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Abstract Metabolic oncology is an exciting new field in
cancer research, offering a new window to cancer’s molecular
plasticity and promise for the development of effective,
cancer-selective therapies and novel biomarkers. It is based
on the realization that cancer’s unique metabolism (known
since Warburg’s report in 1923) with suppression of mito-
chondrial glucose oxidation and upregulation of cytoplasmic
glycolysis is not a secondary but a primary event, offering
many growth advantages to cancer cells. Many mechanisms
have been revealed, including growth factors, oncogenes, and
mutations, all contributing to a suppression of mitochondria,
similar to what takes place in hypoxia. This suppression leads
to inhibition of mitochondria-driven apoptosis, promotes pro-
liferation, and enhances angiogenesis and metastatic potential.
A number of molecular tools and small molecules targeting
metabolic enzymes, including pyruvate kinase, pyruvate de-
hydrogenase kinase, isocitrate dehydrogenase, and lactate de-
hydrogenase, have been developed, inhibiting cancer growth
in vitro and in vivo in several cancer types. Several have
already entered early-phase trials, a great translational success
considering the young age of the field (less than 10 years).
Here we review the mechanisms and effects of these metabol-
ic modulators and the rationale for further development. This
rapidly accumulating knowledge allows some optimism that
this may prove to be a paradigm shift in the way we under-
stand and treat cancer.
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Introduction

The majority of chemotherapeutic drugs for cancer inhibit
pathways fundamental to the life of all cells, leading to ad-
verse effects on healthy tissues [1]. In addition, traditional
drug development in cancer has been focusing on a single
molecular pathway, following the “one gene - one drug”
approach. It became apparent however that most tumors are
characterized by multiple molecular abnormalities so that
when the therapies are offered even in combination of 2-3
drugs, the tumor eventually relapses. It is a rather rare example
to find therapies that are effective and not toxic. This requires
the identification of molecular abnormalities that are not only
critical for the life of cancer—but not normal cells—but are
also the dominant or the only molecular abnormality within
the tumor. For example, this can be seen in certain leukemias
or tumors where a mutation in the majority of cancer cells not
only dominates their molecular phenotype but is also critical
for their survival, explaining the great success of agents such
as Gleevec for chronic myelogenous leukemia [2] or
Herceptin for certain breast cancers [3]. Yet, most cancers,
like glioblastoma for example, are characterized by several
cellular phenotypes within each tumor and yet, in each of
these cell types, there are several genetic and molecular ab-
normalities [4], obviously not susceptible to a single or even a
combination of two to three drugs. Is it possible to identify a
common denominator across all of these abnormalities that is
not only critical for the survival of cancer cells but is also not
present in normal cells? And to push the envelope even
further, is it possible that this common denominator is also
present in cancer stem cells, so that if targeted, tumor relapse
would be limited as well [5]? In other words, is there an
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Achilles’ heel for such complex and molecularly plastic tu-
mors? Recent work over the past 10 years suggests that such a
common denominator, unique to cancer cells, may exist and
be no other than the unique metabolism of cancer cells, first
identified by Otto Warburg, more than 90 years ago [6].
Unfortunately, the work of Warburg, who was awarded the
Nobel Prize for his work on metabolism, did not translate in
cancer therapies for many decades as it was wrongly assumed
that the unique cancer metabolism was a consequence, not a
cause or contributing factor in cancer. We now know that if
not causal, like in certain examples of mutations in key met-
abolic enzymes, this metabolic remodeling is a strong contrib-
uting or promoting factor as it promotes proliferation, resis-
tance to apoptosis, and tumor angiogenesis, facilitating tumor
growth and metastasis. Even better, tumor metabolism is
typically different than that of normal cells. The development
of “metabolic modulators” over the past 10 years has already
entered early-phase trials. Although it sounds “too good to be
true” that metabolism is the long sought Achilles’ heel for
cancer, a new field has already opened. Metabolic oncology is
an exciting frontier in the battle against cancer, and this review
focuses on the rationale for the development of metabolic
modulators, concentrating on those that hold promise or al-
ready have entered human trials.

Cancer’s abnormal metabolism and its molecular
consequences

The cornerstone of metabolism in the cell is the mitochondrion.
Traditional biochemistry taught us that mitochondria’s main job
is to generate heat and energy (ATP). We now know that
although themost efficient means for ATP production lie within
mitochondria, ATP can be adequately produced outside of
mitochondria, through cytoplasmic glycolysis, at amounts
enough to support the energy-hungry cancer cells. We also
now know that mitochondria do much more: They produce
diffusible mediators that can regulate multiple molecular path-
ways in the cell and even the nucleus. They can also induce
apoptosis, an intriguing fact since the “provider of life” (i.e.,
ATP) can also be the provider of death for the cell. It was
perhaps this “paradox” that did not allow mitochondria to be
seen as targets for pro-apoptotic strategies until recently. There-
fore, suppression of mitochondrial function can suppress apo-
ptosis and alter cellular signaling toward a pro-proliferative
phenotype as we discuss below. It is thus not a surprise that
cancer cells have suppressed mitochondrial function.

Normally, cells metabolize glucose to pyruvate in the cy-
toplasm by glycolysis; then, this is converted by pyruvate
dehydrogenase (PDH) into acetyl-CoA, which enters the mi-
tochondrial Krebs’ cycle, where it is oxidized to eventually
produce the electron donors NADH and FADH2. These do-
nate electrons down a redox gradient in the electron transport

chain (ETC), while protons are pumped out of the mitochon-
dria and mitochondria-derived reactive oxygen species
(mROS; mostly the negatively charged superoxide) are gen-
erated, creating a membrane potential (ΔΨm) across the mi-
tochondrial inner membrane (Fig. 1). This process uses oxy-
gen as the final electron acceptor in Complex IVof the ETC
(forming water) and uses the stored energy of the ΔΨm to
produce and release ATP. As protons re-enter the inner mem-
brane, they release energy used to pump ATP out in the
cytoplasm and bring ADP in. A similar process is followed
in the oxidation of fatty acids, forming acetyl-CoA, which is
also oxidized in the Krebs’ cycle producing the same electron
donors. Thus, mitochondria process fuel (carbohydrates,
lipids, oxygen) to produce energy and have evolved to be
important fuel sensors. When fuel supply is ample, the growth
and differentiation of tissues can be kept under control by the
coordinated induction of apoptosis, producing effective cell
population control. In contrast, when fuel is limited, mito-
chondria suppress apoptosis in an attempt to preserve life
under stressed conditions. It is here that mitochondria can be
“fooled” by the cancer cells.

