lipid-induced IR and the importance of proper timing when
designing such experiments. Mild and prolonged (48 h) in-
crease in plasma FA resulted in IR and TLR-related response,
without changes in DAG, CER, and ACC [61]. Likely, this
studymissed an early rise in DAG,while the subsequent effect
of inflammation was detected. Similarly, at 5 h of lipid infu-
sion, total DAG and CER were not increased, neither in males
nor in females [58]. Another study employing 20 % Intralipid
reported increases in total and several species of CER along
with IR [63]. However, this study had a time lag of 1 week
between baseline and post-intervention biopsies and did not
measure DAG. Finally, training status may determine the role
of lipid species in lipid-induced IR. In contrast to sedentary
humans, IR may dissociate from the muscle DAG accumula-
tion upon lipid infusion in healthy trained males [62].

Lipid infusion may concentration-dependently decrease
glucose transport/phosphorylation as demonstrated by an im-
paired rise in intramyocellular glucose-6-phosphate (G6P)
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during fasting peripheral insulinemia with euglycemia
(∼2.5 h) followed by hyperglycemia [92] as well as
hyperinsulinemia with euglycemia (∼1 h) [93]. During this
time period (∼1 h), which precedes the rise in muscle DAG,
lipid oxidation is already increased, while glucose oxidation
decreased [75, 76], suggesting the additional mechanisms.
Operation of the classical Randle cycle postulating that in-
creased FFA availability will compete with glucose for mito-
chondrial oxidation and thereby give rise to G6P [94] is highly
unlikely because of the lack of G6P increase during lipid in-
fusion vs. control conditions [5]. However, mitochondrial
emission of reactive oxidative species (ROS) is higher in skel-
etal muscle of obese and acutely increases in lean 4 h after
HFD [95]. Furthermore, short-term reduction in circulating
lipids by hypolipidemic agent Acipimox improved insulin
sensitivity, decreased whole-body lipid oxidation and reduced
ROS production and FFA-linked oxidative capacity in the
muscle of T2DM patients [96]. Increased ROS could directly
contribute to lipid-induced IR in skeletal muscle, by impairing
the insulin signaling via several mechanisms [97]. However,
studies exploring time-dependent changes in ROS production
and their relationship to lipid oxidation during lipid infusion in
humans are missing. In lean rats, lipid infusion induces IR
along with concomitant stimulation of ROS production and
NFkB signaling [98].

Oral administration of UFA-rich soybean oil-induced IR to
similar degree as intravenous Intralipid 20 % infusion [59]. At
5 h after the lipid drink, muscle PKCθ increased by 50 %
indicating activation by DAG. Not only CER, but also DAG
were unchanged at 5 h [59], likely due to a transient increase
in DAG, as discussed above for the Intralipid 20 % infusion
studies [60]. Importantly, gender determines the response to
different HFD in humans. Oleic acid-rich HFD improved in-
sulin sensitivity and associated with increased TAG levels in
women [64]. SFA-rich HFD increased CER pools in men,
while MC-ACC were elevated in women and correlated in-
versely with insulin sensitivity. However, others found only a
trend for increased ACC in obese men and women 5 days after
HFD, compared to lean controls [99]. Thus, interventional
human studies show that specific DAG species and/or their
compartmentalization play a critical role in lipid-induced IR.

Cross-sectional studies

Groups with normal insulin sensitivity were compared to
those with different degrees of IR or T2DM (Table 3).

Rodents In rodents, either targeted mutagenesis and/or dietary
interventions are prerequisite to induce obesity and T2DM.
Strain-dependent differences in the susceptibility to HFD-
induced metabolic defects and lipid accumulation were com-
pared in five inbred mouse strains [100]. In response to HFD,
BL/6, 129X1, DBA/2, and FVB/N mice developed glucose

intolerance, but only FVB/N accumulated muscle DAG and
CER. Additionally, BALB/c mice remained glucose tolerant
and had a trend to lower muscle DAG. Another study con-
firmed the preferential increase in muscle DAG in FVB com-
pared to BL/6 mice in response to HFD [101]. Thus, the ge-
netic background can indeed determine the tissue-specific
metabolic response to dietary interventions.