Let us say, for example, that oxygen is limited. This de
facto inhibits oxidative phosphorylation in the mitochondria.
Immediately, the mitochondria sense the lack of fuel and
ignite a series of mechanisms for the cell to (a) seek alternate
means of ATP production and (b) suppress apoptosis since
stress may be imminent:

(a) The expression of glucose transporters is increased and
more glucose enters the cell. This can be achieved by the
activation of HIF1α directly by hypoxia but—remarkably—
the mitochondrial suppression can also activate HIF1α. This is
because alpha-ketoglutarate (αKG), a Krebs’ product that is a
required cofactor for the prolyl-hydroxylases that de-stabilize
HIF1α, is decreased [7]. Independent of its stabilization, the
HIF1α transcription machinery, in part driven by the redox-
sensitive p53, may also be activated when the diffusible mROS
decrease (for example, H2O2 from superoxide’s dismutation
from manganese superoxide dismutase) [8–11]. Activated
HIF1α not only increases the expression of glucose transporters
but also increases the transcription of almost all the glycolytic
enzymes in the cytoplasm. Thus, with more glucose and acti-
vated glycolysis, ATP can be produced. Normally, the efficien-
cy of glycolysis for ATP is less than that of mitochondria (each
mole of glucose produces 36 mol of ATP in mitochondrial
glucose oxidation but only 2 mol of ATP in glycolysis), but
as glycolysis is enhanced, the cell may eventually compensate
for the ATP that is missing from the inhibited mitochondria.

(b) The next thing that happens is that mitochondria hyper-
polarize (increased ΔΨm) [12, 13]. The pro-apoptotic factors
stored inside mitochondria (like cytochrome c or apoptosis-
inducing factor) are unable to leak out, making cancer cells
resistant to mitochondria-dependent apoptosis. This is because
these factors leak through the mitochondrial transition pore
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(MTP), a mega-channel that, being voltage- and redox-sensi-
tive, tends to close while membrane potential is high and
mROS are low [14]. The mechanism for mitochondrial hyper-
polarization is not clear although it has been known since the
1980s to be a feature of most cancers [15]. One potential
mechanism is that glycolysis leads to a GSK-3β-driven trans-
location of the cytoplasmic hexokinase II (HK2) to the outer
mitochondrial membrane, where it binds and inhibits the major
channel that releases negatively charged ions, i.e., the voltage-
dependent anion channel (VDAC; a critical component of the
MTP), leading to a buildup of anions inside the mitochondria
[16, 17] (Fig. 1). Another mechanismmay be that the enhanced
production of ATP in the cytoplasm due to the enhanced
glycolysis causes a decrease in the ATP/ADP gradient in the
microdomains around the outer mitochondrial membrane, de-
creasing the function of ATP synthase and thus preventing the
re-uptake of the positively charged H+ ions back to the mito-
chondria [16]. Therefore, mitochondrial suppression supports a
state of apoptosis resistance, while adequate production of ATP
is maintained. Interestingly, HIF1α also induces pyruvate de-
hydrogenase kinase (PDK), inhibiting PDH, and thus decreas-
ing the production of acetyl-CoA entering the Krebs’ cycle.

Let us now see what would happen if PDH were to be
inhibited by other means, not by the hypoxia-mediated activa-
tion of HIF1α. Immediately, the mitochondria will sense a lack
of fuel entering them since the supply of acetyl-CoA will
decrease (despite the fact that the supply of glucose and oxygen
to the cell remains normal). They will then ignite the same
process described above, leading to resistance to apoptosis. One
can follow the same logic and realize that inhibition of any
critical enzyme used in glucose or fatty acid oxidation may
have the same consequences, “fooling the mitochondria” and
inhibiting oxidative phosphorylation, as if there was lack of
fuel. This mechanism can be used by cancer cells to inhibit
apoptosis, a sine qua non of cancer. At the same time, there are
three additional advantages that the cancer cells gain by this
“inappropriate” mitochondrial suppression:

First, the cancer cell can now use pyruvate that is not
oxidized in the Krebs’ cycle, for biomass generation, as the
tumor grows [18]. In other words, the unused pyruvate helps a
dividing cell create the amino acids, nucleotides, and lipids
needed to replicate. Specifically, unused pyruvate can be
transaminated to produce amino acids. Similarly, unused py-
ruvate can be metabolized and shunted into the pentose

Fig. 1 Suppressed mitochondrial function in cancer cells under
normoxia (Warburg Effect). While the mitochondrial glucose oxidation
(GO) is suppressed, the cytoplasmic glycolysis (Gly) is enhanced in
cancer. This is caused by a combination of inhibited mitochondrial
enzymes, whether by upregulation of PDK (a PDH inhibitor), LDH5
and PKM2 (isozymes that confer altered enzymatic activity) or by muta-
tions in IDH. All of these enzymes are induced by HIF1α. On the other
hand, the effects of this remodeling include decreased production ofαKG
(as a result of inhibited Krebs’ cycle) and increased levels of 2-HG, the
product of mutated IDH. Both of which result in HIF1α stabilization,
closing a powerful feedback loop. In addition, this remodeling results in

mitochondrial hyperpolarization (in part of a translocation of the glyco-
lytic enzyme HKII to the VDAC, inhibiting the function of the mitochon-
drial transition pore, a mega channel that allows the release of pro-
apoptotic factors like cytochrome c and apoptosis inducing factor, thus
inhibiting mitochondria-dependent apoptosis. Pyruvate dehydrogenase
kinase (PDK), pyruvate dehydrogenase (PDH), lactate dehydrogenase 5
(LDH5), pyruvate kinase M2 (PKM2), isocitrate dehydrogenase (IDH),
hypoxia inducible factor 1α (HIF1α), alpha-ketoglutarate (αKG), 2-
hydroxyglutarate (2-HG), hexokinase II (HKII), and voltage-dependent
anion channel (VDAC)
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phosphate pathway to produce both nucleotides and NADPH,
which is required to synthesize lipids [18].

Second, as in the case of decreased production of αKG
which contributes to HIF1α activation, there are other down-
stream signals from mitochondria, like decreased mROS,
dysregulation of cytoplasmic calcium, or induction of chaper-
ones that via the retrograde pathway (a series of mechanisms
that mitochondria induce under stress to send signals to the
nucleus) directly or indirectly activate other pro-proliferative
master transcription factors (like NFAT for example) [12,
19–21]. Like HIF1α, NFAT can suppress several aspects of
mitochondrial function, enhancing the proliferative potential
of cancer cells and driving positively reinforcing feedback
loops (proliferative signals→mitochondrial suppression→
proliferative signals).

Third, this mitochondrial remodeling promotes angiogene-
sis, not surprising since this mitochondrial remodeling
“mimics” hypoxia, a well-known driver of angiogenesis. While
hypoxia and HIF1α activation induce mitochondrial suppres-
sion [22], the reverse is also true [10], establishing a powerful
feedback loop that sustains angiogenesis even in the absence of
hypoxia. The majority of solid tumors experience hypoxia
during early tumor development as it occurs several cell layers
away from capillaries [23]. This leads to an initial primary
hypoxia-driven activation of HIF1α and angiogenic signaling
to form new blood vessels to supply the growing tumor with
nutrients. However, HIF1α stabilization is also regulated by
several diffusible mitochondria-derived factors, like αKG and
mROS as discussed above [23]. These lead to the inhibition of
the degradation of HIF1α through VHL-dependent
ubiquitination or activation of its transcriptional activity, respec-
tively [24, 25]. Thus, as the newly formed blood vessels bring
in more oxygen, limiting hypoxia, the mitochondrial suppres-
sion that takes place in the tumor now causes a primary
normoxic activation of HIF1α, sustaining angiogenesis as the
tumor continues to grow [10, 22]. Furthermore, by reducing
pyruvate into lactic acid during glycolysis, cancer cells increase
extracellular acidosis. This potentiates breakdown of the extra-
cellular matrix and allows penetration of the cancer through the
basement membrane, thereby driving metastasis [26].

Thus, mitochondrial suppression promotes suppressed ap-
optosis, increased proliferation, angiogenesis, and metastatic
potential and so can be seen as a critical hub of cancer
signaling. While hypoxia is a physiologic mechanism for
global mitochondrial suppression, we will now discuss a
variety of prominent cancer mechanisms that all lead to mito-
chondrial suppression, in a sense, mimicking hypoxia.

The cause of mitochondrial suppression in cancer

Mitochondria are well-known “integrators” of multiple sig-
nals [12]. Thus, mitochondrial suppression can occur through

four overarching mechanisms in cancer: (1) growth and tran-
scription factor signaling or (2) off-target effects of specific
oncogenes that can suppress specific enzymes or ETC com-
plexes, (3) suppression of factors regulating mitochondrial
homeostasis, and (4) mutations in key metabolic enzymes. It
is important to note that more than one of these factors may be
present within any given tumor.

1. Growth Factors: One of the pleiotropic effects of growth
factors upregulated in cancer, such as epidermal growth
factor (EGF) and fibroblast growth factor (FGF), is the
regulation of the flux of pyruvate into the mitochondria by
the gate-keeping enzyme PDH. EGF and FGF increase
the activity of pyruvate dehydrogenase kinase (PDK) [27]
which phosphorylates and inhibits PDH, thus preventing
the entry of pyruvate into the Krebs’ cycle and suppress-
ing glucose oxidation (GO) [28]. Furthermore, EGF sig-
naling has recently been shown to also directly inhibit
PDH function, through a PDK-independent tyrosine
phosphorylation of its E1 subunit [29]. Furthermore,
PDK is a target gene of HIF1α, which is upregulated in
most solid tumors [23, 30]. HIF1α works at multiple
levels to shift the balance of metabolism from GO toward
glycolysis, including upregulation of glucose transporters
and glycolytic enzymes. HIF1α also increases the trans-
lation of the EGF receptor, thereby suppressing mitochon-
drial function by both upregulating and activating PDK
[31]. There are four PDK isoenzymes with variable tissue
expression, and some, like PDK 4, are inducible in con-
ditions of metabolic stress [32]. Thus, it is reasonable to
assume that other, not yet identified, “fuel sensing”mech-
anisms exist in inducing the transcription of one or more
PDKs in tumors, in addition to increasing PDK activity
through tyrosine kinase signaling.

2. Oncogenes: Mitochondrial function is also suppressed by
many oncogenes, with p53 and c-MYC being prime ex-
amples. The Cancer Genome Atlas has identified p53 to
be the most commonly mutated gene in cancer [33]. p53
inhibits glycolysis by inducing the expression of Tp53-
induced glycolysis and apoptosis regulator (TIGAR) as
well as by reducing the expression of glycolytic enzymes,
like phosphoglycerate mutase [34, 35]. Furthermore, p53
enhances GO by increasing the expression of cytochrome
c oxidase subunits of the ETC [36]. Loss of p53 function
causes upregulation of both the glycolytic enzyme hexo-
kinase II (HKII) and PDK [37, 38]. Overall, loss of p53
function suppresses mitochondria and shifts the cell to a
more glycolytic phenotype. It is important to note that
post-translational modifications like acetylation, a process
intimately linked to mitochondrial function, are also
known to regulate p53’s function in cancer and in the
absence of mutations [39]. Like p53, c-MYC increases
the expression of multiple glycolytic enzymes including
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HKII, phosphofructokinase, GAPDH, and enolase A, as
well as glucose transporters and lactate dehydrogenase
(LDH) [40–42]. On top of driving glycolysis, upregula-
tion of LDH shifts the flux of pyruvate away from GO,
thereby further suppressing mitochondrial function.

3. Regulation of factors that control mitochondrial
homeostasis: Global mitochondrial function can be regu-
lated through inhibition of mitochondria-specific factors
like sirtuin 3 (Sirt3; the main de-acetylase in the mito-
chondria) and uncoupling protein-2 (UCP-2; a putative
mitochondria calcium transporter). Inhibition of Sirt3 and
UCP-2 suppresses mitochondrial function by increasing
protein acetylation and decreasingmitochondrial calcium,
respectively.When Sirt3 is deficient, the acetylation of the
majority of proteins involved in oxidative metabolism,
including Krebs’ enzymes and ETC complexes, increases;
this post-translational modification typically leads to the
inhibition of enzymatic function [43, 44]. Overall, loss of
Sirt3 activity can cause up to 50 % reduction in
mitochondria-derived ATP and respiration. Thus, it is not
surprising that loss of Sirt3 function has been shown to
promote the Warburg Effect and cancer. In fact, embryonic
fibroblasts lacking Sirt3 require activation of only one other
oncogene to transform into cancer [45], in contrast to wild-
type cells that require at least two.Moreover, mice deficient
in Sirt3 spontaneously develop breast cancer, and many
human cancers are deficient in Sirt3 [45–47]. These obser-
vations have led investigators to propose that Sirt3 fulfills
the criteria to be an oncogene [45].

Similarly, loss of UCP-2 function, which despite its name
is a weak uncoupler but goodmediator of calcium entry into
themitochondria, promotes proliferation [20] in part due to a
reduction inmitochondrial calcium,which decreases activity
of many calcium-dependent mitochondrial enzymes such as
PDH, isocitrate dehydrogenase, and α-ketoglutarate dehy-
drogenase [48, 49]. Mice deficient in UCP-2 are more prone
to develop colon cancer than wild-type UCP-2 littermates
when exposed to a carcinogen, demonstrating a predisposi-
tion to oncogenic transformation in these glycolytic animals
[50]. Similarly to Sirt3, UCP2 was recently proposed to be a
tumor-suppressing factor [20].