Humans Intramyocellular TAG, DAG, and CER were in-
creased in obese insulin resistant compared to healthy lean
[69]. All lipids were increased also in obese glucose tolerant
as well as intolerant humans, but only CER were significantly
elevated in male first-degree relatives of patients with T2DM
[66]. Nevertheless, both DAG and CER independently pre-
dicted IR in these groups. In contrast, CER, but not DAGwere
higher only in obese females [70, 72], pointing to gender-
specific differences. Another study also found higher CER
in obese insulin resistant humans [65], but DAG were not
reported. Some studies showed that mainly CER with
C21:1, C20:4, C20:0, C18:0, and C16:0 FA rather than total
CER associated with IR [69, 70, 72]. Even more, total CER in
sedentary [67] and certain DAG species in muscle of athletes
[66, 73] correlated positively with insulin sensitivity in two
studies (Table 3).

Recently, we demonstrated that IR clearly associates with
muscle DAG accumulation in obese and T2DM patients,
while CER and ACC remained unchanged [60]. Only the
cytosolic, but not membrane DAG fraction was increased in
obesity, while both fractions were higher in T2DM.Moreover,
only certain DAG species and PKCθ translocation clearly
correlated with IR. After adjustment for BMI, correlations
were strongest for membrane fractions of UFA-containing
DAG (C18:1, C18:2, C20:4) [60]. Of note, this exactly mir-
rors the observations in skeletal muscle of lipid-infused
healthy humans, indicating that lipid infusion experiments
may indeed reflect the pathophysiological condition of com-
mon IR [60]. DAG with at least one UFA are better activators
of PKC [21, 102]. But also SFA-rich DAG correlated
with IR in persons with the so-called metabolic syn-
drome [103]. Similar findings were observed in obese,
T2DM, and endurance-trained humans [104]. Insulin
sensitivity was decreased in obese and T2DM humans
and correlated negatively with membrane DAG, which corre-
lated positively with PKCε activity. Particularly, the saturated
DAG (C18:0/C20:4, C16:0/C16:0, C18:0/C18:0) were in-
creased in obesity and T2DM [104].

It has been considered a paradox that endurance-trained
highly insulin-sensitive humans also have increased levels of
IMCL [105] (Table 3). Compared to sedentary T2DM, ath-
letes have more type I fibers, which in general contain more
lipids [106] but are characterized by higher glucose-handling
capacity [107]. Trained humans exhibited increased total
DAG, saturated DAG and DAG containing one UFA, which
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correlated positively with muscle insulin sensitivity, while
obesity was associated with DAG species comprising two
UFA [73]. In one study, endurance-trained individuals had
similar DAG levels but lower degree of DAG saturation than
healthy sedentary humans [71]. Furthermore, unsaturated and
saturated CER were increased in obese, but not in sedentary
lean and athletes. In contrast, other trained athletes had higher
CER than glucose-intolerant persons; unfortunately DAG
were not assessed [67].

These studies underline that total lipid accumulation per se
is not prerequisite to induce IR. More likely, subcellular dis-
tribution of specific DAG and/or CER as well as muscle fiber
composition determines the interference with insulin
signaling.

Lipid-induced IR: different fat, different pathways?

Extensive studies in rodents provided novel insights into
mechanism of lipid-mediated IR, particularly because they
allowed invasive studies of tissue-specific modulation of
metabolic pathways. However, the results are heteroge-
neous in certain aspects, likely due to differences in ani-
mal models, type, dosage, and duration of interventions.
In humans, divergent data not only result from studying
different populations, but rather from limitations to mon-
itor time-dependent changes in various tissues. Common
to all studies are differences in the analysis and reporting
of lipid metabolites. In this context, absence of changes in
total lipid contents does not exclude marked changes in
specific lipid metabolites. Also, their intracellular distri-
bution between membrane or cytosolic fractions or lipid
droplets might affect their interference with insulin action.
Regardless of the experimental differences and tech-
niques, there is compelling evidence that lipid metabolites
play a pivotal role in the development of IR. The different
lipids not only directly inhibit insulin signaling, but also
may stimulate pro-inflammatory pathways, alter mito-
chondrial function and raise ROS production [97], which
in turn accelerates IR.

In human muscle, the current data indicate that both
SFA and UFA can stimulate the DAG-PKC pathway to
induce IR, while exclusively, SFA activate the fetuin-
TLR4-CER pathway. Specifically, UFA-enriched DAGs,
such as C18:1 and C18:2 DAGs, rapidly impair proxi-
mal insulin signaling via nPKC. Nevertheless, more re-
search is needed to address the crosstalk between these
and other pathways and the interference with other
known or yet unidentified lipid metabolites. Understand-
ing of the tissue-specific features of lipid-induced IR
will be important for further exploiting lipids as target
for future strategies to treat patient with IR and T2DM.
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