Another way that mitochondrial function can be sup-
pressed globally is disturbance of the way mitochondria
form networks in the cell (mitochondrial fission and fusion)
or the way these organelles are “recycled” (mitophagy)
[51]. Since these mitochondrial properties are closely
linked to cell cycle progression and cell division, it is not
surprising that there is early evidence that they may be
involved in carcinogenesis [52, 53]. Yet, the importance
of these essential functions for many dividing healthy cells
may limit their therapeutic potential.

4. Enzymatic mutations: Mutations in Krebs’ cycle enzymes
lead to suppressed mitochondrial function. Three

examples of this are fumarase, succinate dehydrogenase
(SDH), and isocitrate dehydrogenase (IDH). Mutations in
fumarase have been identified in almost all cases of the
tumor su s cep t i b i l i t y synd rome , he r ed i t a r y
leiomyomatosis, and renal cell carcinoma [54]. Similarly,
SDH mutations have been linked to the development of
pheochromocytoma, paraganglioma, and renal cell carci-
noma [55, 56]. Loss of fumarase or SDH function leads to
an accumulation of intracellular fumarate or succinate,
respectively. Each of these Krebs’ metabolites has been
shown to stabilize HIF1α by inhibiting the prolyl-
hydroxylases required for HIF1α degradation [57–59].
This leads to a high level of HIF1α activity even in the
presence of oxygen. As a result, these tumors are very
vascular. Similarly, a powerful pseudohypoxic environ-
ment is created in tumors housing IDH mutations due to
gain-of-function activity. Two independent cancer ge-
nome sequencing projects found that missense mutations
in patients with glioblastoma multiforme and acute mye-
logenous leukemia caused substitutions of a homologous
arginine in the active site of the enzyme at R132 and R172
in IDH1 and IDH2, respectively [60, 61]. Thesemutations
cause a gain-of-function, neomorphic activity, in which
the mutant IDH-mediated react ion yie lds 2-
hydroxyglutarate (2-HG) rather than the normal product,
αKG [62, 63]. Nearly structurally identical toαKG, 2-HG
may competitively inhibit the over 60 αKG-dependent
dioxygenase enzymes in humans by binding to the αKG
binding pocket in the enzyme’s active site [7]. These
αKG-dependent enzymes (and thus 2-HG targets) are
involved in a broad range of biological processes includ-
ing HIF1α degradation, collagen synthesis, and histone
methylation [64]. 2-HG also alters HIF1α degradation by
inhibiting HIF prolyl-hydroxylases. As a result, cells pro-
ducing 2-HG, due to an IDH mutation, are locked into a
state of pseudohypoxia and mitochondrial suppression.
Similar to renal cell carcinoma, glioblastomas are also
particularly vascular tumors.

Like p53, many of the Krebs’ enzymes, including those
discussed above, can be (at least partially) inhibited via post-
translational modifications like acetylation, even in the ab-
sence of mutations, and this has also been shown to be present
in several cancers [65, 66].

Mitochondria-targeting cancer therapies

We will now follow the sequential metabolism of glucose in
cancer cells to highlight several cancer-specific metabolic
targets that have been explored (Fig. 2), focusing on the
translational potential of these discoveries.
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Glucose transport and phosphorylation Since glycolysis is
upregulated in many cancers, it may appear logical to attempt
to inhibit it at its early stage. Glycolysis starts by glucose entry
into the cell, through glucose transporters (GLUTs), followed
immediately by phosphorylation by hexokinase (HK), re-
quired to “trap” glucose intracellularly. Logically, pharmaco-
logical inhibition of these two proteins may make sense as
both are upregulated in many cancers in order to increase
glucose uptake and glycolysis and compensate for the loss
of GO. However, being so proximal in the metabolic pathway
and ubiquitous in all cells, inhibition of GLUTs and HK, while
effective in some pre-clinical studies, has suffered setbacks
when tested in early phase human trials [67, 68]. For example,
inhibition of GLUTs led to brain toxicity as neurons rely
mostly on the use of carbohydrate metabolism [69]. Similarly,
HK inhibition led to severe hepatic toxicity, an organ heavily
involved in both catabolism and anabolism of glucose [69]. In
fact, more than half of the clinical trials using the GLUT and
HK inhibitors, 2-deoxyglucose and lonidamine, were termi-
nated prematurely [70]. Nevertheless, the HK inhibitor, 3-
bromopyruvate, which showed good effect in a xenotransplant
model, was used in a patient with fibrolamellar hepatocellular
carcinoma [71, 72]. While this patient survived the duration of
therapy, with few reported serious systemic side effects, the
drug was delivered directly to the tumor-related artery by
transarterial chemoembolization (TACE) [73], perhaps limit-
ing toxicity. Inhibiting glycolysis follows a more traditional
“cytotoxic” pathway as inhibition of glycolysis causes non-

specific necrosis; in fact, suppressing glycolysis will unavoid-
ably further suppress mitochondrial function as it deprives
mitochondria from a primary fuel in most tissues, limiting
the therapeutic potential of this strategy. This is in contrast to
the metabolic modulators discussed below that target the
“coupling” of glycolysis to GO, actually enhancing mitochon-
drial function, allowing mitochondria to operate their intrin-
sic apoptotic machinery (an energy consuming function)
or normalize their downstream signaling. While it is
easy to criticize retrospectively, the investigators of the-
se early clinical studies should be given credit as the
first that attempted to target a metabolic process in
human cancer, contributing to our re-examination of
Warburg’s “forgotten” theory.

Pyruvate kinase M2 (PKM2) activation Pyruvate stands at a
crossroads of metabolic fates: It is the product of cytoplasmic
glycolysis, the product of cytosolic malate oxidation (to make
anabolic NADPH), a precursor for amino acid production
through transamination, the substrate of PDH versus LDH to
either make acetyl-CoA which drives the mitochondrial
Krebs’ cycle, or lactate and complete glycolysis, respectively
[69, 74, 75]. Pyruvate kinase (PK) is the last enzymatic step in
glycolysis, catalyzing the reaction of phosphoenolpyruvate to
pyruvate, and consists of four isoforms [76]. Two of these
isoforms, M1 (PKM1) and M2 (PKM2), are encoded by
alternative splicing of the PKM2 (15q23) gene [77, 78].
Enzymatically, PKM1 is the highly active version and is found

Fig. 2 Biomarkers and metabolic modulators arising from the metabolic
theory of cancer (see text). Biomarkers (top) and metabolic modulators
(bottom) that have been developed for target enzymes and have been or
are in preclinical or clinical trials. Glucose transporter 1 (GLUT1),
Hexokinase II (HKII), M2 isoform pyruvate kinase (PKM2), Lactate

dehydrogenase 5 (LDH5), Pyruvate dehydrogenase (PDH), pyruvate
dehydrogenase kinase (PDK), Tyrosine Kinase Inhibitors (TKIs)
Isocitrate dehydrogenase (IDH), Phosphoenolpyruvate (PEP), Positron
emission tomography (PET), Magnetic resonance (MR), 2-
hydroxyglutarate (2-HG)
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in normal tissues requiring large amounts of glucose-derived
ATP, like skeletal muscle or brain [79, 80]. In contrast, the less
active PKM2 is expressed in most tissues during development
and has been found in many cancer cell lines [80–82]. Indeed,
preferential expression of PKM2 over PKM1 is associated
with mitochondrial suppression and enhanced tumorigenesis
[80, 83, 84]. The enzymatic activity of PKM2 is regulated by
several factors including glycolytic intermediates, tyrosine
phosphorylation, and acetylation [85–87]. Therefore, even
though PKM2 expression is increased in cancer, its overall
activity may be decreased [80]. Furthermore, it is dynamic
since in nutrient-abundant states, PKM2 forms active tetra-
mers that function similarly to the more active PKM1 [80, 88].
The importance of this dynamic regulation of PKM2 has
recently been explored in cancer [89]. Israelson et al. found
that mice conditionally deficient in PKM2 had a more accel-
erated tumor growth and mortality than their wild-type litter-
mates. Furthermore, the ratio of the inactive over active form
of PKM2 was found to tip the balance toward cancer growth.
In contrast to the earlier belief that it was the switch from one
isozyme to the other that promotes cancer, this work showed

that it is the overall suppression of PKM1/2 activity as a whole
(and thus the suppressed GO) that promotes cancer (Fig. 3a).
Indeed, overexpressing PKM1 in cancer cell lines lead to
reduced tumor growth in xenotransplant models [83]. Thus,
while the early discovery of an isozyme “specific for cancer”
would have triggered efforts to inhibit it, it appears that it is
PKM2 activators that may hold promise as cancer therapies.
Several small molecules have been developed, such as TEPP-
46, DASA-58, and ML265, which bind PKM2 at the subunit
interaction interface to promote formation of enzymatically
active tetramers [90]. This leads to a constitutively active
enzyme with over 200 % enhanced activity [83]. In vitro,
treatment with these small-molecule activators decreased the
intermediates necessary for biomass generation, reduced lac-
tate production and lipid synthesis, and lead to smaller and
slower growing tumors in vivo [83, 91].

Despite these promising results, pharmacologic activation
of PKM2 may not induce cytotoxic changes in cancer. While
populations of cancer cells expressing PKM2 do not prolifer-
ate, they continue to persist in a non-proliferative, perhaps
senescent state [89]. Therefore, once a tumor has been

Fig. 3 Ratio of Glycolysis to Glucose Oxidation increases in cancer due
to changes in several key metabolic enzymes.(a) Cells that express a low
amount of Pyruvate kinase M1 (PKM1) and an abundance of low-activity
Pyruvate kinase M2 (PKM2; which results in an overall decrease in
pyruvate kinase activity) prevent the entry of pyruvate into the mitochon-
dria, inhibiting glucose oxidation (GO). (b) Pyruvate dehydrogenase
kinase (PDK) also inhibits the entry of pyruvate into the mitochondria
by phosphorylating and inhibiting pyruvate dehydrogenase (PDH). (c)
The Lactate dehydrogenase (LDH) enzyme is made from four subunits

comprised of H (Heart) or M (Muscle) isoforms. Overexpression of the
hypoxia-inducible factor 1α (HIF1α) inducible LDH-M creates an en-
zyme comprised of four M subunits resulting in increased activity,
favouring the reduction of pyruvate to lactate, thereby shunting pyruvate
away from GO. (d) Mutation in isocitrate dehydrogenase (IDH) leads to
the production of the oncometabolite, 2-hydroxyglutarate (2-HG), which
antagonizes the normal product, alpha-ketoglutarate (αKG), leading to
suppressed GO via the stabilization and accumulation HIF1α
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detected, treatment with PKM2 activators may only limit
further growth and would need to be combined with another
agent or treatment modality to debulk the tumor by increasing
cytotoxicity or by inducing apoptosis.

Pyruvate dehydrogenase kinase (PDK) inhibition PDK phos-
phorylates and inhibits the E1a subunit of PDH [28]. The
net result of inhibited PDH is an increase in the ratio of
glycolysis over GO (Fig. 3b), with all the subsequent
downstream signaling events that were discussed earlier.
It is possible that increased expression and activity of PDK
(via HIF1α or tyrosine kinase signaling as discussed ear-
lier) is enough to induce the Warburg Effect and be the
dominant mechanism in certain cancers [13, 92] or other
proliferative diseases, like pulmonary arterial hyperten-
sion, characterized by a proliferative vascular remodeling
and mitochondrial suppression [12, 93]. For example, PDK
is significantly more increased in glioblastoma tumors
compared to that in healthy brain tissues from the same
patient [94], although this has not been systematically
studied in cancer yet. There is strong evidence that PDK
inhibition decreases cancer growth in vitro and in vivo in a
variety of tumors as discussed below.

Dichloroacetate is an orally available small-molecule in-
hibitor of PDK (structurally resembling pyruvate) that can
reach most tissues and cross the blood brain barrier.
Dichloroacetate (DCA) inhibits PDK at concentrations of
10–250 μM, while it is more active against some of the four
PDK isoforms (i.e., the ubiquitously expressed PDK2) com-
pared to others [95, 96]. DCA’s mechanism of action is quite
specific as it is mimicked by molecular PDK knockdown; in
addition, DCA has no additional effects in cells with effective
PDK knockdown [94, 97].

Originally, DCAwas pioneered by Dr. Stacpoole’s group at
the University of Florida to limit lactic acidosis in children
with congenital mitochondrial diseases (for example, deficien-
cies of PDH or other mitochondrial enzymes), and over the
past 40 years, it has been explored in a number of disease
states associated with lactic acidosis or with a primary mito-
chondrial suppression, including diabetes, malaria, pulmonary
arterial hypertension, lactic acidosis, heart failure, and exer-
cise tolerance in chronic respiratory disease [98–106]. In
2007, we described DCA’s pro-apoptotic and antiproliferative
effects due to normalization of mitochondrial function in a
variety of cancers (non-small-cell lung cancer, breast cancer,
glioblastoma) in vitro and in xenotransplant models in vivo
(Fig. 4a) [97]. DCA, a generic drug, cannot be patented,
creating the potential for financial barriers in its development
as a cancer treatment. Yet, a number of investigators have
shown interest since and have described similar effects in a
variety of tumors. Some examples include prostate cancer
[107], colon cancer [108–110], gastric cancer [111], endome-
trial cancer [112], glioblastoma [113], neuroblastoma [114], T
cell lymphoma [115], non-Hodgin’s lymphoma [116], fibro-
sarcoma [117], and metastatic breast cancer [118] (Table 1). In
this last study, DCA reduced lung metastases by 58 % in a
highly metastatic breast cancer model [118].

DCA appears to not have significant effects in normal cells,
perhaps because of low levels of PDK activity in healthy
tissues. Generally speaking, normal cells need active mito-
chondria with active PDH and keep the levels of its inhibitor
(PDK) low. For example, DCA normalized the highΔΨm of
non-small-cell lung cancer, glioblastoma, and breast cancer
cell lines without altering the ΔΨm of each cancer’s non-
malignant tissue analog, i.e., small airway epithelial cells,
mammary epithelial cells, or healthy brain tissues [10, 94, 97].

Fig. 4 Translation of DCA from
animal studies to an early phase
human trial. DCA decreased
tumor size (a), vascularity and
FDG uptake (measured by
microPET-CT (b) in a xenograft
rat model with non-small cell lung
cancer. In a small human glio-
blastoma trial, DCA normalized
mitochondrial metabolism, in-
creased apoptosis, suppressed an-
giogenesis and reduced tumor
growth after debulking surgery
for at least 18 months, in a patient
that had failed all approved ther-
apies and was otherwise destined
for hospice care (c)
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In addition to the induction of apoptosis and inhibition of
proliferation, DCA can exhibit effects apparent only in vivo,
as it suppresses angiogenesis by reversing the pseudohypoxic
state caused by activated PDK. By promoting the decarbox-
ylation of pyruvate into acetyl-CoA, DCA drives the Krebs’
cycle to produce αKG, as well as NADH and FADH2 to be
used in the ETC [10]. This leads to increased mROS, which
increases activity of redox sensitive tumor suppressors like
p53 [10, 13, 94, 115]. Together, increased p53 activity and
increased levels of αKG prevent the stabilization of HIF1α as
well as reduce HIF1α transcriptional activity and the expres-
sion of downstreamHIF1α targets [10, 119]. DCA reduces the
levels of angiogenic signaling molecules such as VEGF and
SDF-1 and prevents neovascularization both in vitro and in
xenotransplant tumor models [10]. In addition, inhibition of
PDK using RNA interference has recently been shown to
promote oncogene-induced senescence in melanoma in vitro
and in vivo, providing another mechanism through which
DCA may be exerting antitumor effects [120].

DCA has had success in early-phase small clinical trials for
glioblastoma (GBM) and recurrent brain tumors [94, 121].
Compared to healthy brain tissue removed during surgery for
epilepsy, tumors from 49 patients with GBM exhibited signif-
icantly higher levels of PDK and hyperpolarizedΔΨm. Treat-
ment of five patients with DCA (for which brain tissue was
removed at the time of debulking surgery at baseline as well as
after DCA treatment, allowing direct pre-post comparisons)

caused mitochondrial depolarization, increased rates of apo-
ptosis, activated p53, reduced proliferation, and inhibited
HIF1α activity and tumor vascularity [94]. Despite the very
advanced stage of their disease, some patients showed evi-
dence of tumor regression whereas others remained clinically
stable for >18 months (Fig. 4b). No patient developed hema-
tologic, hepatic, renal, or cardiac toxicity. Peripheral neurop-
athy developed in some patients but reversed at a lower dose
of DCA. Similar results, supporting the safety of the drug and
the need for phase II trials in glioblastoma, were confirmed by
another phase I trial performed by an independent group,
demonstrating clinically stable disease with no significant side
effects beyond peripheral neuropathy, which when it occurs is
dose-dependent and reversible [121]. Recently, the University
of Florida group published their experience with DCA in
children that were treated with DCA in their group continu-
ously from 9.7 to 16.5 years at a dose of 12.5 mg/kg two times
a day (i.e., higher or equal to the doses used in the glioblas-
toma trials in humans). They reported no hematological, elec-
trolyte, renal, or hepatic toxicity, with the only toxicity being a
reversible and dose-dependent peripheral neuropathy (treated
with dose reduction or only temporary discontinuation of
DCA) [122].

Although the initial half-life of DCA is very short (i.e.,
approximately 2 h) [96], the drug inhibits its own metabolism
until it reaches a plateau, and thus therapeutic concentrations
can be achieved in plasma with time (for example, at a dosing

Table 1 Early evidence for dichloroacetate’s potential benefits in multiple cancer types

Cancer type Model Outcome Monotherapy vs Combination Reference

Breast In vivo lung metastasis
model

Reduced number of lung metastases, increased
apoptosis

Monotherapy [118]

Breast Xenotransplant Reduced tumor growth and angiogenesis Monotherapy [10]

Colon Xenotransplant Reduced tumor growth and restored mitochondrial
ultrastructure

Monotherapy [108]

Colon In vitro Reduced proliferation and increased apoptosis Monotherapy [109]

Colon Spontaneous colorectal
adenocarcinoma

Decreased tumor grade, tumor size, and number of
tumors formed

Monotherapy [110]

Endometrial In vitro Increased apoptosis Monotherapy [112]

Fibrosarcoma In vitro Increased apoptosis Combination with Tamoxifen
and Omeprazole

[117]

Gastric In vitro Increased apoptosis and sensitized resistant cancer
cells to 5-fluorouracil

Combination with 5-fluorouracil [111]

Glioblastoma In vitro Increased apoptosis Monotherapy [97]

Glioblastoma Xenotransplant Reduced tumor growth Combination with bevacizumab [113]

Neuroblastoma Xenotransplant Reduced tumor growth Monotherapy [114]

Non-Hodgkin’s
Lymphoma

In vivo Complete remission on PET Monotherapy [116]

Non-small cell lung Xenotransplant Reduced tumor growth and increased apoptosis
in vivo

Monotherapy [97]

Prostate In vitro Increased apoptosis Combination with external beam
radiation

[107]

T-cell lymphoma In vitro Increased apoptosis
Reduced HIF1α function

Monotherapy [115]
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regimen of 6.25 mg/kg two times a day for 3 months) [94].
Nevertheless, this may take more than 3 months. Thus, DCA
may not be a good choice as a monotherapy in advanced and
rapidly proliferating tumors. Like the PKM2 targeting drugs,
it is not cytotoxic and could be seen as a drug that “sensitizes”
the tumors to apoptosis, perhaps best used as a part of a
combination therapy with a more cytotoxic drug at the early
stages of treatment.

Another fact that may support DCA’s sustained effects in
the long term is its ability to inhibit HIF1α. For example, the
early effectiveness of VEGF inhibitors is limited by the even-
tual escape of the tumor, which, having sustained HIF1α
activity, can continue to generate alternate pro-angiogenic
factors. Thus, metabolic modulators like DCA that have the
ability to inhibit the normoxic activation of HIF1α may offer
much more sustained and effective inhibition of angiogenesis
[10]. Indeed, synergy between DCA and VEGF inhibitors was
recently shown in glioblastoma cancer models [113].

The anticancer efficacy of DCA increases when combined
with other agents. Similar to the synergy between DCA and
VEGF inhibitors or DCA and temozolomide, a combination
agent, called mitaplatin, combines DCAwith cisplatin [123].
This unique drug is synthesized by adding two DCA moieties
(one onto each end) of a cisplatin core. Once this drug enters a
cancer cell, it is reduced to release one molecule of free
cisplatin and two molecules of free DCA. The result is the
combined effect of DCA on mitochondria (increasing cyto-
chrome c release and apoptosis) as well as cisplatin-mediated
DNA crosslinking. Mitaplatin exceeded the anticancer effica-
cy of cisplatin alone in a variety of cancer cell lines [123].
DCA has also been used in combination with 5-fluorouracil
(5-FU) to re-sensitize hypoxic gastric cancer cells that devel-
oped resistance to 5-FU monotherapy [111]. Similarly, the
combination of DCA with tamoxifen and omeprazole exhib-
ited more potent antitumor activity than those agents alone
[117]. Furthermore, other therapeutic modalities, such as ex-
ternal beam radiation, have been found to be efficacious in
combination with metabolic modulators. DCA sensitized
prostate cancer cells (which were previously resistant due to
overexpression of BCL-2), to radiation therapy [107]. Fur-
thermore, in combination with etoposide or irradiation, DCA
decreases the apoptosis resistance seen in gliomas compared
to treatment with either of these agents alone [124]. These
examples suggest that mitochondrial activation may be effec-
tive in combination strategies for several tumor types.

DCA’s proven ability to increase the GO/glycolysis ratio in
the treated tumors and its ability to decrease HIF1α activity and
thus reverse the upregulation of glucose transporters suggest
that metabolic imaging, like FDG-PET, may be used to track its
effects in vivo, a very desirable tool in drug development
(Fig. 4c). Tumor cells, expressing a relative abundance of
glucose transporters and glycolytic enzymes take up much
more fluorinated deoxyglucose (a metabolite that once uptaken

remains trapped intra-cellularly allowing its imaging) than sur-
rounding non-cancerous tissue. In theory, one of the first signs
of DCA’s effectiveness in vivo maybe its ability to decrease the
FDG uptake under FDG-PET imaging, a possibility that al-
though has been documented in animal models [10], should be
systematically pursued in future clinical trials.

Lactate dehydrogenase A (LDHA) inhibition Suppressed mi-
tochondria in cancer cells force pyruvate to be reduced to
lactate in order to allow glycolysis to continue. This is
achieved by lactate dehydrogenase (LDH), a tetrameric en-
zyme that facilitates the recycling of NAD+ from NADH by
reducing pyruvate to lactate in the cytoplasm. There are five
isoforms of LDH made from differing subunit combinations
of the products from two genes, LDHB and LDHA: LDHB
expresses a constitutively active form, LDH-H (heart); LDHA
is a HIF1α responsive gene that transcribes a more efficient
enzyme, LDH-M (muscle) [74, 125] (Fig. 3c). In highly
glycolytic tumors, the isoform made exclusively from four
subunits of LDH-M, known as LDH5, predominates [126].
Similarly, tumors epigenetically silence the LDHB gene
through hypermethylation of its promoter region, thereby
further shifting the ratio of LDH toward LDH5 [127]. Indeed,
the increased expression of this highly active tetramer is a
marker of poor prognosis in multiple malignancies [126, 128,
129]. In tissues where LDH activity is enhanced, its inhibition
will facilitate pyruvate’s entry into the mitochondria (assum-
ing that PDH is active), increasingGO and preventing the shift
of pyruvate’s metabolism into anabolic precursors.

Indeed, inhibition of LDH5 with short hairpin RNA en-
hanced respiration and reduced ΔΨm. LDHA knockdown
reduced cancer growth rates in vitro and in vivo in animal
models [130]. This work led to the development of a small-
molecule inhibitor of LDH, FX11, which was shown to be
effective in animal models of lymphoma and pancreatic can-
cer [131]. Another class of LDH5 competitive inhibitors, N-
hydroxy-2-carboxy-substituted indoles, called NHI-1 and
NHI-2, has been developed [132, 133]. These more specific
and efficient LDH5 inhibitors decrease lactate production and
reduce proliferation in multiple cancer cells lines.

Recently, 13C-labeled magnetic resonance spectroscopy
has been adapted to follow dynamic metabolic conversions
in vivo [134]. This imaging biomarker assesses real-time
changes in intracellular metabolism such as decreased reduc-
tion of pyruvate to lactate in response to drugs like LDH
inhibitors or DCA [135, 136].

Mutant isocitrate dehydrogenase (IDH) inhibition As
discussed above, mutant IDH leads to pseudo-hypoxic signal-
ing, due to the production of 2-HG (Fig. 3d). Recently, phar-
macological inhibition of IDH has been explored. Several
small-molecule inhibitors that specifically inhibit the mutant
form of IDH have been developed [137, 138]. Discovered
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through high-throughput screening, AGI-5198 inhibits the
production of 2-HG bymutant IDH1 while AGI-6780 inhibits
2-HG production by mutant IDH2. This inhibition appears
highly specific for the mutant isoform as AGI-5198 impairs
only the growth of IDH1 mutant but not IDH1 wild-type
glioma xenotransplant tumors [138].

2-HG-producing tumors cause exponentially higher levels
of this metabolite in the patient’s circulation [63]. Fathi et al.
have taken advantage of this unique cancer metabolite, to non-
invasively diagnose and subsequently follow response to
treatment in AML by detecting the levels of 2-HG in patients’
serum and urine samples before and during therapy [139].
While IDH inhibitors have yet to be tested in humans, this
powerful biomarker will facilitate IDH inhibitor development
in clinical trials.

Cancer stem cells Mitochondrial metabolism also determines
stem cell fate. Temporally, a switch to glycolysis precedes
expression of stem cell markers and subsequent entry into a
pluripotent state [140]. Conversely, an increase in mitochon-
drial glucose oxidation is necessary for initiating stem cell
differentiation [141]. Normal stem cells, similar to cancer
cells, exhibit increased LDHA, HKII, PDK, and phosphory-
lated PDH, compared to differentiated progeny, leading to
mitochondrial suppression [142]. This mitochondrial suppres-
sion is further exacerbated in hypoxic tumor cells and cancer
stem cells. For example, when lung cancer stem cells (LCSCs)
are directly compared to differentiated lung cancer cells,
LCSCs demonstrate lower oxygen consumption, mROS, mi-
tochondrial numbers, and ATP levels, as well as higher mito-
chondrial membrane potential [143]. Similarly, when studied
in parallel, healthy brain tissue, glioblastoma cancer cells, and
glioblastoma putative cancer stem cells exhibit a graded in-
crease in mitochondrial suppression, with the highest levels of
ΔΨm seen in the cancer stem cells [94]. Mechanistically,
overwhelming mitochondrial suppression in cancer stem cells
provides significant resistance to apoptosis, potentially
contributing to the cancer stem cells’ resistance to conven-
tional chemotherapeutics.

Activating mitochondria unlocks apoptosis resistance in
cancer stem cells. For example, tumor biopsies from GBM
patients treated with DCA found induction of apoptosis in
glioblastoma putative cancer stem cells, particularly when
used in combination with temozolomide in vivo and in vitro
[94]. Similarly, DCA reduces cancer stem cell viability in
embryonal cancer stem cells when the substrate for PDH,
pyruvate, is available [144].

Despite the induction of apoptosis in cancer stem cells,
there is evidence that DCA exhibits specificity for cancer stem
cells and not healthy stem cells. For example, patients treated
with long-term (up to 16 years) DCA did not suffer any
hematological side effects, suggesting lack of effects on bone
marrow stem cells [122]. Yet, it is possible that more potent

mitochondrial activators may have this problem, an important
issue that has to be addressed in the future with long-term
studies. On the other hand, metabolic disturbances may affect
the ability of stem cells to differentiate and, in the case of IDH
mutations in leukemic cells, there is evidence that they may
impair the ability of hematopoietic stem cells to differentiate,
resulting in leukemias that mimic a difficult to treat, hemato-
poietic stem cell phenotype [145].

Glucose oxidation and histone acetylation Histone acetyla-
tion has received a lot of attention in cancer research [146]. As
the source of the acetyl group is acetyl-CoA (a prime mito-
chondrial product), it is possible that the mitochondria sup-
pression discussed herein may actually also impact epigenetic
mechanisms. Isolated nuclei exposed to acetyl-CoA exhibit
increased histone acetylation [147]. Intriguingly, the acetyl-
CoA molecule is extremely unstable and has to be used in the
organelle that is produced. In other words, acetyl-CoA cannot
simply leak out of mitochondria and enter the nucleus. Recent
work, however, has shown two mechanisms by which mito-
chondria can regulate histone acetylation:

(a) PDH activity promotes citrate production in the Krebs’
cycle, which can diffuse out of the mitochondria and into
the nucleus to be used as a substrate to acetylate histones
by the enzyme ATP-citrate lyase, which is present both in
the cytoplasm and the nucleus [148]. Thus, a primary
inhibition of PDH will also result eventually in a suppres-
sion of citrate production and histone acetylation, unless

Fig. 5 Nuclear translocation of the PDH Complex (PDC) provides
Acetyl-CoA for histone acetylation. PDC dynamically translocates from
the mitochondria to the nucleus in response to growth factors, like
epidermal growth factor (EGF), to provide acetyl-CoA for histone acet-
ylation and cell cycle progression

J Mol Med (2015) 93:127–142 137



citrate can be replenished by an alternate pathway like the
reductive glutamine pathway, which can produce citrate in
the cytoplasm from the amino acid glutamine [149].

(b) We recently described an alternate way of nuclear pro-
duction of acetyl-CoA by showing that PDH can actually
translocate into the nucleus in a cell-cycle-dependent
manner [150]. Interestingly, several subunits of the
PDH complex, E1a and E2, had previously been shown
to be present in the nucleus of leukemic T cells, although
at the time their presence was not linked to the main
function of PDH, i.e., production of acetyl-CoA [151].
We found that nuclear PDH (which included all subunits
of the complex), although in small amounts, is function-
al, providing a source of acetyl-CoA to be used to acet-
ylate specific histone residues involved in cell cycle
progression [150]. Intriguingly, PDK does not follow
PDH in the nucleus (potentially being displaced from
its binding site on the E2 subunit by HSP70, which then
transports a “PDK-free” HSP70-PDH complex to the
nucleus), suggesting that nuclear PDH will be immune
to DCA and perhaps represent a potential “escape”
mechanism to DCA treatment (Fig. 5) [150].

The fact that translocation of such a large enzyme like PDH
takes place between mitochondria and the nucleus is not as
surprising as one may first think. For example, while mito-
chondrial PDH has been classically thought to be localized in
the mitochondrial matrix, it has also been shown to move
through the mitochondrial inner membranes and remain func-
tional in the outer mitochondrial membrane [27]. This is in
keeping with our finding that the chaperone HSP70 may be
involved in its nuclear translocation since it may easily reach
PDH on the outer mitochondrial membrane [150]. The role of
nuclear PDH is not entirely clear but suggests that it may
provide a critical regulatory mechanism for gene expression
by mediating a shift from heterochromatin to euchromatin
thereby facilitating transcription factor binding. Identifying a
mechanism by which this translocation is blocked may repre-
sent a new means of cancer therapy, merging the fields of
metabolism and epigenetic regulation therapeutics.

Conclusion

Suppressed mitochondrial function and in particular GO ap-
pears to be a universal feature of cancer, giving cancer cells a
proliferative advantage, while simultaneously repressing apo-
ptosis. A multitude of mechanisms underlie this mitochondrial
remodeling, exposing a number of novel therapeutic targets.
Although not cytotoxic, limiting their use as monotherapies in
rapidly growing tumors, these metabolic modulators appear to
be selective to the tumor. Metabolic oncology also has the

potential to utilize a number of unique metabolism-based
biomarkers. Multiple small molecules targeting both cytoplas-
mic and mitochondrial enzymes involved in cancer metabo-
lism, such as PKM2, PDK, IDH, and LDH5, are currently in
use in preclinical and early phase human clinical trials, a
remarkable achievement of translational oncology that was
essentially born less than 10 years ago.
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